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Norming operators for generalized domains
of semistable attraction

By HANS-PETER SCHEFFLER (Dortmund)

Abstract. It is shown that the norming operators of a measure belonging to the
generalized domain of semistable attraction of a full operator semistable law can be
embedded into a regularly varying sequence of linear operators. This powerful property
is then used to show stochastic compactness results of the partial sum.

1. Introduction

Suppose that X,X1, X2, . . . are independent and identically distrib-

uted random vectors on Rd with common distribution µ. Let Sn =
n∑

i=1

Xi

denote the partial sum. We say that µ is in the generalized domain of
semistable attraction of a full (that is not concetrated on any proper hy-
perplane) measure ν, if there exists a sequence of positive integers kn →∞
with kn+1/kn → c ≥ 1, linear operators An and nonrandom vectors an

such that

(1.1) AnSkn − an ⇒ Y

where Y has distribution ν. Here ⇒ denotes convergence in distribution.
We write µ ∈ GDOSA(ν, c) if (1.1) holds.

If c = 1 then by a result of Jajte [5] ν is operator stable. In this
case we can set kn = n in (1.1) and the in this case called generalized
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domains of attraction were characterized by Meerschaert [10]. On the
other hand, if c > 1 then by [5] ν is (B, c) operator semistable, i.e. satisfies

(1.2) νc = Bν ∗ δ(b)

for some invertible linear operator B and some vector b ∈ Rd. Here νc is
the c-fold convolution power of the (necessarely) infinitely divisible law ν,
(Bν)(A) = ν(B−1A) for all Borel sets A ⊂ Rd, ∗ denotes convolution
and δ(b) denotes the point mass in b. We say that ν is (B, c) operator
semistable if (1.2) holds.

In this case the generalized domains of semistable attraction were
characterized in [11] and [14]. Earlier, the author [15] investigated the
special case of norming by scalars, An = anI for some an > 0, and the
case of “vector norming” where every An is assumed to be diagonal.

In this paper we analyse the norming operators An in (1.1). We show
that the sequence (An) can be embedded in a regularly varying sequence
(Bn) of linear operators; that is An = Bkn and B[λn]B

−1
n → λ−E where

E is closely related to the limit distribution ν. This embedding property
leads to a new proof of the spectral decomposition for generalized domains
of attraction in [13].

Then we investigate the asymptotic behavior of the whole sequence
of partial sums (Sn)n. We show that for some linear operators Bn and
nonrandom vectors bn the sequence (BnSn−bn)n is stochastically compact
and describe its limit set. Furthermore, we show that the sum of the radial
projections of the Xi onto a fixed direction θ is stochastically compact.
All these results give additional information on the properties of random
vectors attracted to operator semistable laws. They will enable us in [19] to
prove large deviation type results as well as laws of the iterated logarithm.

2. The embedding property

Before we state the so-called embedding property for generalized do-
mains of semistable attraction we first need to restate some results and
notation.

A result in Chorny [3] states that the operator B in (1.2) can be
chosen in the image of the exponential mapping of the Lie group GL(Rd).
Here tE = exp(A log t) for t > 0 and some d×d matrix A, where exp(A) =∑∞

k=0 Ak/k! denotes the usual exponential mapping on the Lie group
GL(Rd).
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Theorem 2.1 (Chorny [3]). Assume that ν is a full (B, c′) operator
semistable law for some c′ > 1. Then there exists an exponent E and a
c ∈ {c′, c′2} such that ν is (cE , c) operator semistable. All eigenvalues of
E lie in the half plane {Re z ≥ 1

2}. Furthermore, the measure ν can be
decomposed into a convolution product ν = ν1 ∗ ν2 of two measures ν1

and ν2, concentrated on E-invariant subspaces W1 and W2, respectively,
and such that Rd = W1 ⊕ W2, ν1 is a full normal law on W1 and ν2 is
a full operator semistable law on W2 having no normal component. The
eigenvalues of E|W1 have real part equal to 1

2 whereas the eigenvalues of
E|W2 are contained in {Re z > 1

2}.
Since in view of Theorem 2.1 we might have to square c to get an

exponent E one may ask whether this affects the corresponding general-
ized domains of semistable attraction. The following Lemma shows that
GDOSA(ν, c) = GDOSA(ν, c2), so when dealing with operator semistable
laws and their generalized domains of semistable attraction we can assume
without loss of generality that ν is (cE , c) operator semistable. Unless oth-
erwise stated, we will assume this throughout this paper.

Lemma 2.2. Assume that ν is a full (B, c) operator semistable law
for some c > 1. Then GDOSA(ν, c) = GDOSA(ν, c2).

Proof. Note that by passing to the subsequence of even numbers
one inclusion is obvious. Assume now that µ ∈ GDOSA(ν, c2). Then
there exists a sequence (kn) of natural numbers tending to infinity with
kn+1/kn → c2, linear operators An and nonrandom vectors an such that
Anµkn ∗ δ(−an) ⇒ ν. Note that in view of (1.2) we have
B−1νc ∗ δ(−B−1b) = ν. Now we put

k̄n =
{

k` if n = 2`

[ck`] if n = 2` + 1

Ān =
{

A` if n = 2`

B−1A` if n = 2` + 1

ān =





a` if n = 2`

[ck`]
k`

a` + B−1b if n = 2` + 1.

