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On R-quadratic Finsler spaces

By ZHONGMIN SHEN (Indianapolis)

Abstract. In this paper, we introduce the notion of R-quadratic Finsler metric.
It is known that every Berwald metric is R-quadratic and Landsbergian. We show that
every compact R-quadratic Finsler space must be Landsbergian.

1. Introduction

In Finsler geometry, there are several notions of curvatures. Among
them, the Riemann curvature is an important quantity. For a Finsler
space (M,F ), the Riemann curvature is a family of linear transformations
Ry : TxM → TxM , where y ∈ TxM , with homogeneity Rλy = λ2Ry,
∀λ > 0 (the definition will be given in S2). If F is Riemannian, i.e.,
F (y) =

√
g(y, y) for some Riemannian metric g, then Ry := R(·, y)y,

where R(u, v)z denotes the Riemannian curvature tensor of g. In this
case, Ry is quadratic in y ∈ TxM . A Finsler metric is said to be R-
quadratic if its Riemann curvature Ry is quadratic in y ∈ TxM . There
are many non-Riemannian R-quadratic Finsler metrics. For example, all
Berwald metrics are R-quadratic. Thus R-quadratic Finsler spaces form
a rich class of Finsler spaces. The main purpose of this paper is to prove
the following

Theorem 1.1. Let (M, F ) be a positively complete Finsler space with

bounded Cartan torsion. Suppose that F is R-quadratic, then F must be a
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Landsberg metric. In particular, every compact R-quadratic Finsler space

must be Landsbergian.

The second part of Theorem 1.1 is true because that Finsler metrics
on a compact manifold must be positively complete with bounded Car-
tan torsion. Theorem 1.1 tells us that for Finsler metrics on a compact
manifold, the following holds

{
Berwald metrics

} ⊂ {
R-quadratic metrics

} ⊂ {
Landsberg metrics

}
.

It is an open problem in Finsler geometry whether or not there is a
Landsberg metric which is not Berwaldian. Theorem 1.1 throws a light
into this problem.

We will see that a Finsler metric is R-quadratic if and only if the
h-curvature of the Berwald connection depends on position only in the
sense of Bácsó–Matsumoto (see Remark 3.1 below). In [BM], Bácsó and
Matsumoto classify Finsler metrics in the form F (y) =

√
g(y, y) + β(y)

(Randers metrics) whose h-curvature depend on position only. Their re-
sults indicates that there are possibly local R-quadratic Finsler metrics
which are not Landsbergian.

For a submanifold M in a Minkowski space (V, F ), the Cartan torsion
must be bounded [Sh1]. We obtain the following

Corollary 1.2. For any positively complete submanifold M in a Min-

kowski space (V, F ), if the induced Finsler metric F̄ is R-quadratic, then

F̄ must be a Landsberg metric.

A Finsler space is said to be R-flat , if the Riemann curvature Ry = 0.
R-flat Finsler metrics are of course R-quadratic. According to Akbar-

Zedah [AZ], for positively complete R-flat Finsler space (M, F ), if the
Cartan torsion and its vertical covariant derivative are bounded, then F

is locally Minkowski. The conditions on the Cartan torsion are satisfied
by submanifolds in a Minkowski space. We conclude that for a positively
complete submanifold in a Minkowski space, if the induced Finsler metric
is R-flat, then it must be locally Minkowski.
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2. Preliminaries

A Finsler metric on a manifold M is a nonnegative function F on TM

having the following properties

(a) F is C∞ on TM \ {0};
(b) F (λy) = λF (y), ∀λ > 0, y ∈ TM ;

(c) for each y ∈ TxM , the following quadratic form gy on TxM is positive
definite,

(1) gy(u, v) :=
1
2
[
F 2(y + su + tv)

] |s,t=0, u, v ∈ TxM.

