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A note on the weak subalgebra lattice
of a unary algebra with constants

By KONRAD PIÓRO (Warsaw)

Abstract. We prove that for a locally finite (total) algebra A having finitely
many nullary and unary operations only, its weak subalgebra lattice uniquely determines
its (strong) subalgebra lattice. More precisely, we show that for every partial algebra
B of the same type, if the weak subalgebra lattices of A and B are isomorphic (with
A as above), then the (strong) subalgebra lattices of A and B are isomorphic, and B
is also total and locally finite.

1. Introduction

Investigations of relationships between (total) algebras or varieties of
algebras and their subalgebra lattices are an important part of universal
algebra. For instance, characterizations of subalgebra lattices for algebras
in a given variety or of a given type are this kind of problems (see e.g. [11]).
Moreover, several results (see e.g. [7], [14], [17], [18]) describe algebras or
varieties of algebras which have special subalgebra lattices (i.e. modular,
distributive, etc.). For example, T. Evans and B. Ganter proved in [7]
that an arbitrary subalgebra modular variety (i.e. a variety in which every
algebra has a modular subalgebra lattice) is Hamiltonian (i.e. any subal-
gebra is a congruence class of a suitable congruence); hence and by [12],
it is Abelian. Moreover, J. Shapiro showed in [17] that every subalgebra
distributive variety (i.e. each of its algebras has a distributive subalgebra
lattice) is strongly Abelian. Note that some such results concern also clas-
sical algebras–Boolean algebras, groups, modules (see e.g. [13], [16] or [9],
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[10]). For example, D. Sachs showed in [16] that two Boolean algebras
are isomorphic iff their lattices of subalgebras are isomorphic; E. Lukács

and P.P. Palfy proved in [13] that the modularity of the subgroup lattice
of the direct square of any group implies that G is commutative.

The theory of partial algebras provides additional tools for such in-
vestigation, since several different structures may be considered in this
case (see e.g. [4], [6]). In this paper we consider only two types of partial
subalgebras. First, we have subalgebras defined as in the total case (such
subalgebras will here be called strong as opposed to the other kinds of
partial subalgebras). The second notion is that of the weak subalgebra: a
partial algebra B = 〈B, (kB)k∈K〉 is a weak subalgebra of a partial algebra
A = 〈A, (kA)k∈K〉 of the same type iff B ⊆ A and kB ⊆ kA for k ∈ K;
the set of all weak subalgebras of A forms an algebraic lattice under (weak
subalgebra) inclusion ≤w, which will be denoted by Sw(A). Analogously,
the strong subalgebra lattice of A will be denoted by Ss(A).

It seems that the weak subalgebra lattice alone, and also together with
the strong subalgebra lattice, yields a lot of interesting information on an
algebra, also in the case of total algebras. Several results of this kind are
already known (see e.g. [2], [3] and [15]). Moreover, in [15] we introduce
a graph-algebraic language which is very useful in the solution of some
problems of subalgebra lattices of partial unary algebras. For instance,
we characterized in [15] arbitrary two partial unary algebras having iso-
morphic weak subalgebra lattices. In the present paper we use this graph
language and other (little generalized) results from [15] to prove the follow-
ing result: Let A be a total and locally finite algebra having finitely many
constants and unary operations only. Then for every partial algebra B of
the same type, if the weak subalgebra lattices of A and B are isomorphic,
then their strong subalgebra lattices are isomorphic, and B is also total
and locally finite.

2. Basic definitions

For basic notions and facts concerning partial algebras and partial
subalgebras and lattices of such subalgebras see e.g. [4] or [6]; concern-
ing (total) algebras and lattices of (total) subalgebras see e.g. [8] or [11];
concerning digraphs (directed graphs) and (undirected) graphs see e.g. [5].

We will use digraphs and graphs to represent partial unary algebras
with constants. Therefore first, we consider digraphs with constants, where
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constants are defined as in algebras, i.e. they can be identified with some
fixed vertices (of course two different constants may be represented by the
same vertex); constants of a digraph D will be denoted by cD1 , cD2 , . . . , and
the set of all constants by Cons(D). Secondly, we consider also infinite
digraphs and graphs, i.e. the sets V D and ED of vertices and edges of a
digraph D may be infinite and of arbitrary cardinalities. Recall (see [15],
where this construction is given for unary algebras) that each partial al-
gebra A = 〈A, (cA)c∈C , (kA)k∈K〉 of type (C, K) (where C is a set of
constant symbols and K is a set of unary operation symbols) can be rep-
resented by the digraph with constants D(A) as follows1: V D(A) := A,
ED(A) := {(a, k, b) ∈ A×K × A : (a, b) ∈ kA} and for each edge (a, k, b),
a is its initial vertex and b is its final vertex, and moreover, all defined
constants of A are constants of D(A), i.e. cD(A) := cA for each c ∈ C