Then, by considering the subsequences of even and odd numbers sepa-
rately, on easily gets that k̄n+1/k̄n → c and

Ānµk̄n ∗ δ(−ān) ⇒ ν
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showing µ ∈ GDOSA(ν, c). This concludes the proof. ¤

Suppose now that µ ∈ GDOSA(ν, c) for some c > 1 where ν is a
full (cE , c) operator semistable law. Let X1, X2, . . . be independent and
identically distributed according to µ such that (1.1) holds for some ran-
dom vector Y with distribution ν. Throughout this section we will always
assume that these assumptions hold. We show that the norming opera-
tors An in (1.1) can always be embedded in a regularly varying sequence
(Bn)n≥1 ⊂ GL(Rd) of index (−E):

A sequence (Bn) ⊂ GL(Rd) is said to be regularly varying with index
(−E) if

(2.1) B[λn]B
−1
n → λ−E as n →∞

for all λ > 0. The theory of regularly varying functions and sequences
was developed my Meerschaert [8]. Note that by Theorem 2.2 of [8]
the convergence in (2.1) is uniform on compact subsets of {λ > 0}. For
further information on regular variation on GL(Rd) see [12]. We call the
above proberty the embedding property of the An.

Using a general spectral decomposition theorem for regular varying
sequences of linear operators proved in [12], we then show that the An can
be decomposed even further which yields to sharp bounds on the growth
rates of ‖Anθ‖ depending on the direction θ. This will lead to a new
proof of the spectral decomposition for generalized domains of semistable
attraction in [13].

Definition 2.3. The symmetry group of a probability distribution ρ

on Rd is defined by

S(ρ) = {A ∈ GL(Rd) : Aρ = ρ ∗ δ(a) for some a ∈ Rd}.

A result of Billingsley [1] states that for full probability measures ρ

the set S(ρ) is a compact subgroup of GL(Rd).
The following result is well known (see e.g. [20] and [7]). We include

it here for sake of completeness.

Proposition 2.4. Let ν be a full (cE , c) operator semistable law. Then

cES(ν) = S(ν)cE .
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Since the symmetry group S(ν) is a compact subgroup of GL(Rd), for
the remainder of this section we can choose a norm on Rd which makes
every element of S(ν) orthogonal and we denote by ‖A‖ the corresponding
operator norm. Then if G ∈ S(ν) and A ∈ GL(Rd) we have ‖GA‖ =
‖AG‖ = ‖A‖. If A is an element of GL(Rd) and C is a compact subset of
GL(Rd) we will denote the distance between A and C by

(2.2) ‖A− C‖ = min{‖A−G‖ : G ∈ C}.

Then (1.1) and the convergence of types theorem (see [1]) imply

Proposition 2.5. Let An be the norming operators in (1.1) for some

full (cE , c) operator semistable law ν. Then as n →∞
‖An+1A

−1
n − c−ES(ν)‖ → 0.

Proof. Since Anµkn ∗ δ(−an) ⇒ ν by (1.1), a straight forward com-
putation using characteristic functions shows that for a suitable sequence
of shifts (a′n) we have An+1µ

kn ∗ δ(−a′n) ⇒ ν1/c. Since νc = cEν ∗ δ(b) for
some b ∈ Rd it follows that ν1/c = c−Eν ∗ δ(−c−Eb/c). Then convergence
of types yields that {An+1A

−1
n }n≥1 is relatively compact with all limit

points in the compact set c−ES(ν). Then every subsequence contains a
further subsequence (n2) and a G ∈ S(ν) such that An2+1A

−1
n2

→ c−EG.
But then ‖An2+1A

−1
n2
− c−ES(ν)‖ ≤ ‖An2+1A

−1
n2
− c−EG‖ → 0, which

concludes the proof.

By convergence of types [1], we may replace the sequence An in (1.1)
by any other norming sequence of the form Cn = GnAn, where Gn ∈ S(ν)
for all n. Then for some choice of shifts a′n, we still get weak convergence
to the same limiting distribution ν.

Before we state the main theorem of this section we first need an
auxiliary result which is also of independent interest.

Proposition 2.6. We can choose the norming operators Cn such that

Cn+1C
−1
n → c−E as n →∞.

Proof. Let C1 = A1 and assume that C1, . . . , Cn−1 have been con-
structed. Choose G′n ∈ S(ν) such that ‖AnC−1

n−1−c−ES(ν)‖ = ‖AnC−1
n−1−

c−EG′n‖. By Proposition 2.4 there exists a Gn ∈ S(ν) with c−EG′n =
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Gnc−E . Define Cn = G−1
n An. Then (Cn) is a suitable sequence of norm-

ing operators, and we also have

‖CnC−1
n−1 − c−E‖ = ‖G−1

n AnC−1
n−1 − c−E‖

= ‖G−1
n (AnC−1

n−1 −Gnc−E)‖
= ‖AnC−1

n−1 − c−EG′n‖
= ‖AnC−1

n−1 − c−ES(ν)‖
= ‖AnA−1

n−1Gn−1 − c−ES(ν)‖
= min{‖AnA−1

n−1Gn−1 − c−EG‖ : G ∈ S(ν}
= min{‖AnA−1

n−1Gn−1 − c−EGGn−1‖ : G ∈ S(ν)}
= min{‖(AnA−1

n−1 − c−EG)Gn−1‖ : G ∈ S(ν)}
= min{‖AnA−1

n−1 − c−EG‖ : G ∈ S(ν)}
= ‖AnA−1

n−1 − c−ES(ν)‖ → 0

as n →∞ by Proposition 2.5. This concludes the proof. ¤
After these preliminary results we are now in position to prove the

main result of this section, the embedding property of the norming opera-
tors An in (1.1).