At each point x ∈ M , Fx := F |TxM is an Euclidean norm if and only
if gy is independent of y ∈ TxM \ {0}. To measure the non-Euclidean
feature of Fx, define Cy : TxM × TxM × TxM → R by

(2) Cy(u, v, w) :=
1
2

d

dt

[
gy+tw(u, v)

] |t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM\{0} is called the Cartan torsion. E. Cartan got
this quantity when he introduced his metric-compatible connection. Since
then, it is called the Cartan tensor or the Cartan torsion in literatures.

F is said to be positively complete if every geodesic on (a, b) can be
extended to a geodesic on (a,∞). A curve c(t) is called a geodesic if it
satisfies

(3)
d2ci

dt2
(t) + 2Gi(ċ(t)) = 0,

where Gi(y) are local functions on TM given by

(4) Gi(y) :=
1
4
gil(y)

{
∂2[F 2]
∂xk∂yl

(y)yk − ∂[F 2]
∂xl

(y)
}

, y ∈ TxM.

F is called a Berwald metric if Gi(y) are quadratic in y ∈ TxM for all
x ∈ M .

The Riemann curvature can be defined using geodesic fields and the
induced Riemannian metrics. A local vector field Y is called a geodesic field
if the integral curves of Y are geodesics. Fix a vector y ∈ TxM \ {0} and
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extend it to a local geodesic field Y on a neighborhood Ux of x. Y defines
a Riemannian metric on Ux by

ĝz(u, v) := gij(Yz)uivj , u, v ∈ TzU.

Let R̂(u, v)z denote the Riemannian curvature tensor of ĝ. Define Ry :
TxM → TxM by

(5) Ry(u) := R̂(u, y)y, u ∈ TxM.

Ry is a well-defined linear transformation independent of the geodesic
extension Y of y. The family R := {Ry}y∈TM\{0} is called the Riemann
curvature. The notion of Riemann curvature was first extended to Finsler
metrics by L. Berwald from a different approach [Bw]. F is said to be
R-quadratic if Ry is quadratic in y ∈ TxM at each point x ∈ M . Berwald
metrics are always R-quadratic (see Remark 3.1).

Let U(t) be a vector field along a curve c(t). The canonical covariant
derivative DċU(t) is defined by

(6) DċU(t) :=
{

dU i

dt
(t) + U j(t)

∂Gi

∂yj
(ċ(t))

}
∂

∂xi
|c(t) .

U(t) is said to be parallel along c if Dċ(t)U(t) = 0.
To measure the changes of the Cartan torsion C along geodesics, we

define Ly : TxM × TxM × TxM → R by

(7) Ly(u, v, w) :=
d

dt

[
Cċ(t)(U(t), V (t),W (t))

] |t=0

where c(t) is a geodesic and U(t), V (t), W (t) are parallel vector fields
along c(t) with ċ(0) = y, U(0) = u, V (0) = v, W (0) = w. The family
L := {Ly}y∈TM\{0} is called the Landsberg curvature. A Finsler metric
is called a Landsberg metric if L = 0. An important fact is that if F is
Berwaldian, then it is Landsbergian. See Remark 3.3.

3. Structure equations

To find the relationship among various quantities, usually we go to
the slit tangent bundle π : TM := TM \ {0} → M and choose a linear
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connection (such as the Berwald connection, the Cartan connection and the
Chern connection) on an appropriate vector bundle (such as the vertical
tangent bundle VTM and the pull-back tangent bundle π∗TM). In this
paper, we will study them using differential forms on TM instead.

Let F be a Finsler metric on an n-dimensional manifold M . Let
(xi, yi) be a standard coordinate system in TM and Gi(y) denote the
geodesic coefficients of F in (4). Put

(8) ωj
i :=

∂2Gi

∂yj∂yk
(y)dxk.

