
Publ. Math. Debrecen

58 / 3 (2001), 441–449

On a conditional Cauchy functional
equation involving cubes of finite fields III:

The case of characteristic 2

By J-L. GARCÍA-ROIG (Barcelona)

and EMMA MARTÍN-GUTIÉRREZ (La Coruña)

Abstract. We solve the conditional Cauchy functional equation f(x3 + y3) =
f(x3) + f(y3), where f is a map from a finite field of characteristic 2 into itself.

1. Introduction

In this paper we solve the conditional Cauchy functional equation

(1) f(x3 + y3) = f(x3) + f(y3)

where f is a map from a finite field Fq, where q = 2n, into itself.
This completes our study of functional equation (1) for maps from a

finite field into itself, which has been considered earlier in [G–M 1] and
[G–M 2] (the case q = 3n is contained in Remark 3 on p. 395 of [G–M 1]).
In the present situation there appear two exceptional cases whose solu-
tions differ from those of the usual Cauchy functional equation. This is
not surprising, for we have already encountered three exceptional cases
in [G–M 1].

2. The functional equation f(x3 + y3) = f(x3) + f(y3)
for maps f : Fq → Fq, with q = 2n

The case n odd can be treated as in Lemma 1 of [G–M 2], which
holds in our present case. Essentially the same proof is valid, with the
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simplification that the quadratic form X2 +XY +Y 2 or, equivalently, the
polynomial X2 + X + 1, is obviously irreducible over F2n if and only if n
is odd (neither 0 nor 1 is a root of the latter polynomial, so that its roots
are precisely the elements of F4 not in F2).

Thus, as in [G–M 2], for n odd, functional equation (1), for maps
f : F2n → F2n , is equivalent to the Cauchy functional equation, and we
will assume in the sequel that n is even.

This remaining case will be treated following the pattern of our two
earlier papers [G–M 1] and [G–M 2]: any map f : Fq → Fq is induced by
a (reduced) polynomial

(2) P (T ) = a0 + a1T + a2T
2 + · · ·+ aq−1T

q−1

with a0, a1, . . . , aq−1 in Fq. Condition (1) entails that the mixed terms of
the reduction (via T q ≡ T ) of P (X3 + Y 3) vanish and this leads to the
linear system of equations on the coefficients of P (T ):

(3) Ej
r = 0, with k < j ≤ 2k and 0 < r ≤

[
j

2

]
,

where k = 1
3 (2n−1) (which makes sense since n is even),

[
j
2

]
is the integral

part of j
2 , and Ej

r stands for

(
j − k

r

)
aj−k +

[(
j

r

)
+

(
j

r + k

)]
aj

+
[(

j + k

r

)
+

(
j + k

r + k

)
+

(
j + k

r + 2k

)]
aj+k = 0,

if
(

j
r

)
lies outside triangle ABC (see the figure), and for

(
j

r

)
aj +

[(
j + k

r

)
+

(
j + k

r + k

)]
aj+k = 0,

if
(

j
r

)
lies either inside triangle ABC or on its side AC.

3. The arithmetic triangle modulo 2 in connection
with (3) for even powers of 2

In this section we will always assume that the degree n of F2n over
F2 is even and (a2, a3, . . . , a3k) will stand for an arbitrary solution of the
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Figure 1.

linear system of equations (3). As in [G–M 1] and [G–M 2] we have (cf. [H]
or [L])

(4)
(

j

r

)
≡

n−1∏

i=0

(
ji

ri

)
(mod 2)

where ji and ri stand for the digits occurring in the respective binary
expansions (jn−1, . . . , j0) and (rn−1, . . . , r0) of j and r (both supposed to
have at most n binary digits and where, of course, we assume

(
0
1

)
= 0).

Letting k = 2n−1
3 , as in the previous section, we easily have the fol-

lowing binary expansions (of n digits, written from right to left, as usual):

k = (0, 1, 0, 1, . . . , 0, 1),

2k = (1, 0, 1, 0, . . . , 1, 0).