Theorem 2.7. Let µ ∈ GDOSA(ν, c) for some c > 1, where ν is full
and (cE , c) operator semistable. Then there exists a sequence (An) of
norming operators such that (1.1) holds and a sequence (Bn) regularly
varying with index (−E), such that An = Bkn , where (kn) is the sampling
sequence in (1.1).

Proof. In view of Proposition 2.6 we can choose norming operators
(An) such that An+1A

−1
n → c−E as n → ∞. Now for any n ≥ k1 write

n = λ(n)kp(n) where kp(n) ≤ n < kp(n)+1 and define

(2.3) Bn = λ(n)−EAp(n).

Since λ(kn) = 1 and p(kn) = n we have Bkn = An. Furthermore, since
kn+1/kn → c it follows that (λ(n)) is relatively compact with all limit
points in the set [1, c].

It remains to show that (Bn) is regularly varying with index −E. We
show that

(2.4) B[αnn]B
−1
n → α−E as n →∞
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whenever αn → α > 0.
Assume first, that α ∈ [1, c]. Write [αnn] = λ([αnn])kp([αnn]). We

have to consider several cases separately:
Case 1: Assume p(n) = p([αnn]) along a subsequence (n′). Then we

have λ([αnn])/λ(n) = [αnn]/n → α and

B[αnn]B
−1
n = λ([αnn])−EAp([αnn])A

−1
p(n)λ(n)E =

( [αnn]
n

)−E

→ α−E

along (n′).
Case 2: Assume p([αnn]) = p(n)+ 1 along a subsequence (n′). Then,

along that subsequence λ([αnn]) = ([αnn]/n) · (kp(n)/kp(n)+1)λ(n). Since
(λ(n)) is relatively compact every subsequence (n′′) of (n′) contains a
further subsequence (n′′′) with λ(n) → λ ∈ [1, c] along (n′′′) and hence
λ([αnn]) → αc−1λ and therefore

B[αnn]B
−1
n = λ([αnn])−EAp(n)+1A

−1
p(n)λ(n)E → (αc−1λ)−Ec−EλE = α−E

along (n′′′). Since every subsequence (n′′) of (n′) contains a further subse-
quence with this property we get (2.4) along the whole subsequence (n′).

Case 3: Assume p([αnn]) = p(n) + 2 along (n′). This case is similar
to Case 2.

Case 4: Assume that p([αnn]) ≥ p(n) + 3 for infinitely many n, say
along (n′). Then for every ε > 0 the relative compactness of the sequence
(λ(n)) yields for all large n′

n

[αnn]
=

λ(n)kp(n)

λ([αnn])kp([αnn])
≤ (c + ε)

kp(n)

kp(n)+3
.

But the left hand side of the inequality above tends to α−1 whereas the
right hand side tends to (c + ε)c−3 along (n′). Hence α ≥ (1 + ε/c)−1c2

which contradicts α ≤ c if ε is chosen small enough.
Case 5: Assume p([αnn]) = p(n) − 1 along (n′). Then we have

λ([αnn]) = ([αnn]/n)(kp(n)/kp(n)−1)λ(n) and it follows as in Case 2 that
(2.4) holds along (n′)

Case 6: Assume p([αnn]) ≤ p(n) − 2 along (n′). Then, using the
relative compactness of (λ(n)) we get for any ε > 0 and all large n′ that

[αnn]
n

=
λ([αnn])kp([αnn])

λ(n)kp(n)
≤ (c + ε)

kp(n)−2

kp(n)
.
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The left hand side of the inequality above tends to α whereas the right
hand side tends to c−1 + εc−2 which is a contradiction to α ≥ 1 if ε is
small enough.

Therefore every subsequence has a further subsequence (n′) such that
either Case 1, 2, 3 or 5 applies which shows that (2.4) holds for α ∈ [1, c].

Now if α > c write α = ᾱcj for some natural j ≥ 1 and ᾱ ∈ [1, c).
Furthermore, write αn = ᾱncjn where eventually jn ≥ 1 and ᾱn ∈ [1, c).
Again we have to consider several cases separately:

Case A: If jn = j along a subsequence (n′) then ᾱn → ᾱ along that
subsequence. Write

B[αnn]B
−1
n =

(
B[ᾱncjn]B

−1
[cjn]

)(
B[cjn]B

−1
[cj−1n]

) · · · (B[cn]B
−1
n

)

and note that by the already proved uniform convergence in (2.4) for ᾱ ∈
[1, c] we get

B[ᾱncjn]B
−1
[cjn] = B[

ᾱncjn

[cjn]
[cjn]

]B−1
[cjn] → ᾱ−E

and for k = 1, . . . , j

B[ckn]B
−1
[ck−1n]

= B[
[ckn]

[ck−1n]
[ck−1n]

]B−1
[ck−1n]

→ c−E

along (n′) and hence (2.4) holds along (n′).