In literatures, ∂2Gi

∂yj∂yk are denoted by Gi
jk. {ωj

i} are called the Berwald
connection forms. Put

gij(y) := gy(ei, ej),(9)

Cijk(y) := Cy(ei, ej , ek), Lijk(y) := Ly(ei, ej , ek).(10)

where {ei = ∂
∂xi |π(y)} is a natural local frame on M . They are local

functions on TM . With the Berwald connection forms, we define Cijk;l

and Cijk·l by

(11) dCijk − Cpjkω p
i − Cipkω p

j − Cijpω
p

k = Cijk;lω
l + Cijk·lωn+l.

The definition of L in (7) is equivalent to the following

(12) Lijk(y) := Cijk;l(y)yl.

In literatures, Cijk;l(y)yl are also denoted by Cijk|0(y). Thus Lijk = Cijk|0.
Let ωi := dxi and ωn+i := dyi + yjωj

i. {ωi, ωn+i}n
i=1 is a natural

coframe for T ∗(TM). They satisfy the following structure equations

dωi = ωj ∧ ωj
i,(13)

dgij − gkjωi
k − gikωj

k = −2Lijkωk + 2Cijkωn+k,(14)

See [Sh2] for a proof.
The Riemann curvature Ry defined in (5) gives rise to a set of local

function Ri
k on TM

(15) Ry(ek) =: Ri
k(y)

∂

∂xi
|x, u ∈ TxM.
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In local coordinates, Ri
k(y) can be expressed in terms of Gi(y)

(16) Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
.

See [Sh2]. Thus the Riemann curvature defined in (5) coincides with the
usual one defined in a different way [Bw].

Remark 3.1. If F is Berwaldian, i.e., Gi(y) are quadratic in y ∈ TxM ,
then Ri

k(y) are quadratic in y ∈ TxM . Put

Rj
i
kl(y) :=

1
3

∂

∂yj

{
∂Ri

k

∂yl
− ∂Ri

l

∂yk

}
.

Rj
i
kl are the coefficients of the h-curvature of the Berwald connection,

which are also denoted by Hj
i
kl in literatures. We have

Ri
k(y) = yjR i

j kl(y)yl.

Thus Ri
k(y) is quadratic in y ∈ TxM if and only if Rj

i
kl(y) are functions

of x only.

There is another set of local functions Bi
jkl on TM defined by

Bi
jkl(y) :=

∂3Gi

∂yj∂yk∂yl
(y).

Bi
jkl are also denoted by Gi

jkl in literatures. Because this quantity was
introduced by L. Berwald first, I call it the Berwald curvature in my papers.
Note that F is Berwaldian if and only if Bi

jkl = 0.
We have

Ωj
i := dωi

j − ωj
k ∧ ωk

i(18)

=
1
2
Rj

i
klω

k ∧ ωl −Bi
jklω

k ∧ ωn+l.(19)

The following lemma is crucial in our proof of the main result.

Lemma 3.2.

(20) Lijk;ly
l =

1
2
ysylgpsRi

p
kl·j .
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Proof. Define gij;k and gij·k by

dgij − gkjωi
k − gikωj

k = gij;kωk + gij·kωn+k.

(14) means

(21) gij;k = −2Lijk, gij·k = 2Cijk.

Define yi
;k and yi

·k by

ωn+i = dyi + yjωj
i = yi

;kωk + yi
·kωn+k.

This means

(22) yi
;k = 0, yi

·k = δi
k.

Differentiating (14) yields the following Ricci identities.

(23) gpjΩi
p + gipΩj

p = −2Lijk;lω
k ∧ ωl − 2Lijk·lωk ∧ ωn+l

− 2Cijl;kωk ∧ ωn+l − 2Cijl·kωn+k ∧ ωn+l − 2CijpΩl
pyl.

It follows from (23) that

(24) Cijl;k + Lijk·l =
1
2
gpjB

p
ikl +

1
2
gipB

p
jkl.

Contracting (24) with yj and using (22) yield

(25) Ljkl = −1
2
ymgimBi

jkl .

Remark 3.3. F is Berwaldian if and only if Bi
jkl = 0. Thus Berwald

metrics are always Landsbergian.