such that cA is defined in A (recall that in a partial algebra some, and
even all, of its constants can be undefined). Note that this construction
for partial unary algebras (without constants) is a very particular case of
the Grothendieck construction (see [1], Section 4.2 and 11.2). Observe
also that with every digraph D with constants we can associate the (undi-
rected) graph D∗ by omitting the orientation of all edges of D and by
replacing each constant cD ∈ Cons(D) by a new loop, say (v, c, v), in its
vertex v. Thus with each partial unary algebra A with constants we can
associate the graph D∗(A) := (D(A))∗.

Let D be a digraph with constants and v ∈ V D. Then ED
sr(v) is

the set of all regular edges (i.e. with different endpoints) starting from
v; ED

er(v) is the set of all regular edges ending in v; ED
sl (v) is the set of

all loops in v; and consD(v) is the set of all constants in v. Moreover, we
define the cardinal numbers srD(v) = |ED

sr(v)|, slD(v) = |ED
sl (v)|, sD(v) =

|ED
sr(v) ∪ ED

sl (v)|, erD(v) = |ED
er(v)| and cnD(v) = | consD(v)| (where |A|

denotes the cardinality of a set A). Now we can define the type of digraphs
with constants (recall that the digraph type is introduced in [15]). Let D
be a digraph with constants and (η1, η2) a pair of cardinal numbers. Then
D is of type (η1, η2) iff |Cons(D)| ≤ η1 and sD(v) ≤ η2 for each v ∈ V D.
We say that D of type (η1, η2) is total iff |Cons(D)| = η1 and sD(v) = η2

for v ∈ V D. A type (η1, η2) is finite iff η1, η2 ∈ N (where N is the set

1The concept of “digraph” used in this paper is often called “multidigraph with loops”,
or even “edge-coloured multidigraph with loops” by other authors. Note that the edge
colouring is not essential for our proofs.
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of all non-negative integers). It is not difficult to see (the precise proof
in the case of unary algebras is given in [15]) that for any partial unary
algebra with constants A = 〈A, (cA)k∈C , (kA)k∈K〉, its digraph D(A) with
constants is of (digraph) type (|C|, |K|). Conversely, for an algebraic type
(C,K) and each digraph D with constants of type (|C|, |K|), it is easily
shown (see also [15]) that there is a partial algebra A of the type (C, K)
such that D(A) ' D. Moreover, for each partial algebra A of finite type
(C,K) (i.e. C and K are finite sets), A is total iff D(A) is total.

Recall (see [15]) that two kinds of subdigraphs can be defined which
represent weak and strong subalgebras of a partial unary algebra; more-
over, each of these two families forms an algebraic lattice. The case of al-
gebras with constants is analogous. More precisely, the first kind is formed
by usual subdigraphs (with constants) which will be called weak to stress
its relation with weak subalgebras. We assume that the empty digraph is
also a weak subdigraph (analogously as for partial algebras). Secondly, we
say that a digraph H with constants is a strong subdigraph of a digraph D
with constants iff H is a weak subdigraph of D and Cons(D) = Cons(H)
and for each edge e of D, if the initial vertex of e belongs to H, then e

belongs to H (in particular, its final vertex also belongs to H). Note that
the empty digraph is a strong subdigraph of D iff Cons(D) = ∅. Note also
that we call a subdigraph “strong” when it represent a strong subalgebra.
It can be proved, in an analogous way as for partial algebras (note also
that the precise proof for digraphs without constants is given in [15] and
moreover, our case is similar), that the sets of all weak and strong subdi-
graphs of D form complete lattices under (weak and strong subdigraph)
inclusion ≤w and ≤s, respectively; they will be denoted by Sw(D) and
Ss(D). The operations of infimum

∧
and supremum

∨
are defined as for

partial algebras. In particular, for any subset W ⊆ V D of vertices, there
is the least strong subdigraph of D containing W , which will be denoted
by 〈W 〉D. Analogously as for algebras, we say that a digraph D is locally
finite iff for any finite W ⊆ V D, the strong subdigraph 〈W 〉D generated
by W is finite (i.e. the vertex set V 〈W 〉D is finite). Moreover, it can be
proved, in a similar way as in [15], that the function assigning to each weak
or strong subalgebra B of a partial unary algebra A with constants its di-
graph D(B), which is, of course, a weak or strong subdigraph of D(A),
respectively, forms lattice isomorphisms. Thus for each partial unary al-
gebra A with constants, Sw(A) ' Sw(D(A)) and Ss(A) ' Ss(D(A)).
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It easily follows from this result and its proof (see also [15]) that
for each partial unary algebra A with constants and B ⊆ A, D

(〈B〉A
)

=
〈B〉D(A) (where 〈B〉A denotes the strong subalgebra of A generated by B).
Hence we infer that A is locally finite iff D(A) is a locally finite digraph.