Case B: If jn = j − 1 along (n′) then αn = ᾱncj−1 → ᾱcj = α and
hence ᾱn → cᾱ along (n′) and since ᾱn < c and ᾱ ≥ 1 this can only
happen if ᾱ = 1, so α = cj . Then

B[αnn]B
−1
n =

(
B[ᾱncj−1n]B

−1
[cj−1n]

)(
B[cj−1n]B

−1
[cj−2n]

) · · · (B[cn]B
−1
n

)

and as in Case A we see that then along (n′)

B[αnn]B
−1
n → c−E · (c−E · · · c−E︸ ︷︷ ︸

j−1 times

) = (cj)−E = α−E .

Case C: If jn = j − k along (n′) and k /∈ {0, 1} then ᾱn → ckᾱ ∈
[ck, ck+1) along (n′) which contradicts ᾱn ∈ [1, c) for all n so this case is
void.
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These are all possible cases, hence it follows that (2.4) holds for any
α ≥ 1.

Finally assume 0 < α < 1 and let m(n) = [αnn]. Then n/m(n) =
n/[αnn] → α−1 > 1 and then we get from (2.4) that

(
B[αnn]B

−1
n

)−1

= BnB−1
m(n) = B[

n
m(n) m(n)

]B−1
m(n) → (α−1)−E = αE .

Taking the inverse on both sides (2.4) follows in this case too and the proof
is complete. ¤

It will be seen in the following sections that the embedding property
of the norming operators for GDOSA is a powerful tool. Not only to
derive technical results like the spectral decomposition, but also to analyze
the asymptotic properties of the whole partial sum Sn = X1 + · · · + Xn

for µ ∈ GDOSA(ν, c) in contrast to previously known results which only
consider the subsequence (Skn

) for a sampling sequence (kn).

3. The spectral decomposition for GDOSA

Regular variation on GL(Rd), proved for the embedding sequence (Bn)
of norming operators (An) for GDOSA, is the most natural extension of
the one variable theory. It is also the key to the theory of regularly vary-
ing functions and measures, which we discuss in [17] and [18]. The main
purpose of this section is to give a new proof of a structure theorem called
the spectral decomposition for generalized domains of semistable attrac-
tion, using the embedding property along with the spectral decomposion
for regularly varying sequences in [12].

We begin with a preparatory result.

Lemma 3.1. Let F be a d× d real matrix. Factor the minimal poly-

nomial of F into f1(x) · · · fp(x) where all roots of fi have real part ai and

ai < aj for i < j. Define Vi = Ker(fi(F )). Then V1 ⊕ · · · ⊕ Vp is a direct

sum decomposition of Rd into F -invariant subspaces, and we may write

F = F1 ⊕ · · · ⊕ Fp where Fi : Vi → Vi and every eigenvalue of Fi has

real part equal to ai. We will call this the spectral decomposition of Rd

relative to F .

Proof. This is a special case of the primary decomposition theorem
of linear algebra. See for example [4]. ¤
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Definition 3.2. Assume that U ⊂ Rd is a nontrivial linear subspace
and (xn) is a sequence of unit vectors in Rd. We write xn ⇀ U as n →∞
if min{‖xn − u‖ : u ∈ U ∩ Sd−1} → 0 as n →∞.

The next result is the key to the spectral decomposition and its related
results. It shows that the growth rate and geometry of regularly varying
sequences is very special and closely related to regularly varying sequences
of the form (nF ). In fact if one considers a regularly varying sequence of
the simple form Bn = nF for some index F with spectral decomposition
Ṽ1 ⊕ · · · ⊕ Ṽp and real spectrum a1 < · · · < ap then we get for L̃i =
Ṽ1 ⊕ · · · ⊕ Ṽi using the fact that each Ṽi is F -invariant:

If x ∈ L̃i then Bnx = nF x ∈ L̃i and hence Bnx/‖Bnx‖ ⇀ Ṽ1⊕· · ·⊕Ṽi.
Furthermore, the norm of Bn restricted to the subspace L̃i is controlled
by ai, i.e. ‖Bn|L̃i

‖ ≤ Cnai+δ for every δ > 0, where C is a positive
constant depending only on δ but not on n. Then if x ∈ L̃i we have
‖Bnx‖ ≤ C‖x‖nai+δ, so n−ρ‖Bnx‖ → 0 for all ρ > ai.

Similar results hold for an arbitrary regularly varying sequence as
shown in the next theorem. The next two results are stated in [12]. We
include them here for sake of completeness.

Theorem 3.3. Suppose (Bn) is a regularly varying sequence with in-
dex F and let Rd = Ṽ1⊕· · ·⊕Ṽp be the spectral decomposition of Rd relative

to F . Then there exists a nested sequence of subspaces L̃1 ⊂ · · · ⊂ L̃p = Rd

such that for each i = 1, . . . , p we have

(a) dim L̃i = dim(Ṽ1 ⊕ · · · ⊕ Ṽi);
(b) if x ∈ L̃i, then Bnx/‖Bnx‖ ⇀ Ṽ1 ⊕ · · · ⊕ Ṽi;

(c) if x /∈ L̃i, then Bnx/‖Bnx‖ ⇀ Ṽi+1 ⊕ · · · ⊕ Ṽp;

(d) if x ∈ L̃i, then n−ρ‖Bnx‖ → 0 for all ρ > ai;

(e) if x /∈ L̃i, then n−ρ‖Bnx‖ → ∞ for all ρ < ai+1.

