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Functional equations
in the theory of conditionally specified distributions

By KÁROLY LAJKÓ (Debrecen)

Abstract. The functional equation

G1(xy + x) + F1(y) = G2(xy + y) + F2(x)

related to the characterizations of bivariate distributions is investigated for functions
Fi, Gi : R→ R or Fi, Gi : R+ → R, respectively.

1. Introduction

Functional equations have many interesting applications in the char-
acterization problems of probability theory.

In [1] Arnold, Castillo and Sarabia showed how solutions of
functional equations can be used in characterizing joint distributions from
conditional distributions and also an array of conditionally specified models
was presented and analysed.

Let (X, Y ) be an absolutely continuous bivariate random variable. Let
us denote the joint, mariginal and conditional densities by f(X,Y ), fX , fY ,
fX|Y , fY |X , respectively. One can write f(X,Y ) in two ways and obtain the
functional equation

(1) fX|Y (x, y)fY (y) = fY |X(x, y)fX(x)
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for all x, y ∈ R (or for all x, y ∈ R+ if we restrict our search to the random
variable (X, Y ) with support in the positive quadrant).

For example, it is natural to inquire about the nature of all joint
densities whose conditional densities satisfy

(2) fX|Y (x, y) = g1((α + y)x); fY |X(x, y) = g2((β + x)y)

for all x, y ∈ R or x, y ∈ R+, where α, β ∈ R or α, β ∈ R+ are arbitrary
constants, respectively (see [1]). We ask for what functions g1 and g2 can
we have (1) holding for x, y ∈ R or x, y ∈ R+, respectively.

From (1) and (2) we get that the functions g1, g2, fX , fY : R (or R+) →
R+ satisfy the functional equation

(3) g1((α + y)x)fY (y) = g2((β + x)y)fX(x)

for all x, y ∈ R (or for all x, y ∈ R+).
The solution of (3) can be reduced to the solution of the functional

equation

(4) G1(xy + x) + F1(y) = G2(xy + y) + F2(x)

(x, y ∈ R or x, y ∈ R+) for functions Gi, Fi : R (or R+) → R.
In this paper, we present the general solution of (4) when the functions

are defined on R, and the measurable solution of (4) when all the functions
are defined on R+.

2. The general solution of (4) on R

Here we shall use the following result of D. Blanuša and Z. Daróczy
(see [2], [3]).

Theorem B–D. The function f : R→ R satisfies the functional equa-
tion

(H) f(x + y − xy) + f(xy) = f(x) + f(y), x, y ∈ R

if and only if

(5) f(x) = A(x) + b, x ∈ R,

where A is an additive function on R2 and b ∈ R is an arbitrary constant.



Functional equations in the theory of conditionally specified distributions 243

Theorem 1. The functions Fi, Gi : R → R (i = 1, 2) satisfy the

functional equation (4) for all x, y ∈ R if and only if

Fi(x) = A(x) + bi, x ∈ R (i = 1, 2),(6)

Gi(x) = A(x) + ci, x ∈ R (i = 1, 2),(7)

where A : R → R is an additive function on R2 and bi, ci ∈ R (i = 1, 2)
are arbitrary constants with b1 + c1 = b2 + c2.

Proof. Putting x = 0 or y = 0 or x = 0, y = 0 in (4) we get

G1(0) + F1(y) = G2(y) + F2(0), y ∈ R,(8)

and

G1(x) + F1(0) = G2(0) + F2(x), x ∈ R,(9)

and

G1(0) + F1(0) = G2(0) + F2(0)(10)

respectively. Using these identities and (4) we have

(11) G1(xy + x) + F1(y) = F1(xy + y) + G1(x), x, y ∈ R.

Putting x = −1 here we obtain

(12) G1(−y − 1) + F1(y) = F1(0) + G1(−1), y ∈ R.

Substituting this into (11) we get the functional equation

G1(xy + x)−G1(−y − 1) = −G1(−(xy + y)− 1) + G1(x), x, y ∈ R.

Replacing here x, y by −x, y − 1, we get

G1(−xy) + G1(−(x + y − xy)) = G1(−x) + G1(−y), x, y ∈ R,

which implies that the function f defined by

(13) f(x) = G1(−x), x ∈ R

satisfies the functional equation (H).