Contracting (24) with yk yields (12). Differentiating (18) yields

(26) dΩj
i = −Ωj

k ∧ ωk
i + ωj

k ∧ Ωk
i.

Define Rj
i
kl;m and Rj

i
kl·m by

dRj
i
kl −Rm

i
klωi

m −Rj
i
mlωk

m −Rj
i
kmωl

m + Rj
m

klωm
i(27)

=: Rj
i
kl;mωm + Rj

i
kl·mωn+m.



270 Zhongmin Shen

Similarly, we define Bi
jkl;m and Bi

jkl·m. From (26), one obtains the follow-
ing Bianchi identity

(28) Rj
i
kl·m = Bi

jml;k −Bi
jkm;l.

Contracting (28) with ysgis and using (25) yield

(29) Ljkm;l − Ljml;k =
1
2
ysgpsRj

p
kl·m .

Contracting (29) with yl yields (20). ¤

4. Proof of Theorem 1.1

Let (M, F ) be a Finsler space and c : [a, b] → M a geodesic. For a
parallel vector field V (t) along c,

(30) gċ(t)(V (t), V (t)) = constant.

Lemma 4.1. Let (M, F ) be a Finsler space. Suppose that F is R-
quadratic. Then for any geodesic c(t) and any parallel vector field V (t)
along c, the following functions

(31) C(t) := Cċ(V (t), V (t), V (t))

must be in the following forms

(32) C(t) = L(0)t + C(0).

Proof. By assumption, Rj
i
kl(y) are functions of x only. Thus

Rj
i
kl·m =

∂Rj
i
kl

∂ym
= 0.

It follows from (20) that

Lijk;ly
l = 0.(33)

Let

L(t) := Lċ(V (t), V (t), V (t)).(34)

From our definition of Ly, we have

L(t) = C′(t).
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By (33), we obtain

(35) L′(t) = Lijk;l(ċ(t))ċl(t)V i(t)V j(t)V k(t) = 0.

Then (32) follows. ¤
To prove Theorem 1.1, take an arbitrary unit vector y ∈ TxM and an

arbitrary vector v ∈ TxM . Let c(t) be the geodesic with ċ(0) = y and V (t)
the parallel vector field along c with V (0) = v. Define C(t) and L(t) as in
(31) and (34), respectively. Then

C(t) = L(0)t + C(0).

Suppose that Cy is bounded, i.e., there is a constant K < ∞ such that

‖C‖x := sup
y∈TxM\{0}

sup
v∈TxM

|Cy(v, v, v)|
[gy(v, v)]

3
2
≤ K.

By (30), we know that

Q := gċ(t)(V (t), V (t))

is a positive constant. Thus

|C(t)| ≤ KQ
3
2 < ∞.

and C(t) is a bounded function on [0,∞). This implies

Ly(v, v, v) = L(0) = 0.

Therefore L = 0 and F is a Landsberg metric. This completes the proof
of Theorem 1.1.

Corollary 4.2. For any positively complete Randers metric F = α+β
on a manifold M , if F is R-quadratic, then it must be a Berwald space.

Proof. First we know that the Cartan torsion of F must be bounded.
In fact, ‖C‖x ≤ 3/

√
2 for any x ∈ M (see Appendix below). By Theo-

rem 1.1, F is a Landsberg metric. In a 1974 paper [M], Matsumoto
showed that F = α + β is a Landsberg metric if and only if β is parallel.
In a 1977 paper [HI], M. Hashiguchi and Y. Ichijyō showed that for a
Randers metric F = α + β, if β is parallel, then F is a Berwald metric.
This completes the proof. ¤
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5. Appendix

In this section, we will prove the following

Proposition 5.1. For any Randers norm F=α+β in an n-dimensional
vector space V with ‖β‖ := supα(y)=1 β(y) < 1, the Cartan torsion satisfies

(36) ‖C‖ ≤ 3√
2

√
1−

√
1− ‖β‖2 .