Recall also (see [2], where it is proved for unary algebras, but the proof
of this case is the same) that the weak subdigraph lattice of any digraph
D with constants is uniquely determined by D∗. More formally, for any
digraphs D and G with constants, Sw(D) ' Sw(G) iff D∗ ' G∗. Hence we
deduce that for each partial unary algebras A and B with constants (which
can be even of different types), Sw(A) ' Sw(B) iff D∗(A) ' D∗(B).

Now observe that the above results and definitions reduce our alge-
braic problem to some digraph question. More precisely, partial algebras
A and B, with finitely many nullary and unary operations c1, . . . , cn and
f1, . . . , fm, can be replaced by digraphs D and G with constants of finite
type (n,m); assumptions on A are translated into the digraph language as
follows: D is a total digraph with constants and locally finite; moreover,
the property that Sw(A) ' Sw(B) is equivalent to the condition that D∗

and G∗ are isomorphic. Thus to prove our algebraic result we must only
show the following graph fact: Let D be a total digraph with constants
of finite type (n1, n2) and locally finite, and let G be a digraph of type
(n1, n2) such that D∗ ' G∗; then the strong subdigraph lattices of D and
G are isomorphic, and G is also total and locally finite.

3. Preliminary results

Let D be a digraph with constants, F ⊆ ED
reg, L ⊆ ED

lo and C ⊆
Cons(D) (where ED

reg and ED
lo are sets of all regular edges and loops of

D, respectively). Then D(F ; L; C) is the new digraph with constants
obtained from D by inverting the orientation of all the edges in F and by
replacing all the loops in L by constants and by replacing all the constants
in C by loops. This simple construction of new digraphs with constants is
important for us, because it holds:

Lemma 1. Let D and H be digraphs with constants such that D∗ '
H∗. Then there are F ⊆ ED

reg, L ⊆ ED
lo and C ⊆ Cons(D) such that

H ' D(F ; L; C).

Proof. Let ϕ be an isomorphism of graphs D∗ and H∗. Then it is
sufficient to take the set F of all regular edges e such that the image of
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the initial vertex of e and the initial vertex of the image of e are different;
and the set L of all loops such that their images are constants in H; and
the set C of all constants such that their images are loops in H. ¤

Before the next lemmas note that in this paper we assume that a path
in a digraph has pairwise different and regular edges (however, its vertices
need not be different); we also assume that a single vertex forms the trivial
path (i.e. without edges). We say that a cycle is simple iff it has at least
one edge and its edges are regular and pairwise different (but again, its
vertices need not be different). The sets of all edges and vertices of a path
or cycle p will be denoted by Ep and V p, respectively. We say that a path
or cycle p and a path or cycle r are disjoint (edge-disjoint) iff V p ∩V r = ∅
(Ep ∩ Er = ∅). Moreover, for each edge e of a digraph D, by ID

1 (e) and
ID
2 (e) we denote the initial and the final vertex of e, respectively.

Lemma 2. Let D be a digraph with finitely many edges, cD be a

constant of D, l be a loop, and p be a path going from cD to ID
1 (l). Let H

be the digraph obtained from D by omitting cD and l and all edges of p.

Then for any v ∈ V D,

if erD(v) + cnD(v) ≤ srD(v) + slD(v),

then erH(v) + cnH(v) ≤ srH(v) + slH(v).

Proof. Take an arbitrary v ∈ V D such that erD(v) + cnD(v) ≤
srD(v) + slD(v).

If v 6∈ V p, then srH(v) = srD(v), erH(v) = erD(v), slH(v) = slD(v)
and cnH(v) = cnD(v). Thus obviously erH(v)+cnH(v) ≤ srH(v)+slH(v).