244 Károly Lajkó

So, by Theorem B–D, f is of the form

(14) f(x) = A1(x) + c1, x ∈ R,

where A1 : R→ R is an additive function on R2 and c1 ∈ R is an arbitrary
constant.

Taking (13) and (14) into consideration, we have (7) for G1 with the
additive function A = −A1.

Then from (12), (9) and (8) we obtain (6) and (7) for the functions
F1, F2 and G2, respectively, with real constants b1, b2, c2.

An easy calculation shows that the functions (6) and (7) indeed sat-
isfy (4) if b1 + c1 = b2 + c2. ¤

3. The general mesurable solution of (4) on R+

We need the following result of A. Járai ([5] Theorem 2.7.2).

Theorem J. Let T be a locally compact metric space, let Z0 be a met-

ric space, and let Zi (i = 1, 2, . . . , n) be separable metric spaces. Suppose,

that D is an open subset of T × Rk and Xi ⊂ Rk for i = 1, 2, . . . , n. Let

f0 : T → Z0, fi : Xi → Zi, gi : D → Xi, H : D×Z1×Z2× · · · ×Zn → Z0

be functions. Suppose, that the following conditions hold:

(1) For every (t, y) ∈ D

f0(t) = H(t, y, f1(g1(t, y)), . . . , fn(gn(t, y))).

(2) fi is Lebesgue measurable over Xi for i = 1, 2, . . . , n.

(3) H is continuous on compact sets.

(4) For i = 1, 2, . . . , n, gi is continuous, and for every fixed t ∈ T the

mapping y → gi(t, y) is differentiable with the derivative D2gi(t, y)
and with the Jacobian J2gi(t, y), moreover, the mapping (t, y) →
D2gi(t, y) is continuous on D and for every t ∈ T there exists a

(t, y) ∈ D so that

J2gi(t, y) 6= 0 for i = 1, 2, . . . , n.

Then f0 is continuous on T .
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Lemma 1. If the measurable functions Gi, Fi : R+ → R (i = 1, 2)
satisfy the functional equation (4) for all x, y ∈ R+ then the functions
Gi, Fi are continuous.

Proof. First we prove the continuity of G1. From (4), with
t = xy + x, we obtain

(15) G1(t) = G2

(
ty

y + 1
+ y

)
+ F2

(
t

y + 1

)
− F1(y), (t, y) ∈ R2

+.

Let T = R+, n = 3, Z0 = Z1 = Z2 = Z3 = R, X1, X2, X3 = R+, D = R2
+.

Define the functions gi on R2
+ by

g1(t, y) =
ty

y + 1
+ y, g2(t, y) =

t

y + 1
, g3(t, y) = y

and let H(t, y, z1, z2, z3) = z1 + z2 − z3.
It follows from (15) that the functions fi (i = 1, 2, 3) given by

f0 = G1, f1 = G2, f2 = F2, f3 = F1

satisfy the functional equation in (1) of Theorem J for all t, y ∈ D = R2
+

and fi (i = 0, 1, 2, 3) is measurable by the conditions of our lemma. H is
continuous and condition (4) of Theorem J holds, too, since

D2g1(t, y) =
t

(y + 1)2
+ 1 6= 0, D2g2(t, y) = − t

(y + 1)2
6= 0,

D2g3(t, y) = 1 6= 0

for all (t, y) ∈ D = R2
+.

Thus, by Theorem J, f0 = G1 is continuous on R+. The continuity
of G2 can be proved by making the substitutions x → y, y → x in (4) and
repeating the above argument.

Putting x = 1 or y = 1 in (4) and solving the equation obtained for
F1 and F2, respectively, we get

F1(y) = G2(2y)−G1(y + 1) + F2(1), y ∈ R+,(16)
and

F2(x) = G1(2x)−G2(x + 1) + F1(1), x ∈ R+,(17)

respectively. Whence by the continuity of G1, G2 it follows that F1 and
F2 are continuous as well. ¤
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Lemma 2. If the measurable functions Gi, Fi : R+ → R (i = 1, 2)
satisfy the functional equation (4) for all x, y ∈ R+ then they are differen-

tiable infinitely many times on R+.

