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Some Cauchy-like functional equations
on the natural numbers

By T. M. K. DAVISON (Hamilton)

Abstract. The equation f(am+bn)+ f(0) = f(am)+ f(bn) is solved, where a,b
are fixed relatively prime positive integers and m, n are arbitrary natural numbers.

1. Introduction

In this paper we give necessary and sufficient conditions that a func-
tion f from the natural numbers (denoted Ny) to an additive abelian group
(denoted T') satisfy

(1) f(am +bn) + f(0) = f(am) + f(bn);  (m,n) € N,

Here a, b are fixed positive integers that are relatively prime. If a = 1 and
b = 1 then equation (1) becomes the affine version of Cauchy’s equation;
namely

(2) flm+n) + £(0) = f(m) + f(n);  (m,n) € NG.

It is clear that if f satisfies equation (2) then it also satisfies equation (1).
For this reason we call solutions of equation (1) (a, b)-Cauchy functions.

We need some elementary number theory to enable us to complete the
characterization of (a,b)-Cauchy functions. References for this are DICK-
SON [1: Chapter III], HuA [2: Chapters 1, 2, 11], ROSEN [3: Chapter 2]
and USPENSKY and HEASLET [4: Chapter III].
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The following sets of natural numbers are significant in the under-
standing of (a,b)-Cauchy functions:

(3) S = S(a,b) := {ax + by : (z,y) € N2},
and
(4) T =T(a,b) := Ny \ S(a,b).

Since a and b are relatively prime 7T is finite: more precisely, for all n € Ny
(5) n>(a—1)(b—1)=mne€ S(a,b).

(See [1: p. 65], [3: p. 109].) Indeed, the largest element of T"is ab —a — b

[3: p. 109] and the number of elements in T is % [3: p. 109]. We
see that T' is empty if a = 1 or b = 1. Now letting p € N we say a function
f:Ng — I' is p-quasiperiodic if

(6) f(m+p)+ f(0) = f(m) + f(p); m € No.
It is easy to see that equation (6) implies
(7) flm+pn) + f(0) = f(m) + f(pn);  (m,n) € NG

Hence a p-quasi-periodic function is none other than a (1, p)-Cauchy func-
tion. We require two more bits of terminology prior to stating our first
theorem. An (a,b)-Cauchy function g is singular if g has finite support:
that is to say

(8) supp(g) := {n € No : g(n) # 0}

is a finite set. An (a,b)-Cauchy function h is regular if h is also an (1, ab)-
Cauchy function: in other words h is regular if it is an (a, b)-Cauchy func-
tion that is also ab-quasi-periodic. We observe that the sum/difference of
singular /regular functions is singular/regular.

We now state our main results: the proofs are deferred to the second
section of the paper.

Theorem 1. Let Ny — T' be an (a,b)-Cauchy function. Then f can
be written uniquely as g + h where g is a singular (a,b)-Cauchy function,
and h is a regular (a,b)-Cauchy function.

Thus, to understand (a, b)-Cauchy functions we need only characterize
the special types: singular and regular. Singular functions are relatively
easy:
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Theorem 2. The function g : Ny — I' is a singular (a,b)-Cauchy
function if, and only if, supp(g) C T. (Here supp(g) is defined by (8)).

To characterize regular (a, b)-Cauchy functions we require a supply of
quasi-periodic functions: indeed those defined below are purely periodic.
Let p € N. For j € Ny we define the characteristic function Xfy : Ng —
{0,1} by x},(m) = 1 if, and only if, m = j modp. It is clear that

Xp(m+p) =x3(m);  m € N,

SO x{) is certainly p-quasi-periodic for all j € Ny. Finally we define N, ,(n)
as the number of pairs (z,y) € N3 satisfying the linear Diophantine equa-
tion

9) ax + by = n.
Our third main result is:

Theorem 3. Let h : Ng — I'. Then h is a regular (a,b)-Cauchy
function if, and only if, there are elements aq,...cq_1, B1,...Bv—1, Yo,
Yap Of T" such that, for all m € Ny

a—1 b—1
h(m) = xi(m)a; + Y x5*(m)Bk + 70 + Nap(m)Vab-
j=1 k=1

In the final section of the paper we show how (a, b)-Cauchy functions
over Z can easily be characterized using our results over Ny.

2. Properties of (a,b)-Cauchy functions

We show first that (a, b)-Cauchy functions are ab-quasi-periodic on S.

Lemma 1. Let f be an (a,b)-Cauchy function. Then for all s € S
(10) f(s +ab) + f(0) = f(s) + f(ab).