Proof. See [12], Lemma 2.3. and [16] for a detailed proof. ¤
The next result is the basic characterization of regular variation for

sequences of linear operators. Again it is stated in [12]. It will enable us
later to choose norming operators (An) in (1.1) which are of a particular
simple type. They are block diagonal with respect to the spectral decom-
position of the exponent of an operator semistable law and this yields a
more detailed description of generalized domains of semistable attraction
as well as to many other results as shown later in this paper. Let us agree
to write Dn ∼ Bn if DnB−1

n → I.
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Theorem 3.4. (Bn) varies regularly with index F if and only if Bn ∼
DnT for some T ∈ GL(Rd) and some (Dn) regularly varying with index F

such that: each Ṽi in the spectral decomposition of Rd with respect to F

is Dn-invariant; and Dn = D
(1)
n ⊕ · · · ⊕D

(p)
n where each D

(i)
n : Ṽi → Ṽi is

regularly varying with index Fi.

Proof. See [12], Theorem 2.4 and [16] for a detailed proof. ¤

We now apply these results along with the embedding property of
the previous section to obtain some powerful results about the behavior
of the norming operators in (1.1). We assume that ν is a full (cE , c)
operator semistable law and that µ ∈ GDOSA(ν, c). As a first corollary
we get the following assertion on the growth rate and geometry of the
inverse transpose of the norming operators in (1.1), which together with
Corollary 3.6 provide crucial information on the growth rate of the norming
operators in any radial direction.

Corollary 3.5. Let µ ∈ GDOSA(ν, c) for some full (cE , c) operator

semistable law ν with c > 1. Let Rd = V1 ⊕ · · · ⊕ Vp be the spectral

decomposition of Rd relative to E. Then for some sequence of norming

operators (An) satisfying (1.1), there exists a nested sequence of subspaces

L̄1 ⊂ · · · ⊂ L̄p = Rd such that for each i = 1, . . . , p we have

(a) dim L̄i = dim(V ∗
1 ⊕ · · · ⊕ V ∗

i );

(b) if x ∈ L̄i, then (A∗n)−1x/‖(A∗n)−1x‖ ⇀ V ∗
1 ⊕ · · · ⊕ V ∗

i ;

(c) if x /∈ L̄i, then (A∗n)−1x/‖(A∗n)−1x‖ ⇀ V ∗
i+1 ⊕ · · · ⊕ V ∗

p ;

(d) if x ∈ L̄i, then λ−n‖(A∗n)−1x‖ → 0 for all λ > cai ;

(e) if x /∈ L̄i, then λ−n‖(A∗n)−1x‖ → ∞ for all λ < cai+1 .

Here a1 < · · · < ap is the real spectrum of E (see Lemma 3.1).

Proof. Apply Theorem 2.7 to obtain a regularly varying sequence
(Bn) with index (−E), where Bkn = An. Now, taking the inverse transpose
we get

(B∗
[λn])

−1(B∗
n) → λE∗ as n →∞

for all λ > 0, i.e.
(
(B∗

n)−1
)

is regularly varying with index E∗. Since Rd =
V ∗

1 ⊕ · · · ⊕ V ∗
p is the spectral decomposition relative to E∗, Theorem 3.3

yields a nested sequence L̄1 ⊂ · · · ⊂ L̄p = Rd with (B∗
n)−1 satisfying (a)–

(e) of that theorem. Note that by (2.3) Bkn = An and hence assertions
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(a)–(c) of the corollary are immediate from the corresponding results of
Theorem 3.3. Using the fact that for every δ > 0 and n large enough we
have (cn)1−δ ≤ kn ≤ (cn)1+δ, Theorem 3.3(d) implies for x ∈ L̄i

c−nρ(1+δ)‖(A∗n)−1x‖ ≤ k−ρ
n ‖(B∗

kn
)−1x‖ → 0

as n → ∞ for all ρ > ai. Since δ > 0 is arbitrary this implies that
(cρ)−n‖(A∗n)−1x‖ → 0 for all ρ > ai which proves (d). The proof of (e) is
similar. This concludes the proof. ¤

In the proof of the corollary above we applied Theorem 3.3 to the regu-
larly varying sequence

(
(B∗

n)−1
)

of index E∗, where (Bn) is the embedding
sequence of an appropriate sequence of norming operators (An). Apply-
ing Theorem 3.3 directly to the sequence (Bn), which by Theorem 3.3 is
regularly varying with index (−E) we then get the other half of bounds
on the growth rate and the geometry of the norming operators (An). The
following result was also proved in [13] without using the embedding prop-
erty and Theorem 3.3 but rather proving it directly by applying regular
variation techniques. Since the proof in [13] is quite long and technical,
the approach given here may give more insight to the problem. It also
shows, that the key result to the spectral decomposition for GDOA(ν)
in [9], Theorem 4.1 and to the spectral decomposition for GDOSA(ν, c)
in [13], Theorem 2.1 are in fact equivalent. All that is needed for such a
result is a regularly varying sequence of linear operators or a sequence of
linear operators which can be embedded in a regularly varying sequence.

Corollary 3.6. Suppose that µ ∈ GDOSA(ν, c) where ν is a full (cE , c)
operator semistable law for some c > 1. Let Rd = V1 ⊕ · · · ⊕ Vp be the

spectral decomposition relative to E. Then for some sequence of norming

operators (An) in (1.1) there exists a nested sequence of subspaces Rd =
L1 ⊃ · · · ⊃ Lp such that for each i = 1, . . . , p

(a) dim Li = dim(Vi ⊕ · · · ⊕ Vp);

(b) if x ∈ Li, then Anx/‖Anx‖ ⇀ Vi ⊕ · · · ⊕ Vp;

(c) if x /∈ Li, then Anx/‖Anx‖ ⇀ V1 ⊕ · · · ⊕ Vi−1;

(d) if x ∈ Li, then λn‖Anx‖ → 0 for all λ < cai ;

(e) if x /∈ Li, then λn‖Anx‖ → ∞ for all λ > cai−1 .