If v ∈ V p \ {cD, ID
1 (l)}, then slH(v) = slD(v) and cnH(v) = cnD(v);

and by the definition of path we have |Ep ∩ ED
sr(v)| = |Ep ∩ ED

er(v)|.
Hence, erH(v) + cnH(v) = erD(v) − |Ep ∩ ED

er(v)| + cnD(v) ≤ srD(v) −
|Ep∩ED

er(v)|+slD(v) = srD(v)−|Ep∩ED
sr(v)|+slD(v) = srH(v)+slH(v).

If the constant cD1 is defined in v (i.e. cD1 ∈ consD(v)) and v 6= ID
1 (l),

then (again applying the concept of path) we obtain |Ep∩ED
sr(v)| = |Ep∩

ED
er(v)| + 1. We have also cnD(v) = cnD(v) − 1 and slH(v) = slD(v)

(because ID
1 (l) 6= v). Thus erH(v) + cnH(v) = erD(v) − |Ep ∩ ED

er(v)| +
cnD(v) − 1 = erD(v) − (|Ep ∩ ED

er(v)| + 1
)

+ cnD(v) ≤ srD(v) − (|Ep ∩
ED

er(v)|+1
)
+slD(v) = srD(v)−|Ep∩ED

sr(v)|+slD(v) = srH(v)+slH(v).
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If cD is defined in v and v = ID
1 (l), then p is a trivial path. Thus

srD(v) = srH(v), erD(v) = erH(v), and cnD(v) = cnH(v) − 1, slD(v) =
slH(v) − 1. Hence we get erH(v) + cnH(v) = erD(v) + cnD(v) − 1 ≤
srD(v) + slD(v)− 1 = srH(v) + slH(v).

Finally, assume v = ID
1 (l) and ID

1 (l) 6= cD. Then, slH(v) = slD(v)−1
and cnH(v) = cnD(v) and moreover, we obtain (in an analogous way as
previously) |Ep ∩ ED

er(v)| = |Ep ∩ ED
sr(v)| + 1. Thus erH(v) + cnH(v) =

erD(v)−|Ep∩ED
er(v)|+cnD(v) ≤ srD(v)−|Ep∩ED

er(v)|+slD(v) = srD(v)−(|Ep ∩ED
sr(v)|+ 1

)
+ slD(v) =

(
srD(v)− |Ep ∩ED

sr(v)|) +
(
slD(v)− 1

)
=

srH(v) + slH(v).
These cases complete the proof. ¤

Lemma 3. Let D be a digraph with finitely many edges such that

(∗) D has exactly m constants cD1 , . . . , cDm,

(∗∗) for each v ∈ V D, erD(v) + cnD(v) ≤ srD(v) + slD(v).

Then there are m pairwise different loops l1, . . . , lm and m pairwise edge-

disjoint paths p1, . . . , pm such that pi goes from cDi to ID
1 (li), for each

1 ≤ i ≤ m.

Proof. Take cD1 and observe that if there is a loop l in cD1 , then we
must only take l1 = l and the trivial path in this vertex. Thus we can
assume that there is no loop in cD1 . Then by (∗∗) there is a regular edge
e1 starting from cD1 .

Now assume that p := (e1, . . . , ei) is a path starting from cD1 . Then,
of course, there is a loop in ID

2 (ei) or not. In the second case, using (∗∗),
we obtain (because e1, . . . , ei are pairwise distinct) |Ep ∩ ED

sr(I
D
2 (ei))| +

1 = |Ep ∩ ED
er(ID

2 (ei))| ≤ erD(ID
2 (ei)) ≤ erD(ID

2 (ei)) + cnD(ID
2 (ei)) ≤

srD(ID
2 (ei)), which implies that there is a regular edge ei+1 starting from

ID
2 (ei) and ei+1 6∈ {e1, . . . , ei}, so (e1, . . . , ei, ei+1) is a path starting from

cD1 . Since D has only finitely many edges, the above facts imply that there
is a loop l1 and there is a path p1 going from cD1 to ID

1 (l1). Thus the lemma
holds for m = 1.

For m ≥ 2 we apply induction on m. Take the digraph H obtained
from D by omitting cD1 and l1 and all the edges of p1. Then H has m− 1
constants, and it satisfies (∗∗), by Lemma 2.