Proposition 5.1 in dimension two is proved in Exercise 11.2.6 in [BCS].
We will first give a different argument in dimension two, then extend it to
higher dimensions.

Assume that dim V = 2. The unit circle S = F−1(1) is a simple closed
curve around the origin. For a unit vector y ∈ S, there is a vector y⊥ ∈ V
satisfying

(37) gy(y, y⊥) = 0, gy(y⊥, y⊥) = 1.

The set {y, y⊥} is called the Berwald basis at y. Define

I(y) := Cy(y⊥, y⊥, y⊥), y ∈ S.

We call I the main scalar . Note that I = 0 if and only if C = 0. Moreover,

‖C‖ = sup
y∈S

|I(y)|.

Fix a basis {e1, e2} for V. Parameterize S by a counter-clockwise map
c(t) = u(t)e1 + v(t)e2. Then

(38) σ(t) := gc(t)

(
ċ(t), ċ(t)

)
=

u′(t)v′′(t)− u′′(t)v′(t)
u(t)v′(t)− u′(t)v(t)

> 0.

For a unit vector y = c(t) ∈ S, we can take

y⊥ :=
1√
σ(t)

ċ(t).

The main scalar I(t) := I(c(t)) is given by

(39) I(t) =
1√
σ(t)

d

dt

[
ln

√
σ(t)

u(t)v′(t)− u′(t)v(t)

]
.
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The above formulas also hold for singular Minkowski norms in dimension
two.

We now consider a Randers norm F = α + β in V . Take an or-
thonormal basis {e1, e2} for (V, α) such that β(ue1 + ve2) = bu, where
b = ‖β‖ := supα(y)=1 β(y) < 1. Then

(40) F (ue1 + ve2) =
√

u2 + v2 + bu.

The indicatrix S = F−1(1) is an ellipse determined by the following equa-
tion

(1− b2)2
(

u +
b

1− b2

)2

+ (1− b2)v2 = 1.

Parameterize S by c(t) = u(t)e1 + v(t)e2

u(t) = − b

1− b2
+

1
1− b2

cos(t), v(t) =
1√

1− b2
sin(t).

Plugging u(t) and v(t) into (39), we obtain

(41) I(t) = −3
2

b sin(t)√
1− b cos(t)

.

It is easy to see that

(42) ‖C‖ = max
F (y)=1

|I(y)| = max
0≤t≤2π

|I(t)| ≤ 3√
2

√
1−

√
1− b2 .

We obtain the same bound for Cy as in Exercise 11.2.6 in [BCS].

Now we consider a Randers norm F = α + β in an n-dimensional
vector space V. We claim that the Cartan torsion still satisfies (36). To
prove (36), we just need to simplify the problem to the two-dimensional
case. Let y0, v0 with F (y0) = 1 and gy0(v0, v0) = 1 such that

‖C‖ = Cy0(v0, v0, v0).

Let V̄ = span
{
y0, v0

}
and F̄ := F |V̄. The Cartan torsion C̄ of F̄ satisfies

Cy0(v0, v0, v0) =
1
4

∂3

∂s3

[
F 2(y0 + sv0)

]|s=0 = C̄y0(v0, v0, v0).
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Let ᾱ := α|V̄ and β̄ = β|V̄ . We have

‖β̄‖ = sup
ᾱ(y)=1

β̄(y) ≤ sup
α(y)=1

β(y) = ‖β‖.

Let Ī(y0) denote the main scalar of F̄ at y0. By the above argument, we
have

(43) ‖C̄‖ = max
F̄ (y)=1

|Ī(y)| ≤ 3√
2

√
1−

√
1− ‖β̄‖2 .

Thus

‖C‖ ≤ ‖C̄‖ ≤ 3√
2

√
1−

√
1− ‖β̄‖2 ≤ 3√

2

√
1−

√
1− ‖β‖2 .
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