Here a1 < · · · < ap is the real spectrum of E (see Lemma 3.1).
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Proof. Apply Theorem 2.7 to obtain a regularly varying sequence
(Bn) with index (−E) where Bkn = An. Then (−E) has real spectrum
−ap < · · · < −a1 with spectral decomposition Rd = Ṽ1 ⊕ · · · ⊕ Ṽp where
Ṽj = Vp−j+1 and V1, . . . , Vp is the spectral decomposition of Rd relative
to E. Now apply Theorem 3.3 to obtain a nested sequence L̃1 ⊂ · · · ⊂
L̃p = Rd with (a)–(e) of that theorem. Then if we define Lj = L̃p−j+1 we
get for each j = 1, . . . , p that

(a) dim Lj = dim L̃p−j+1 = dim(Ṽ1 ⊕ · · · ⊕ Ṽp−j+1) = dim(Vj ⊕ · · · ⊕ Vp);

(b) if x ∈ Lj = L̃p−j+1 then Bnx/‖Bnx‖ ⇀ Ṽ1 ⊕ · · · ⊕ Ṽp−j+1 = Vj ⊕
· · · ⊕ Vp;

(c) if x /∈ Lj then Bnx/‖Bnx‖ ⇀ Ṽ(p−j+1)+1⊕· · ·⊕ Ṽp = V1⊕· · ·⊕Vj−1;

(d) if x ∈ Lj then n−ρ‖Bnx‖ → 0 for all ρ > −aj which is equivalent to
nρ‖Bnx‖ → 0 for all ρ < aj ;

(e) if x /∈ Lj then n−ρ‖Bnx‖ → ∞ for all ρ < −aj−1 which is equivalent
to nρ‖Bnx‖ → ∞ for all ρ > aj−1.

Now the proof of Corollary 3.6 is almost identical to the proof of
Corollary 3.5 and therefore omitted. ¤

Now let ν be a full (cE , c) operator semistable law and let Rd = V1 ⊕
· · ·⊕Vp be the spectral decomposition with respect to E. The idempotent
operators πi : Rd → Rd with Im(πi) = Vi satisfy π1 + · · · + πp = I

and πiπj = 0 if i 6= j. Now define νi = πi(ν), then νi is a probability
measure on Rd which is supported on the subspace Vi. We call (ν1, . . . , νp)
the spectral decomposition of ν. The restriction of νi to the E-invariant
subspace Vi will be denoted by ν̄i. Then it follows that ν̄i is a full (cEi , c)
operator semistable law on Vi, where E = E1 ⊕ · · · ⊕Ep (see Lemma 3.1).
The real spectrum of Ei consists of one single element ai. We will say that
ν̄i is spectrally simple. If ai = 1

2 , then ν̄i is normal and otherwise (ai > 1
2 )

ν̄i is a full nonnormal operator semistable law of an especially simple type.
Suppose that µ ∈ GDOSA(ν, c) and (1.1) holds. In the presence of a

large degree of symmetry in the limit, the norming operators in (1.1) may
exhibit a wild behavior. For example suppose that µ is a mean zero finite
second moment spherically symmetric probability distribution on Rd. By
the central limit theorem, (1.1) holds with An = k

−1/2
n I, for any sequence

(kn) with kn+1/kn → c and ν centered normal law. But (1.1) still holds
for An = k

−1/2
n Un for any sequence (Un) of orthogonal transformations.

Alternatively we can replace An by any sequence of operators A′n ∼ An.
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Let ν = (ν1, . . . , νp) be the spectral decomposition of the limit in (1.1).
As before we will denote by µ̄i the restriction of µi = πi(µ) to Vi. If πi

and An commute in general (i.e. if V1, . . . , Vp are An-invariant subspaces
for all n), then µ̄i ∈ GDOSA(ν̄i, c) for all i = 1, . . . , p. This reduces the
analysis of µ ∈ GDOSA(ν, c) to the case of a spectrally simple limit.

In general it is too much to expect that the norming sequence (An)
in (1.1) is as well-behaved as in the preceding paragraph. For example,
suppose T ∈ GL(Rd) and let µ0 = Tµ. Then µ0 ∈ GDOSA(ν, c) and in
fact

A′nµkn
0 ∗ δ(bn) ⇒ ν

with A′n = AnT−1. We cannot decompose the sequence (A′n) as we did
before. All we can say is that there is another direct sum decomposition
Rd = W1 ⊕ · · · ⊕ Wp such that A′n(Wi) = Vi for all i = 1, . . . , p (take
Wi = T (Vi)). The next theorem says that this kind of a decomposition
is always possible. It follows that for any µ0 ∈ GDOSA(ν, c), there exists
a T ∈ GL(Rd) such that µ = Tµ0 decomposes into (µ1, . . . , µp) where
µ̄i ∈ GDOSA(ν̄i, c).

We say that a µ ∈ GDOSA(ν, c) is spectrally compatible with ν, if
there is a sequence of norming operators (An) such that (1.1) holds and
V1, . . . , Vp are An-invariant subspaces for all n.