Proof. Write (4) in the form (15) and let [α, β] ⊂ R+ be arbitrary
and choose the interval [λ, µ] ⊂ R+ arbitrarily, too, then [α, β] × [λ, µ] ⊂
D = R2

+ holds.

Integrating (15) with respect to y on [λ, µ] we obtain

(µ− λ)G1(t) =

µ∫

λ

G2

(
ty

y + 1
+ y

)
dy +

µ∫

λ

F2

(
t

y + 1

)
dy −

µ∫

λ

F1(y)dy.

We use the substitutions

g1(t, y) =
ty

y + 1
+ y = u, g2(t, y) =

t

y + 1
= u

in the first and second integral, respectively. It is easy to check that these
equations can uniquely be solved for y if t ∈ [α, β].

In the case t
y+1 = u this is clear. In the case ty

1+y + y = u this
uniqueness is ensured, namely the derivative of the function y → g1(t, y):

D2g1(t, y) =
t

(y + 1)2
+ 1

is positive on [α, β]× [λ, µ], hence our function is strictly increasing.

The solutions

y =
−(t− u + 1) +

√
(t− u + 1)2 + 4u

2
=̇γ1(t, u), y =

t

u
− 1=̇γ2(t, u)

are infinitely many times differentiable functions of t and u. Performing
the substitutions we have

G1(t) =
1

µ− λ




µt
µ+1+µ∫

λt
λ+1+λ

G2(u)D2γ1(t, u)du +

t
µ+1∫

t
λ+1

F2(u)D2γ2(t, u)du− C


,

where C =
∫ µ

λ
F1(y) dy. The functions G2, F2 are at least continuous.

Hence, by repeated application of the theorem concerning the differentiable
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of parametric integrals (see e.g. [4]), the right hand side is differentiable
infinitely many times on [α, β]. Since [α, β] is an arbitrary subinterval of
R+, we have that G1 is differentiable infinitely many times on R+. The
differentiability of G2 can be obtained similarly.

Finally from (16) and (17) we can deduce that F1 and F2 are also
differentiable infinitely many times on R+. ¤

Lemma 3. If the functions Gi, Fi : R+ → R (i = 1, 2) satisfy the

functional equation (4) for all x, y ∈ R+ and they are twice differentiable

in R+, then there exist constants C, γ, δi ∈ R (i = 1, 2, 3, 4), with δ1 +δ3 =
δ2 + δ4 such that

G1(x) = C ln x + γx + δ1, x ∈ R+,(18)

F1(x) = C ln
x

x + 1
+ γx + δ3, x ∈ R+,(19)

G2(x) = C ln x + γx + δ2, x ∈ R+,(20)

F2(x) = C ln
x

x + 1
+ γx + δ4, x ∈ R+.(21)

Proof. Differentiating (4) with respect to x, then the resulting equa-
tion with respect to y, we have

G′1(xy + x) + (xy + x)G′′1(xy + x) = G′2(xy + y) + (xy + y)G′′2(xy + y),

x, y ∈ R+.

This can hold if and only if

tG′′1(t) + G′1(t) = γ = sG′′2(s) + G′2(s), t, s ∈ R+

for some constant γ.
The general solutions of the differential equations

tG′′1(t) + G′1(t) = γ, t ∈ R+,

and

sG′′2(s) + G′2(s) = γ, s ∈ R+,
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have the following forms

G1(t) = C ln t + γt + δ1, t ∈ R+,

G2(s) = C ln s + γs + δ2, s ∈ R+,

where C, γ, δ1, δ2 ∈ R are arbitrary constants, thus G1 and G2 are of the
forms (18) and (20), respectively. Then, from (16), (17), (18) and (20), we
get (19) and (21) for F1 and F2, respectively.

It is easy to see that (18), (19), (20) and (21) satisfy (4) if δ1 + δ3 =
δ2 + δ4. ¤

We may sum up the results of Lemmas 1, 2, 3 in the following theorem.

Theorem 2. If the measurable functions Gi, Fi : R+ → R (i = 1, 2)
satisfy the functional equation (4) for all x, y ∈ R+, then there exist con-

stants C, γ, δi ∈ R (i = 1, 2, 3, 4) such that G1, F1, G2 and F2 have the

forms (18), (19), (20) and (21), respectively and δ1 + δ3 = δ2 + δ4.
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