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Generalizations of the Cauchy determinant

By CHU WENCHANG (Lecce)

Abstract. By means of partial fraction expansions, several determinant evalua-
tions are established. They may be considered as generalizations of the Cauchy determi-
nant formula. Applications to the determinant identities of the matrices with trigono-
metric entries are presented.

0. Preliminaries

For two polynomials P(y) and Q(y), define a matrix of order n x n
with variables {z;}; and {y;}7_;, and its determinant by

P(y;) + 2:Q(y;)

1=y, 1<i,j<n

(0.1) Q(P,Q) = det {
When P(y) =1 and Q(y) = 0, it reduces to the Cauchy determinant
2, §1.4]

| - eew
=2y 1cijen  icijon(l —3iy;)

(0.2) det [

where A(z) is the evaluation of the Vandermonde determinant

(0-3) Alz) = H (z; — x;) = det [:E?_j

]1<‘7‘< '
1<i<j<n SHI=n
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The difference between the i-th row and the first row of Q(P, Q) reads as
(@i —21){Q(y;) + v Py;) }
(1 —a1y;) (L= miy;)

Now Laplace expansion of the resulting determinant with respect to the
first row may be stated as

i=2,3,...,n, j=12...,n.

n

(0.4a) Q(P,Q) = Z(_l)kﬂ P(yi) + 21Q(yx)

— L= z1yp
(zi —21){Qy;) +y; P(y;)}
(0.4b) x det [ 0= 219, (L= 2095) L;ﬂ’#k )

Extracting the common fractors from rows and columns, we may rewrite

(0.4b) as

(zi —2){Q(y;) + ¥, P(y;)}
det [ (1 _xlyj)<1 _xiyj) L;ﬁl,j;ﬁk

n

_ H Q y] +y] H _551 det |:11y:|1751
iYj

Ak 1- xly] i=2 — Tililjzk

where the Cauchy determinant may be used to derive

det [ ]
L=2iys iz, joen
sl (U —my)  A@Ay) o0 —2y))
Hj;ék(yj — Yk) H1§z‘,jgn(1 — TY5) H?:z(l"i — 1)

Substituting these expressions into (0.4b), we find a finite summation for-
mula for Q(P, Q)

~(-1)

Lemma.
(052)  APQ) =g f(j)(?(_ — H{Q 20) & 4eP(un))
(0.5b) Zn: ) + 21 Qyx) Tliza (1 — ziy)

— Q) +ye Pyr) 1Ly —vk)
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By evaluating (0.5b) with partial fraction method [1], we will establish the
main theorem in the first section. Several examples will be demonstrated
in the second and the third sections. In the last section, two determi-
nant identities of the matrices with trigonometric entries are displayed as
applications.

1. The main theorem and proof

Proposition. For two polynomials P(y) and Q(y) with deg(Py+Q) >
deg(P), let

0, deg(P) > deg(Q)

5<P7 Q) = LC(Q)
L.(Py+Q)’ deg(P) < deg(Q)

where L.(Q) and L.(Py + Q) denote the leading coefficients of Q(y) and
P(y)y + Q(y) respectively. Suppose that P(y)y + Q(y) has m distinct
roots {Bx}Y_, such that

Q(y) +yP(y) = L(Py + Q) [[ (- 5.
A=1

We may express (0.5b) as

k) +11Q(y )H@ﬂ(l — TiYk) B . .
L1 ZQ r P () Tanly —wn) o @mizz

< P(Be) T (L= 2:)
tLAPy+Q) ; [L2e(Be = By) =% (wi — Be)

Replacing (0.5b) by the formula in the proposition, we get

Theorem. Assume the condition and notation from the proposition.
We have determinant evaluation formula

A(z)A(y) ﬁ{@(yk) + yrP(ye)}

(12) UPQ) = H1< i< (1- xiyj)