PROOF. Let s €.S; so s=ax + by for some x,y € Ng. Then f(s+ ab) +
f(0) = flax + b(y + a)) + f(0) = f(az) + f(ab+by) = f(ax) + f(ab) +
f(by) = £(0) = flax + by) + f(ab) = f(s) + f(ab), using equation (1)
repeatedly. O
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Let f : Ny — T be arbitrary. We define functions f, f Ny — I as
follows:

(11) f(m) := f(m) + f(ab) = f(m +ab) — f(0);  meNg
(12) f(m) := f(m + ab) + £(0) — f(ab); m € Ny.

We see that, for all m € Ny

(13) f(m) = f(m) + f(m).

If f is assumed to be an (a,b)-Cauchy function then equation (13) is, as
we will show, the decomposition of f into singular and regular parts.

Lemma 2. Let f be an (a,b)-Cauchy function
(i) f is a singular (a,b)-Cauchy function and supp(f) C T
(i) f(s)=f(s) forallse S

(iii) f is a regular (a,b)-Cauchy function.

PrROOF. (i) Let s € S. Then f(s) = f(s)+f(ab)— f(s+ab)— f(0) =0
by Lemma 1. Thus supp(f) € T. But |T| = &2@_1) so supp(f) is finite.
Now f is clearly an (a,b)-Cauchy function as, in equation (1), am + bn,
am, bn all belong to S so we require 0+ 0 = 0 + 0 which is certainly true.

(i) Since f(s) = f(s) — f(s) by equation (13) we deduce that f(s) =
f(s) for all s € S from part (i).

Since f = f — f and both f, f are (a,b)-Cauchy functions we see that
f is also an (a, b)-Cauchy function. We have to show that f is ab-quasi-
periodic. Let m € Ny Then m+ab € S since m+ab > (a—1)(b—1) using
the criterion for S-membership in equation (5). Hence

f(m+ ab) + £(0)

f(m 4+ ab) + £(0) (by part (i) above)
f(m) + f(ab) (by equation (12))
f(m) + f(ab) (since ab € 5).

This proves that f is ab-quasi-periodic, and completes the proof that f is
regular. O

One more result is useful in proving Theorem 1: only the zero function
is both singular and regular.
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Lemma 3. Suppose f is an (a,b)-Cauchy function function that is
both singular and regular. Then f = 0.

PROOF. We note that f = 0 if, and only if, supp(f) is the empty
set. So suppose supp(f) # 0. Since supp(f) is finite (f is singular) there
is a largest element in supp(f): call it mg. Then f(mg + ab) + f(ab) =
f(mo+2ab)+ f(0), since f is ab-quasi-periodic. Since mg+2ab > mo+ab >
mo we have that f(mg + 2ab) = 0 and f(mg + ab) = 0 (else mg is not
largest in supp(f)). We deduce that f(ab) = f(0), and so for all m € Ny
f(m + ab) = f(m). But this implies 0 = f(mg + ab) = f(mg) # 0. This
contradiction shows that supp(f) = () and hence that f = 0, as claimed.

O

We can now prove

Theorem 1. Let f : Ng — I' be an (a,b)-Cauchy function. Then
f can be written uniquely as g + h where g is a singular (a,b)-Cauchy
function, and h is a regular (a, b)-Cauchy function.

PrOOF. From equation (13) we know that f = f + f, and from
Lemma 2 we know that f is a singular (a, b)-Cauchy function and f is a
regular (a,b)-Cauchy function if f is an arbitrary (a,b)-Cauchy function.
This proves the existence of the claimed decomposition.

For the uniqueness suppose g + h = ¢’ + h’ where g, ¢’ are singular
(a, b)-Cauchy functions and h, h" are regular (a, b)-Cauchy functions. Then
g—¢g = h' —h. Moreover g — ¢’ is a singular (a, b)-Cauchy function and
h' — h is a regular (a, b)-Cauchy function. Thus the function g — ¢’ is both
singular and regular. By Lemma 3 it follows that g — ¢’ = 0. Hence g = ¢’
and so, h = h’/. This proves the uniqueness of the decomposition. O

A consequence of this theorem is that we need only characterize the
special types: singular and regular. We characterize the singular functions
in

Theorem 2. A function g : Ng — T is a singular (a, b)-Cauchy func-
tion if, and only if supp(g) C T.

PROOF. Suppose ¢ is a singular (a,b)-Cauchy function. Then g =
g+ g by Theorem 1. Since this decomposition is unique ¢ = 0. Thus
supp(g) = supp(g) € T by Lemma 2 (i).
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Conversely suppose g : Ng — I' satisfies supp(g) C 7. Then g(am +
bn) 4+ g(0) —glam) —g(bn) =04+0—-0—-0=0sinceam+bn ¢ T,0 ¢ T,
am ¢ T; bn ¢ T and = ¢ T implies g(z) = 0. Thus g is an (a, b)-Cauchy
function. It is a singular one since supp(g) is a finite set. O

It remains to characterize regular (a,b)-Cauchy functions. As a first
step we show that there are many such.