Now by the induction hypothesis, there are pairwise different loops
l2, . . . , lm and pairwise edge-disjoint paths p2, . . . , pm in H (and thus also
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in D) such that pi goes from cHi = cDi to ID
1 (li) for i = 2, . . . , m. Then

l1, l2, . . . , lm and p1, p2, . . . , pm are the desired loops and paths in D. ¤
Let D be a digraph with constants and P a family of paths and cycles

of D. In the sequel we will use the following notations: EP =
⋃

p∈P Ep

and V P =
⋃

p∈P V p, and D(P ; L;C) := D(EP ; L;C) for any L ⊆ ED
lo

and C ⊆ Cons(D). Families P and R of paths and cycles are disjoint
(edge-disjoint) iff V P ∩ V R = ∅ (EP ∩ ER = ∅).

Lemma 4. Let digraphs D and G with constants satisfy the following
conditions (where m,n ∈ N):

(∗) D is a total digraph with constants of finite type (m,n) and
locally finite,

(∗∗) G is a digraph with constants of finite type (m,n),
(∗ ∗ ∗) D∗ ' G∗.

Then there is a family R of pairwise disjoint simple cycles and there are
k pairwise different constants cD1 , . . . , cDk and k pairwise different loops
l1, . . . , lk and k pairwise edge-disjoint paths p1, . . . , pk such that:

(i) for each 1 ≤ i ≤ k, pi goes from cDi to ID
1 (li),

(ii) families R and {p1, . . . , pk} are edge-disjoint,

(iii) G ' D(R ∪ {p1, . . . , pk}; {l1, . . . , lk}; {cD1 , . . . , cDk }).
Proof. By (∗∗∗) and Lemma 1 there are sets F ⊆ ED

reg and L ⊆ ED
lo

and C = {cD1 , . . . , cDk } ⊆ Cons(D) such that G ' D(F ; L;C).
Take v∈V D and observe E

D(F ;L;C)
sr (v)∪E

D(F ;L;C)
sl (v)=

(
(ED

sr(v)\F )∪
(ED

er(v)∩F )
)∪(

(ED
sl (v)\L)∪(consD(v)∩C)

)
. Since D is total and of finite

type and D(F ;L; C) ' G with G of finite type (m,n), we have |((ED
sr(v)\

F ) ∪ (ED
er(v) ∩ F )

) ∪ (
(ED

sl (v) \ L) ∪ (consD(v) ∩ C)
)| = sD(F ;L;C)(v) ≤

n = sD(v) = |ED
sr(v)|+ |ED

sl (v)|, so |ED
sr(v)|− |ED

sr(v)∩F |+ |ED
er(v)∩F |+

|ED
sl (v)| − |ED

sl (v) ∩ L|+ | consD(v) ∩ C| ≤ |ED
sr(v)|+ |ED

sl (v)|. Thus

(1)
|ED

er(v) ∩ F |+ | consD(v) ∩ C| ≤ |ED
sr(v) ∩ F |+ |ED

sl (v) ∩ L|

for each v ∈ V D.

Now let H ≤w D be the weak subdigraph of D with V H = V D and
EH = F ∪ L and Cons(H) = C = {cD1 , . . . , cDk }. Then by (1),

(2) erH(v) + cnH(v) ≤ srH(v) + slH(v) for each v ∈ V H.
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Obviously H is locally finite (by (∗)), so 〈C〉H is a finite digraph. Moreover,
〈C〉H is of finite type (m, n), because 〈C〉H is also a weak subdigraph of
D. These two facts imply that 〈C〉H has only finitely many edges (more
precisely, it is well-known that E〈C〉H =

⋃
v∈V 〈C〉H E

〈C〉H
s (v), which implies

|E〈C〉H | = ∑
v∈V 〈C〉H s〈C〉H ≤ |V 〈C〉H |·n, so E〈C〉H is finite, because V 〈C〉H

is finite). Thus by Lemma 3 and (2) there are k pairwise different loops
l1, . . . , lk ∈ L (because L is the set of all loops in H) and k pairwise
edge-disjoint paths p1, . . . , pk of H (thus also of D) such that pi goes from
cHi = cDi to IH

1 (li) = ID
1 (li) for i = 1, . . . , k. Hence, in particular |C| ≤ |L|.

On the other hand, we know that Cons(D(F ;L; C)) = (Cons(D) \C) ∪ L

and D has exactly m constants and D(F ;L; C) has at most m constants.
Thus |Cons(D)| = m ≥ |Cons(D(F ; L;C))| = |Cons(D)| − |C| + |L|, so
|C| ≥ |L|. These two inequalities imply |C| = |L|, so L = {l1, . . . , lk}.
Hence we infer that C, L and p1, . . . , pk satisfy the desired conditions of
our lemma.

Now observe that if p1, . . . , pk contain all the edges of F (i.e.
i=k⋃
i=1

Epi =

F ), then to end the proof we must only take the empty family R. Thus
we can assume that F is not equal to

⋃i=k
i=1 Epi .