Be) Y (1 — 2:80)
{ (P,Q) HmL+L (Py+ Q) anﬂ(ﬁe )I[ (yi — Be) }
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ProOF. Under the condition of the proposition, we may make the

expansion in partial fractions

P(y) +21Q(y) Hz‘;ﬂ(l — T;Y)
Q) +yP(y) IL(y;i —v)

m Ce
Zly—ﬂz

(1.3) fly) =

f@;ﬁk

with the coefficients determined by

(1.4a) A= yli_)rrolO fly) =e(P,Q)x1x2. .. 2y
(1.4b) B = lim (y. —y)f(y)
Y—Yn

P(y.) + 11Q(yx) Hi;ﬂ(l — TiYx)
Qr) + YuP(Yr) TTjnr¥i — Ur)

(1.4c) Ce= lim (y — Be) f(y)

y—0Be
P(Be) + 21Q(Be) T1ie (1 — i8e)
e = B3) Tl (yi = Be)

=L;'(Py+Q)
By means of series-rearrangement and

P(/BE) + x1 Q(/Bf) - (1 - -’Iflﬁf) P(ﬁl)v = 1727 <o, M

we can deduce

_ w) +21Q(ys) [isr (1 — 23ys)
>y yk— ZZQ -

=1tk 5 k=1 k#r )+ UxL(Ye) Tjze s — Yr)

— 1= f()
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Z Cy Py—i—Q ZZ P(Be) + 21Q(Be)

= = (L= 21ye) [12,(8e — B5)

XH1_$zﬁ€

l_xzﬁé
Py—i‘QZHJ#ﬂe )-1;‘[ Yi — Be

which permit us to sum (1.3a-1.3b) for y = yx, k = 1,2,...,n. After some
trivial modification, the resulting relation reads as

Z f(yk) = €(P7 Q).Tll'g )
k=1

(Be) T l—aB
Tl Py+Q ZH]#(@ Bj) };Il yi — O

It is a restatement of the formula in the proposition. This completes the
proof of the theorem. O

2. Determinant evaluations

It is clear that the Cauchy determinant (0.2) is a special case of the
theorem for P(y) = 1 and Q(y) = 0. Now we will derive, by means of
(1.2), several determinant evaluations. For the computations involved are
quite routine, it is not necessary to show in detail.

Ezxample 2.1 (Determinant evaluation).

For P(y) = a, Qy) =b+cy
e(P,Q)=c/(a+c), L(Py+Q)=a+c

there holds determinant identity

[1{o+ (a+c)yw}

[h<ij<n(—ziy;) i1

c - a4+ c—+ bxy
X L
{a—l—cbl_[lx a—l—ch—l— a+cyg}

det [

a+bz; +cxiy;| A(x)A(y)
1<4,5<n -

1 —zy;
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Ezample 2.2 (Determinant evaluation).

For Ply)=a+cy, Qy) =0
e(P,Q) =0, L(Py+Q)=c

there holds determinant identity

a+ bx; + cy]} o A(x)A(y) -

e g
l<ij<n [ L=y, H1§z‘,j§n(1 — zy;) e

a+ca v l—z a+chb 1o 1—xz0
X{C(a—ﬁ)H Yo — _C(a—ﬁ)H ye—ﬁ}

=1 =1

{b+ ayr + cy,%}
1

provided that the quadratic polynomial

P(y)y+Qy) =b+ay + cy’

has two distinct zeros {a, 8}.

Ezample 2.3 (Determinant evaluation).

For Ply)=a+cy, Qy)=0b+dy
e(P,Q) =0, L(Py+Q)=c

there holds determinant identity

det [a +bx; + cy; + dxiyj]
1<i,j<n 1 — 2y
A(z)A(y) -

= b+ (a+d)yk + cyp}
ngz‘,jgn(l — TiYj) kl;‘[l{ g

n n

a+ co 1l -z a+cp 1—x0
X{c(a—ﬂ)H c(a—B)Hyg—ﬂ}

—
= Y =1

provided that the quadratic polynomial

P(y)y+Qy) =b+ (a+d)y+cy’

has two distinct zeros {«, 5}.
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Ezample 2.4 (Determinant evaluation).