Lemma 4. The functions Ny, X%, x¥ are regular (a,b)-Cauchy func-
tions, for all j, k € Np.

Proor. We show first that N, is ab-quasi-periodic. Since a,b are
relatively prime ax + by = au + bv implies that x+ = umod b and y =
v mod a. Hence all the non-negative solutions of ax + by = n are in the
list

(0, %0), (zo+b, yo—a),...,(xo + kb, yo — ka)
where k = N, 3(n)—1. So all the non-negative solutions of az+by = n+ab
are in the list (zo, yo + a), (o + b, Yo),..., (o + kb, yo — ka). Thus
Nop(n+ab) =k+2= Nyp(n) — 142, and so

Na,b(n + ab) + Na,b(o) = Nayb(n) -+ Na,b(ab)

since N, (0) = 1 and N, p(ab) = 2. This proves that N, is ab-quasi-
periodic.

Now to prove that N, 4 is (a, b)-Cauchy let m,n € Ny. By the division
theorem we can write m = bm/ +u with 0 <u <b—1,and n = an’ +v
with 0 < v < a—1. Then an easy computation using the ab-periodicity of
Ngp (in particular equation (7))

N p(am +bn) + Ng p(0) — Ngp(am) — Ny p(bn)

= Nyplau+bv+ (m' + n')ab) + N, 4(0)
— N p(au +m'ab) — Ny (bv + n’ab)

= Nap(au + bv) + Nop((m' + n')ab) — Nop(au) — Ny p(m'ab)
+ Nop(0) = Nop(bv) — Ny p(n'ab) + N, p(0)

= Ngp(au + bv) + Ny p(0) — Ny p(au) — Ny p(bv)
+ Nap(m'ab+n'ab) + Ngp(0) — Ny p(m'ab) — Ny p(n'ab)

= Ny p(au + bv) + Ny p(0) — Ny p(auw) — Nop(bv).
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Thus N, is an (a, b)-Cauchy function if, and only if,
(14) Navb(au + bv) + Na,b(o) = Navb(au) + Na,b(bv)

for all u, v in Ny satisfying 0 <u <b—-1,0<v <a—1. Now N,;(0) =
Nop(au) = Ngp(bv) = 1. It remains to prove that N, p,(au + bv) = 1 also
for (14) to be satisfied. If ax + by = au + bv with (z,y) € N3 and = > u
then v > y; but then y < 0 — which is a contradiction [v = y mod a and
y < v < a implies y < 0]. Similarly if z < u then y > v and z < 0; also a
contradiction. Hence N, ;(au+bv) = 1, and equation (14) has been shown
to be satisfied. Thus N, is an (a, b)-Cauchy function.

Next x? (am + bn) = x? (bn) since x? is purely a-periodic, as noted
in the introduction. Thus xZ(am + bn) + x4 (0) — xZ(am) — x%(bn) =
X2 (bn)+x2(0) = x2 (0) — x? (bn) = 0. Hence x? is an (a, b)-Cauchy function.
Now ¥ is also trivially ab-quasi-periodic since x? (m+ab)+x2 (0)—x2 (m)—
¥ (a8) = X3 (m) + x4, (0) — xA(m) — x3(0) = 0. Thus xJ, is a regular (a, b)-
Cauchy function. Similarly, y¥ is a regular (a,b)-Cauchy function. OJ

We can now prove

Theorem 3. The function h : Ny — I' is a regular (a, b)-Cauchy func-
tion if, and only if, there are elements a1, ...,0q_1, B1,---,Bb—1, Y0, Yab
in I' such that for all m € Ny

a—1
(15)  h(m) = x(m)a; + ZX m) Bk + Y0 + Nab(m)Vab-
j=1

PROOF. Let the elements aq,...,vqs, be given. Then the functions
X!
to I' using Lemma 4. Hence so is h(m) as defined by equation (15).

aj, X{f“ﬂk, 7o and Ny pyqp are regular (a,b)-Cauchy functions from Ny

Assume conversely that h is a regular (a,b)-Cauchy function. Define
elements a; := h(jb) — h(0), Bi := h(ka) — h(0), 7o := 2h(0) — h(ab) and
Yab = h(ab) — h(0). Define b’ : Ng — T’ by h'(m) := Z?;ll X2 (m)ay, +
Zk 1 XX (m) B, + 70 + Nap(m)Vap. Then by the direct part of the theorem
h' : Ng — T is a regular (a,b)-Cauchy function. Now define h := h — h'.
Then h is also a regular (a, b)-Cauchy function.