Theorem 3.7. For any µ0 ∈ GDOSA(ν, c) there exists T ∈ GL(Rd)
such that µ = Tµ0 is spectrally compatible with ν. Equivalently, µ0 is
spectrally compatible with T−1ν.

Even though this theorem was already proved in [13], we will show
here that it in fact follows from the more general spectral decomposition
result for regularly varying sequences of linear operators, Theorem 3.4.

Proof. Let µ0 ∈ GDOSA(ν, c), where ν is a full (cE , c) operator
semistable law on Rd. Apply Theorem 2.7 to obtain a sequence (Bn) of
linear operators regularly varying with index (−E), such that An = Bkn is
a suitable sequence of norming operators for (1.1), i.e. Bknµkn

0 ∗δ(bn) ⇒ ν.
By Theorem 3.4 there exists a T ∈ GL(Rd) such that Bn ∼ DnT and every
Vi in the spectral decomposition with respect to E is Dn-invariant for
all n. Then µ = Tµ0 is spectrally compatible with ν. On the other hand
T−1ν is a (cT−1ET , c) operator semistable law and Rd = W1 ⊕ · · · ⊕Wp,
where Wi = T−1(Vi) is the spectral decomposition of Rd with respect to
T−1ET . It follows that (T−1DknT )µkn

0 ∗ δ(T−1bn) ⇒ T−1ν as well as
T−1DnT (Wi) = Wi, proving that µ0 is spectrally compatible with T−1ν.

¤
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4. The behavior of the partial sum

In [11] and [14] we described the behavior of the partial sum Sn

along certain subsequences (kn)n of natural numbers. It turned out that if
kn+1/kn → c ≥ 1 then the affine normalized sequence (Skn)n converges in
distribution to an operator semistable limit. We gave necessary and suf-
ficient conditions on the distribution µ of one summand of the i.i.d. sum
Sn for that to happen.

In this section we will derive complementary results on the asymptotic
behavior of the whole partial sum (Sn)n if µ is in the generalized domain
of semistable attraction of an operator semistable law. The main tools we
use in the proofs are the embedding property of the sequence of norming
operators in (1.1) and the spectral decomposition for regularly varying
sequences of linear operators proved in Section 3.

In the process we will consider the behavior of the vector valued sum
Sn = X1 + · · ·+ Xn as well as the properties of the projection of Sn along
any radial direction. Our results are formulated in terms of stochastic
compactness.

Definition 4.1. Let (Yn)n be a sequence of random vectors on Rd. We
say that (Yn)n is stochastically compact if (L(Yn))n is weakly relatively
compact and all limit points are full (resp. nondegenerate if d = 1). Here
L(Y ) denotes the distribution of Y .

Suppose that µ is in the generalized domain of semistable attraction
of some full (cE , c) operator semistable law ν. Then (1.1) holds for some
linear operators An and shifts an. If ν is a normal law then we already know
(see [14]) that GDOSA(ν, c) = GDOA(ν), where GDOA(ν) denotes the
generalized domain of attraction of ν, that is the set of all µ such that (1.1)
holds for kn = n. Hence there exist linear operators Bn and nonrandom
vectors bn with BnSn − bn ⇒ ν proving the stochastic compactness of
(BnSn − bn)n. Therefore, in view of Theorem 2.1 in [14], it is enough to
consider the case of a limit ν which is not a normal law.

We first consider the vector valued sum Sn.

Theorem 4.2. Suppose X is a random vector with distribution µ in
the GDOSA of some full (cE , c) operator semistable law ν, where c > 1.
Then there exists a sequence (Bn) regularly varying with index (−E) and
a sequence (bn) of nonrandom vectors such that

(
Bn(X1 + · · ·+ Xn)− bn

)
n≥1
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is stochastically compact with limit set contained in

{
λ−Eνλ : λ ∈ [1, c]

}
.

Proof. Apply Theorem 2.7 to obtain a sequence (Bn) regularly vary-
ing with index (−E) such that An = Bkn is a suitable norming sequence for
µ in (1.1). Note that by the construction of Bn in the proof of Theorem 2.7
we have Bn = λ−E

n Apn , where we write n = λnkpn and kpn ≤ n < kpn+1.
Then kn+1/kn → c implies that (λn) is relatively compact with limit set
contained in [1, c]. Let bn = λnλ−E

n apn . Using Lévy’s continuity theorem
we get

(4.1)
(
Anµkn ∗ δ(−an)

)̂(x) → ν̂(x)

uniformly on compact subsets of Rd, where ρ̂ denotes the Fourier transform
of a measure ρ.

If λn → λ along a subsequence then by (4.1)

(
Bnµn ∗ δ(−bn)

)̂(x) = µ̂(B∗
nx)ne−i〈bn,x〉

= µ̂
(
A∗pn

(λ−E∗
n x)

)λnkpn e−i〈apn ,λ−E∗
n x〉λn

=
(
µ̂
(
A∗pn

(λ−E∗
n x)

)kpn e−i〈apn ,λ−E∗
n x〉

)λn

=
((

Apnµkpn ∗ δ(−apn)
)̂(

λ−E∗
n x

))λn

→
(
ν̂
(
λ−E∗x

))λ

=
(
λ−Eνλ

)̂(x)

along that subsequence, where λ−Eνλ is full since ν is full. Since every
subsequence has a further subsequence with this property the result is now
immediate. ¤

Remark 4.3. (a) It is easy to see that every law ν(λ) = λ−Eνλ in the
limit set is also (cE , c) operator semistable. The Lévy measure of ν(λ) is
given by φ(λ) = λ(λ−Eφ), where φ is the Lévy measure of ν.