For P(y) = a, Q(y) = b+ cy + dy?
e(P,Q)=1, L(Py+Q)=d

there holds determinant identity

det

1<i,j<n

a+ bx; + cxyy; + dagy?
1 —ay;

__ A@Ay) 0 o 2
i jen( = 239)) g{b + (a + )y + dyic}

X {xlxg . aaidﬁ H Lo aaid@ el_[ - wﬁ}
1

—
=1 Yt

provided that the quadratic polynomial
P(y)y +Q(y) = b+ (a+ o)y +dy?
has two distinct zeros {a, §}.

Ezample 2.5 (Determinant evaluation).

For P(y) = a+ cy, Qly) =b+dy+ ey?
e(P,Q) =¢/(c+e), L(Py+Q)=c+e

there holds determinant identity

Gt |© + bxi + cy; + driy; + exiy;
1<5.j%n L —2y;
Az)A(y)

" Mhwyen (-2 o H{b+<a+d>yk+<c+ eJui}

1 a—i—ca 11—z a—i—cﬁ 1—xz,0
X €T1Ty ... Ty
c—l—e{ e a—ﬁH el_Il - f

—
élyz
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provided that the quadratic polynomial
P(y)y +Q(y) =b+ (a+d)y + (c+e)y’

has two distinct zeros {a, §}.

3. Reformulations

Replacing zy, by —1/xy for k = 1,2, ..., n, we may restate the theorem
as
Corollary. For two polynomials P(y) and Q(y), assume the condi-

tion and notation from the proposition. We have determinant evaluation
formula

det
1<i,j<n

Qyj)—=i Ply)] _  A@Aly) 1
{ i + yj ] _Hléi,jén($i+yj) kl;[l{P(yk) e+ Qlu))

m

BE + x;
Z Hﬁsg /38 H }

When P(y) = 0 and Q(y) = 1, the formula in the corollary reduces to
another determinant identity of Cauchy
1 A(x)A
o [ ]~ 2080
1<ij<n | i + Yj [Ti<ij<n (@i + ;)

Similar to the last section, the following determinant evaluations may be
established consequently.

(3.1) x {s(P, Q)+ L' (Py+Q)

Ezample 3.1 (Determinant evaluation).

For P(y) = —b, Qly) =a+cy
€(P>Q):C/(C_b)¢ Lc(Py+Q):C_b

there holds determinant identity

e [aerxiJrCyj} = Al H{a b—c)yr}
1<i,5<n Z; + yj H1<z,]<n(x’l + y]
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Ezample 3.2 (Determinant evaluation).

For Ply)=-b-cy, Qy)=a
e(P,Q) =0, L(Py+Q) =~

there holds determinant identity

det [a + bxi + cxz»y]} . A(.CC)A

1<4,j<n T +y; [licij<n(@i + ()

H{a by — cyir}

b+ca o+ b+cp B+ x
X{C(a—ﬁ)ga—yz_c Hﬂ—yz}
provided that the quadratic polynomial

P(y)y+Qy) =a—by —cy’
has two distinct zeros {«, 5}.

Ezample 3.3 (Determinant evaluation).

For P(y)=—-b—dy, Qy)=a+cy
e(P,Q) =0, L(Py+Q)=~—

there holds determinant identity

det [a +bx; + cy; + daciyj]
1<i,j<n Ti + Y

CA@AW
_ngi,jgn($i+yj) kl_[l{a (b= c)yx dy,%}

b+da 14 o+ x0 b+d5 B+ xy
X{d(a—ﬁ)l—‘[a—yz Hﬁ—yz}

{=1

provided that the quadratic polynomial

P(y)y+Q(y) =a— (b—c)y — dy?

has two distinct zeros {a, G}.
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Ezample 3.4 (Determinant evaluation).