Take the weak subdigraph K ≤w H with V K = V H and EK =
F \ ⋃i=k

i=1 Epi , i.e. we remove all the edges in
⋃i=k

i=1 Epi and all the loops
and all the constants of H.

Obviously K has only regular edges and no constants and no loops.
Hence and by (∗), because K is a weak subdigraph of D, K is of finite
type (0, n) and is locally finite. Moreover, it follows from (2), by a simple
verification, that

(3) erK(v) ≤ srK(v) for each v ∈ V K.

More precisely, since p1, . . . , pk are pairwise edge-disjoint, K can be ob-
tained from H in k steps in such a way that we omit only pi (more precisely,
all the edges of pi), cDi and li in i-th step. By Lemma 2 we have that the
digraph with constants obtained from H in the first step satisfies (2). Thus
by a simple induction on i we deduce that the digraph obtained in the i-th
step satisfies (2), in particular this equality holds for K.

Take v ∈ V K and the strong subdigraph M := 〈v〉K generated by v.
Then M is a finite digraph of finite type (0, n), so M has also only finitely
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many edges. Moreover, srM(w) = srK(w) for v ∈ V M (by the definition
of strong subdigraphs) and erM(w) ≤ erK(w). Thus by (3),

(4) erM(w) ≤ srM(w) for each w ∈ V M.

Since M has no constants, we have from [15] that a vertex u belongs to
M iff u = v or there is a non-trivial path going from v to u. This is a
graph-theoretical generalization of the algebraic result on the generation
of strong subalgebras and its proof is similar. Hence, in particular, M is a
connected digraph. Thus, having the above inequality we can show, in an
analogous way as in the proof of Euler’s Theorem from [5] (Chapter 11,
§1, Theorem 1), that M is a single vertex or there is a simple cycle rv

containing all the edges of M (recall that K, and thus also M, has no
loops). More precisely, we can, of course, assume that M is not a single
vertex. Then there is a non-trivial path p starting from v (because M
is connected). Let w be the final vertex of p and assume that w 6= v.
Then |Ep ∩EM

sr (w)|+ 1 = |Ep ∩EM
er (w)| (since all edges of p are pairwise

different). Hence and by (4) there is a regular edge starting from w and
does not belong to p. This fact easily implies, since M has only finitely
many edges, that there is a simple cycle r starting from v. If r does
not contain all the edges of M, then after removing all the edges of r, we
obtain a new digraph C (without loops ) which also satisfies the inequality
erC(u) ≤ srC(u) for u ∈ V C. Let C1, . . . ,Cd be all the non-trivial (i.e.
having at least one edge) connected components of C. By the induction
hypothesis (note that if a digraph has at least one regular edge and satisfies
(4), then it has at least two regular edges; moreover, if a digraph has
exactly two regular edges and satisfies (4), then these edges form a simple
cycle), there are simple cycles r1, . . . , rd containing all edges of C1, . . . ,Cd,
respectively. Since M is connected, r has common vertices with each of
these cycles. Thus now we must only insert cycles r1, . . . , rd in suitable
places of r to obtain a simple cycle rv containing all the edges of M = 〈v〉K.

Now observe that for any two different vertices v, w of K, 〈v〉K =
〈w〉K or they are disjoint (i.e. V 〈v〉K ∩ V 〈w〉K = ∅). Assume that V 〈v〉K ∩
V 〈w〉K 6= ∅. Then, since all the edges of 〈v〉K and of 〈w〉K lie on cycles rv

and rw, respectively, we deduce that there is a path from v to w and there
is a path from w to v. Thus v ∈ V 〈w〉K and w ∈ V 〈v〉K , so 〈v〉K = 〈w〉K
(because 〈v〉K and 〈w〉K are the least strong subdigraphs of K containing
v and w, respectively).
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Now let {〈vi〉K : i ∈ I} be the family of all pairwise different and non-
trivial (i.e. having at least two vertices) strong subdigraphs of K generated
by single vertices; of course it is a non-empty family, because K has regular
edges. Then first, these digraphs are pairwise disjoint and together contain
all the edges of K. Secondly, for each i ∈ I, there is a simple cycle ri

containing all the edges of 〈vi〉K. These facts imply that R := {ri : i ∈ I}
is a family of pairwise disjoint simple cycles of K (thus also of D) and R

contains all the edges of K (i.e. ER = F \⋃i=k
i=1 Epi). Hence we infer that

R and {p1, . . . , pk} are edge-disjoint and moreover, ER∪{p1,... ,pk} = F .
Thus D(R ∪ {p1, . . . , pk}; L; C) = D(F ; L;C), which completes the proof.