(b) If ν is not only operator semistable but actually operator stable, it
follows from a characterization of operator stable laws in terms of the Lévy
measure that φ(λ) = φ for all 1 ≤ λ ≤ c and hence in this case the limit
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set in Theorem 4.2 is, if we adjust the centering constants bn if necessary,
just the one point set {ν}. This gives a new proof of Theorem 2.1 in [14].

(c) It follows from Theorem 4.2 that for any ‖θ‖ = 1 the sequence
(〈BnSn, θ〉−〈bn, θ〉)n is stochastically compact with limit set {〈Yλ, θ〉 : λ ∈
[1, c]}, where L(Yλ) = λ−Eνλ.

(d) It follows from the proof of Theorem 4.2 that if the centering
constants an in (1.1) can be chosen to be zero, then bn = 0 for all n.

In addition to Theorem 4.2 we now consider the behavior of the pro-
jection of Sn along any radial direction θ. Note that 〈Sn, θ〉 = 〈X1, θ〉 +
· · ·+ 〈Xn, θ〉 is a sum of i.i.d. random variables. We will normalize 〈Sn, θ〉
by scalars rn which is different from considering 〈BnSn, θ〉, where we first
normalize by a linear operator and then project. See Remark 4.3(c).

Theorem 4.4. Suppose X is a random vector with distribution µ in

the GDOSA of some full (cE , c) operator semistable law ν where c > 1.

Then for all unit vectors θ ∈ Rd there exists a sequence (rn) of positive

real numbers tending to zero and a sequence (sn) of shifts such that

(4.2)
(
rn

n∑

i=1

〈Xi, θ〉 − sn

)
n≥1

is stochastically compact. Moreover, if Rd = V ∗
1 ⊕ · · · ⊕V ∗

p is the spectral

decomposition of Rd with respect to E∗ and if L̄1 ⊂ · · · ⊂ L̄p = Rd is

the nested sequence of subspaces constructed in Corollary 3.5 we have:

If θ ∈ L̄i \ L̄i−1 then the limit set of the sequence in (4.2) is contained in

the set {〈Yλ, θ0〉 : λ ∈ [1, c], θ0 ∈ V ∗
i , ‖θ0‖ = 1

}

where L(Yλ) = λ−Eνλ.

Proof. Apply Theorem 4.2 to obtain a regularly varying sequence
(Bn) with index (−E) and shifts (bn) such that

(
Bn(X1 + · · ·+Xn)−bn

)
n

is stochastically compact with limit set {λ−Eνλ : λ ∈ [1, c]}.
Fix any ‖θ‖ = 1 and let

(4.3) rn =
∥∥(

B∗
n

)−1
θ
∥∥−1

.

Write (B∗
n)−1θ = r−1

n θn where ‖θn‖ = 1. Then an application of Theo-
rem 3.3 to the regularly varying sequence

(
(B∗

n)−1
)

with index E∗ gives
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a nested sequence of subspaces L̄1 ⊂ · · · ⊂ L̄p = Rd. Note that these
subspaces are the same as those constructed in the proof of Corollary 3.5.
Then by Theorem 3.3 we infer that θ ∈ L̄i \ L̄i−1 implies θn → V ∗

i . Since

〈Xi, θ〉 = 〈B−1
n BnXi, θ〉 = 〈BnXi, (B∗

n)−1θ〉 = r−1
n 〈BnXi, θn〉,

we get if we let sn = 〈bn, θn〉 that

rn

n∑

i=1

〈Xi, θ〉 − sn =
n∑

i=1

〈BnXi, θn〉 − 〈bn, θn〉 =
〈
Bn

n∑

i=1

Xi − bn, θn

〉
.

Now every subsequence (n′) has a further subsequence (n′′) ⊂ (n′) such
that θn → θ0 ∈ V ∗

i along (n′′). Hence hn(x) = 〈x, θn〉 → h0(x) = 〈x, θ0〉
along the same subsequence (n′′). Using the fact that every full operator
semistable law has a Lebesque density by [6], Theorem 2.2, we get using [2],
Theorem 5.5 that

rn

n∑

i=1

〈Xi, θ〉 − sn = hn

(
Bn

n∑

i=1

Xi − bn

)
−→ h0(Yλ) = 〈Yλ, θ0〉

along a subsequence (n′′′) ⊂ (n′′) such that Bn

∑n
i=1 Xi − bn ⇒ Yλ along

(n′′′). Here, as above, L(Yλ) = λ−Eνλ for some λ ∈ [1, c]. Hence we have
shown that every subsequence (n′) has a further subsequence (n′′′) along
which we get convergence. This concludes the proof. ¤

Remark 4.5. (a) Let θ ∈ L̄i \ L̄i−1 for some i = 1, . . . , p. It follows
from Theorem 3.3 that for every δ > 0 there exists a n0 ≥ 1 such that

n−ai−δ ≤ rn ≤ n−ai+δ

whenever n ≥ n0, showing sharp bounds on the rate at which rn tends to
zero. This rate will vary along the direction θ.

(b) We can choose sn = 0 if the centering constants an in (1.1) were
zero. See also Remark 4.3(d).
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