For Ply)=-b,  Qy) =a+cy+dy’
e(P,Q)=1, L(Py+Q)=d

there holds determinant identity

2
det a+bx; + cy; +dy;
1<i,j<n i + Y,
Az
H{a (b—c)yx + dyi}

H1<’L ]<n($l + y]

b/d oz—l—a:g b/d B+ xy
X{ H Ta- ﬁHB—yz}

o =Y

provided that the quadratic polynomial
P(y)y +Q(y) = a — (b—c)y + dy*
has two distinct zeros {«, 5}.
Ezample 3.5 (Determinant evaluation).
For P(y) = —b— dy, Qy) =a+cy+ ey?
e(P,Q)=e/(e—d), L(Py+Q)=e—d

there holds determinant identity

a+bx; + cy; + dviy; + ey’
Ti + Y

det
1<i,j<n

Az
H1<’L ]<n(xl + y]

H{a— (b—c)yx — (d —e)yi}
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provided that the quadratic polynomial
Py)y+Qy) =a—(b—cly—(d—e)y’

has two distinct zeros {a, §}.

4. Applications

As applications, we will derive two interesting determinants of the
matrices with trigonometric entries. Throughout this section, denote by A
the sum Ay + Ay +--- + A, for n given real numbers {\;}}_;.

In Example 2.1, let

a=c=+v—-1, b=0

22, 0/—1
T = —Yp =€ F .

Then it is trivial to verify that

det tan (X\; + ;)0

a+cxiy; |
1<i,j<n

€
1<i,j<n [ 1 — 2y,

Az) = H sin(A; — >\z‘)9{ — Qﬁe(xi+xj)em}

1<i<j<n

Ay = ] sin()\j—)\i)e{Q\/fle(z\i—s—/\j)e\/ﬁ}

1<i<j<n
H (1—zy;) = H cos(A; + Aj)9{2 e()‘iH‘j)e\/jl}.
1<4,j<n 1<i,j<n

Substituting these relations into Example 2.1 and performing a little sim-
plification, we obtain a general determinant identity

[Ticicjcnsin®(A; — Xi)0
4.1 det [t A+ )0 = (-1 [n/2] <i<j<n
(4.1) 19‘3‘9[ an (A +A;)0] = (—1) Moo o cosOh 70

{ cos(2A0), n =0 (mod 2)
X
sin(2A0), n =1 (mod 2).
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For A\, =k, k=1,2,...,n, it reduces to a determinant evaluation
L /2 2n—2k kO
4.2) det [t "
(4.2) 1<ZS<n[ an (i+7)¢] H cosk—1 k:@ cos!tn=k(n 4+ k)6

{ cos n(n +1)0, n=0 (mod 2)
X
sinn(n+1)0, n=1 (mod 2).

When A\, = k—1/2, k=1,2,...,n, we get another determinant evaluation
|_ /2] 2n 2k Lo

4. det [t 1)0] = "

(4.3) 1§i,ej§n[ an (i+7—1)0] H cosk k@cos” k(n+k)6

{ cos n29, n =0 (mod 2)
X

sinn?0, n=1 (mod 2)
which is due to STANLEY RABINOWITZ [3].

Instead, if we put in Example 2.1

a=c=—/-1, b=0

22X 0/ —1
Tk =yp ="

then it is not hard to check that

det [cot (A; + ;)]

a+cxy;|
1<4,j<n

e
1<i,j<n { 1—my;

Alx) =Ay) = H sin(\; — )\i)e{ _ Qﬁe(mﬂj)em}

1<i<j<n
[1 a-ww)= J[ sinn+ Aj)e{ - 2\/—1e<%+%’)9ﬁ}.
1<i,5<n 1<i,j<n

Making these substitutions in Example 2.1, we get another general deter-

minant identity

H1<'< i< Sin2(/\j — )0
4.4 det t (N + )0 = 200 =SS0 )
(4.9) 1<zS n[co (A +4;)0] = cos(2)0) ngi,jgn sin(A; + A;)0
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For \y =kand k—1/2, k = 1,2,...,n, we deduce from it two determinant
evaluations

s 1 0 ) 6 n Sinl+2n73k )

Ha et |cot(¢z+ 7)0] = cosn(n+

(4.5) 1§m'§n[ (i +9)6] ( ) kHl sin!** (n + k)0
= sin? 3k ke

4.5b det [cot (i + j — 1)6] = cos(n?0 _—

(4.50) 1§m’§n[ (i+7=1)0) ( )kl;[l sin”*(n + k)0
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