¤

4. The main result

Theorem 5. Let digraphs D and G with constants satisfy the follow-

ing conditions (where m,n ∈ N)

(∗) D∗ ' G∗,

(∗∗) D is a total digraph with constants of finite type (m,n) and

locally finite,

(∗ ∗ ∗) G is a digraph with constants of finite type (m,n).

Then Ss(G) ' Ss(D), and moreover, G is also total and locally finite.

Remark. Observe that (∗) of the above Theorem 5 can be replaced by
the following condition: Sw(D) ' Sw(G) (see remarks at the beginning of
the paper).

Proof. By Lemma 4 we have that G ' M, where M := D(R ∪
{p1, . . . , pk}; {cD1 , . . . , cDk }; {l1, . . . , lk}) and R is a family of pairwise dis-
joint simple cycles of D and cD1 , . . . , cDk are pairwise different constants
and l1, . . . , lk are pairwise different loops and p1, . . . , pk are pairwise edge-
disjoint paths such that pi goes from cDi to ID

1 (li) for 1 ≤ i ≤ k, and R

and {p1, . . . , pk} are edge-disjoint.
Since isomorphic digraphs with constants have isomorphic strong sub-

digraph lattices, it is sufficient to show that Ss(D) ' Ss(M). To this
purpose take a strong subdigraph H ≤s D and observe that by a sim-
ple induction (recall that for an edge e of D, if ID

1 (e) ∈ V H, then e and
its final vertex ID

2 (v) belong to H) we obtain that each cycle of D hav-
ing common vertices with H must be contained in H; and analogously
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each path of D starting from H is contained in H. Moreover, we have
Cons(D) ⊆ Cons(H). Hence, H contains p1, . . . , pk and l1, . . . , lk. In
particular, H contains all the constants of M.

The above facts imply that for any strong subdigraph H ≤s D, the
weak subdigraph K ≤w M with V K = V H, EK = EH and Cons(K) =
Cons(M) is well-defined and is a strong subdigraph of M.

Observe that for each cycle (f1, . . . , fm)∈R, the sequence (fm, . . . , f1)
is a cycle in M; and analogously for paths p1, . . . , pk. Thus, in the
same way (because l1, . . . , lk are constants in M), we obtain that for any
K ≤s M, the weak subdigraph H ≤w D with V H = V K, EH = EK and
Cons(H) = Cons(D) is well-defined and is a strong subdigraph of D.

Having the above facts we can take a surjection ϕ of the set of all
strong subdigraphs of D onto the set of all strong subdigraphs of M such
that for each H ≤s D, ϕ(H) is the strong subdigraph of M with V ϕ(H) =
V H and Eϕ(H) = EH (then, of course, Cons(ϕ(H)) = Cons(M)).

It can be also easily shown, using the definition of strong subdigraphs,
that for every H1,H2 ≤s D; and analogously for H1,H2 ≤s M; the
following equivalence holds:

H1 ≤s H2 (H1 = H2) iff V H1 ⊆ V H2 (V H1 = V H2).

These facts imply that the surjection ϕ is also injective and that ϕ and its
inverse ϕ−1 preserve (the strong subdigraph) inclusion ≤s. More precisely,
for any strong subdigraphs H1,H2 of D we obtain H1 ≤s H2

(
H1 = H2

)

iff V H1 ⊆ V H2
(
V H1 = V H2

)
iff V ϕ(H1) ⊆ V ϕ(H2)

(
V ϕ(H1) = V ϕ(H2)

)
iff

ϕ(H1) ≤s ϕ(H2)
(
ϕ(H1) = ϕ(H2)

)
. Thus ϕ is the desired isomorphism

of lattices Ss(D) and Ss(M). Hence and by the definition of ϕ we obtain,
in particular, that for each set W ⊆ V D, 〈W 〉D and 〈W 〉M have the same
vertex and edge sets. By these facts and (∗∗) M, and thus also G, are
locally finite.