It suffices to show that h vanishes on S. For then supp(h) € T and h
would be a singular (a, b)-Cauchy function by Theorem 2. So h = 0, and
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thus h = h/, as described. First h(0) = h(0) — ' (0) = h(0) — Yo — Yap = O.
(For x4°(0) = 0 for j = 1,2,...,a — 1 since a and b are relatively prime;
similarly x¥?(0) = 0.) Second

h(ab) = h(ab) — h'(ab) = h(ab) — v — 27ap = 0.
Now for arbitrary n € N we have
h(nab) = h((n — 1)ab + ab) + h(0) = h((n — 1)ab) + h(ab) = h((n — 1)ab),

and so h(nab) = 0 for all n € N by induction.

Third, let £ € Ng, 1 </ < a—1. Then, for 1 < j <a—1, xJ® (tb) =1
iff jb = £b mod a, iff j = £ mod a, iff j = £ since j, £ are both small. Hence
S STI XA (Uh)oy = oy Next xfo(¢b) = 0. So h(¢b) = h(fb) — I (£b) =
h(€b) — oy — 0 — Yap = 0. Similarly, h(ma) = 0 for 1 < m < b—1. Finally,
let s =ax+byeS. Write x = bz’ +u, y =ay’ +v where 0 <u <b—1,
0 <v<a-—1. Then h(az + by) = h(au + bv + (2’ + y')ab) = h(au + bv)
(since h(au) + h(bv) = 0+ 0 = 0). Thus h is zero on S, and the proof is
complete. O

Corollary. Let p € N. Then f : Ny — I' is p-quasi-periodic if, and
only if, there are elements (31,...,8p—1,%,7p in I' such that

(16) f(n) = Z X (m)Br + Y0 + N1p(n)vp.
k=1

PROOF. This is merely the case a = 1, b = p of the theorem. O

It is easy to evaluate Nj ,(n) with the help of a well known p-quasi-
periodic function. Let p € N. There are p-quasi-periodic functions g, :
No — Np and r, : Ng — {0,1,2,...,p— 1} for all n € Ny,

(17) n = pgp(n) +rp(n).

Of course the notation is self-explanatory: g, is the quotient after division
by p, and 7, is the remainder. We can now state
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Lemma 5. Let p € N. Then

(18) Nip(n) = qp(n) + 1, n € No.

PROOF. Ni,(n) = card{(z,y) € N} : 2 + py = n}. Now write n =
Pay(n)+7,(n) as in cquation (17). Then (ry(n), qy(n), (ry(n)+p, g (n)—1),
..., (n,0) is the complete list of non-negative solutions (z,y) to x+py = n.
There are g,(n) + 1 distinct entries on the list. So Ny ,(n) = g,(n) + 1.

U

In turn we can use the corollary above to determine another expression

for Ny p(n).

Proposition. Let xg be the characteristic function of S: that is
xs(n) € {0,1} and xs(n) =1 if, and only if, n € S. Then

(19) Nap(n) = gapr(n) + xs(rap(n)); n € Ng.

PROOF. Ny is a regular (a,b)-Cauchy function by Lemma 4. So,
using the corollary to Theorem 3 we have

ab—1
Nap(n) = > xb(n) Bk + Y0 + N1.ab(n)Yas
k=1

ab—1
= x5(m)Brk + 70 + Yab + Gab(n)Vab
k=1

using Lemma 5. We know that v9 = 2N, ,(0) — Ngp(ab) = 0, and v, =
Na,b — Na,b(o) =2—-1=1, 6, = Na,b(k‘) — Na,b(o)- So Nmb(n) = qab(n) +
X =s (rap(n)) if, and only if xs(rap(n)) =1+ 357" x5, () [Nas (k) — 1].
We see that both sides remain invariant under the transformation n +—
n+ab. So it suffices to prove the result for 0 < n < ab. Now N, (k) —1 =
—xr (k) since 1 <k < ab. So Y35 Xk, (n)(—xr (k) = —xr(n) (n < ab
used here). Finally 1 — x7(n) = xs(n) for 0 < n < ab. Thus the result

follows. O

Equation (19) is well-known. (See [4, p. 65].) However the above
proof uses our analysis of the solutions of a functional equation and not
elementary number theory directly.
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3. Concluding remarks

We mention briefly how to use our results to solve, for f : Z — T,
a,b € N relatively prime

(20) flam +bn) + £(0) = f(am) + f(bn); (m,n) € Z2.

If f is an (a, b)-Cauchy function over Z then f is ab-quasi-periodic over Z.
(For now S(a,b) = Z and Lemma 1 still gives the result.) Hence f re-
stricted to Ny is a regular (a, b)-Cauchy function. We can therefore state

Theorem. f :7Z — I satisfies equation (20) if, and only if, there are
elements aq,...,aq4-1, B1,---,0b—1, 00,0qp in I' such that

a—1 b—1
F) = X3 () + ) x5 (n)Bk + 60 + [qan(n) + xs(ran(n))] das
j=1 k=1

for alln € Z.

Here, of course ¢, : Z — Z is the quotient function extended to Z:

ap(n) == gp(n + |n|p) — [nl; n € Z.
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