Thus now it remains to show that M is total, since G ' M. First,
|Cons(M)| = |Cons(D)| = m, by the definition of M. Secondly, take
v ∈ V D and observe |Er ∩ED

sr(v)| = |Er ∩ED
er(v)| for any r ∈ R (because

r is a simple cycle). Hence, |ER ∩ ED
sr(v)| = |ER ∩ ED

er(v)|, since cycles
of R are pairwise disjoint. This implies that sM(v) = sD(v) = n, if
v 6∈ ⋃i=k

i=1 V pi .
Assume now that v∈⋃i=k

i=1 V pi and v/∈{cD1 , . . . , cDk , ID
1 (l1), . . . , ID

1 (lk)}.
Then |Epi ∩ ED

sr(v)| = |Epi ∩ ED
er(v)| for 1 ≤ i ≤ k, because v is no
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endpoint of pi. Hence,
∣∣(⋃i=k

i=1 Epi
) ∩ ED

sr(v)
∣∣ =

∣∣(⋃i=k
i=1 Epi

) ∩ ED
er(v)

∣∣,
since p1, . . . , pk are pairwise edge-disjoint. This equality and the above
fact for R imply sM(v) = sD(v) = n (because R and {p1, . . . , pk} are
edge-disjoint).

At the end, assume that v ∈ {cD1 , . . . , cDk } and let cDj1 , . . . , cDjh
be

all the constants in v. Then pj1 , . . . , pjh
are all the paths in the family

{p1, . . . , pk} starting from v. Thus sM(v) = sD(v) − h + h = sD(v) = n,
because cDj1 , . . . , cDjh

form loops of M in the vertex v and pj1 , . . . , pjh
are

pairwise edge-disjoint; and if pji
is trivial, then ID

1 (lji
) forms a constant

of M in the vertex v.
For v ∈ {ID

1 (l1), . . . , ID
1 (lk)}, the proof that sM(v) = sD(v) = n is

analogous, and is therefore omitted. ¤

Theorem 6. Let A be a total and locally finite algebra with m con-

stants and n unary operations (where m,n ∈ N), and let B be a partial

algebra of the same type such that

Sw(B) ' Sw(A).

Then Ss(B) ' Ss(A), and moreover, B is also total and locally finite.

Proof. Take the digraphs with constants D(A) and D(B). Then
they are of finite type (m,n), and D(A) is total and locally finite. More-
over, D∗(A) ' D∗(B), because the weak subalgebra lattices of A and
B are isomorphic (see the beginning of this paper). Now we can apply
Theorem 5 to obtain that Ss

(
D(A)

) ' Ss

(
D(B)

)
, and also D(B) is a to-

tal digraph of type (m, n) and locally finite. Hence we easily deduce that
Ss(B) ' Ss(A) and B is locally finite. Moreover, since the type is finite,
since at each point v ∈ B each unary operation can be defined at most
once, and since n unary operations are defined at each point, each unary
operation of B has to be defined at each point of B. Since D(B) contains
exactly m constants, and since between constants defined in B and con-
stants of D(B) we have the bijective correspondence, all constants in B
are also defined. By these two facts we obtain that B is a total algebra
with m constants and n unary operations. ¤

Finally, observe that all the conditions of Theorem 5 (and thus also
Theorem 6) are necessary. To this purpose take digraphs D and G with
constants such that V D = V G = N, ED = {〈i, i + 1〉 : i ∈ N}, cD = 0 and
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EG = {〈i+1, i〉 : i ∈ N}∪{〈0, 0〉}, Cons(G) = ∅. Then obviously D∗ ' G∗.
But Ss(D) 6' Ss(G), since D has exactly one strong subdigraph, and G
has infinitely many. Note also that D is a total digraph of type (1, 1), but
not locally finite; and G is locally finite and of type (1, 1), but not total.

The above example shows that the digraphs in Theorem 5 must be
indeed of the same type, because G is also of type (0, 1) and then it is
total, and, of course, D is not of type (0, 1).

Observe that the condition on finiteness of type is also necessary.
Take digraphs D and G such that V D = V G = N and ED = {〈i + 1, j, i〉 :
i, j ∈N}∪ {〈0, j, 0〉 : j ∈N} and EG = {〈i +1, j, i〉 : i, j ∈ N, j 6=0}∪
{〈i, 0, i + 1〉 : i ∈ N} ∪ {〈0, j, 0〉 : j ∈ N \ {0}} (of course for 〈i + 1, j, i〉,
i + 1 is its initial vertex and i is its final vertex). Then D and G are total
digraphs of type (0, |N|) and D is locally finite and D∗ ' G∗. On the other
hand, Ss(D) 6' Ss(G), because D has infinitely many strong subdigraphs,
and G has exactly two (the empty digraph and G). Note also that G is
not locally finite.

Having the above digraphs we can, of course, construct counterexam-
ples for unary partial algebras with constants.
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