These expressions immediately (by (4)) entail that vertex C =
(
2k
k

)≡ 0
(mod 2), as in [G–M 2]. On the other hand, the equality (a + b)2

r

=
a2r

+b2r

in characteristic 2 implies that the inverted triangle A′B′C ′ below
the 2n−1th row is a null triangle modulo 2 (except for its slanting sides
which consist of ones). Furthermore, from 3k = 2n − 1 = (1, 1, . . . , 1), we
easily get E =

(
3k
k

) 6≡ 0 (mod 2), and proceeding as in [G–M 1] Lemma 3,
we have
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Lemma 1. For each j, with k < j < 2k, there exists at least an r,

with j − k ≤ r ≤ k, such that

(
j + k

r

)
+

(
j + k

j − r

)
6≡ 0 (mod 2).

Remark. The preceding lemma does not hold for j = 2k, as was the
case in our previous papers. In fact, here we have

(
3k
k

)
+

(
3k
2k

) ≡ 2 ≡ 0
(mod 2).

Now, reasoning as in Proposition 6 of [G–M 2], we get the following.

Proposition 2. We have:

i) if aj+k = 0, for some j, with k < j < 2n−1, then aj = 0,

ii) if aj = 0, for some j, with k < j < 2k, then aj+k = 0.

Again, reasoning as in Proposition 1 of [G–M 1], we get

Proposition 3. For any j, with k < j ≤ 2k, if aj = aj+k = 0, then:

aj−k = 0, if j − k 6= 2m,

aj−k is arbitrary, if j − k = 2m.

Remark. The above assertion differs from that of Proposition 1 of
[G–M 1]: the reason is that here (as will soon be seen) it is not true that
aj = 0, for j = k + 1, . . . , 3k.

We will tackle the study of the system of equations (3) by first treating
the cases j = 2n−1 and j = 2k, for n ≥ 6. As there arise some particulari-
ties for n = 2 and 4, we postpone the complete study of these cases to the
end of this section. The following lemmas refer to solutions of (3).

Lemma 4. For even n ≥ 4, we have a2n−1−k = a2n−1+k = 0, but

a2n−1 is arbitrary.

Proof. We have already mentioned that the 2n−1th row (without
endpoints) consists of zeros, so that no condition at all is imposed on
a2n−1 . The rest is a consequence of Lemma 1 (which can be applied since,
for n > 2, 2n−1 < 2k): equation E2n−1

r = 0, for the r quoted in that lemma,
yields a2n−1+k = 0, and now, for instance, from equation E2n−1

1 = 0 we
see that a2n−1−k = 0. ¤
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Lemma 5. For even n ≥ 6, we have ak = a2k = a3k = 0.

Proof. It suffices to consider the equations associated with
(
2k
1

)
,
(
2k
2

)

and
(
2k
3

)
. Bearing in mind that

(
2k

3 + k

)
≡ . . .

(
1
0

)(
0
1

)(
1
1

)(
0
0

)(
1
0

)(
0
0

)
(mod 2)

is congruent with zero (mod 2), since n ≥ 6, the determinant of this
subsystem is easily seen to be congruent with 1 and thus, ak = a2k =
a3k = 0. ¤

Lemma 6. For even n, we have aj = aj+k = 0, for those j such that

2n−1 < j < 2k.

Proof. We can assume n > 2 (for n = 2, 2n−1 = 2k). On the other
hand, by Proposition 2 (ii), it suffices to show that aj = 0 in order to get
aj+k = 0, but it turns out that, for 2n−1 < j < 2k, it is immediately seen
that aj+k = 0 (just consider the equation Ej

r = 0, for the r appearing in
Lemma 1, and observe that

(
j
r

) ≡ 0 (mod 2) since it lies inside triangle
A′B′C ′).

In order to prove that aj = 0, observe that, as

2n−1 = (1, 0, 0, 0, . . . , 0, 0) < j < (1, 0, 1, 0, . . . , 1, 0) = 2k,

j has to be of type: (1, 0, 0, 0, . . . ), (1, 0, 0, 1, . . . ) or (1, 0, 1, 0, . . . ). When
j = (1, 0, 1, 0, . . . ) (which cannot occur if n = 4, since j < 2k), equa-
tion Ej

r = 0, with r = (0, 0, 1, 0, . . . , 0, 0), yields aj = 0. When j =
(1, 0, 0, 1, . . . ), we have j−k = (0, 1, 0, 0, . . . ) or (0, 0, 1, 1, . . . ). In the first
case Ej

r = 0, with r = (0, 0, 0, 1, 0, . . . , 0), yields aj = 0. This also holds in
the second case, but after having seen that Ej

s = 0, with s = (0, 0, 1, 0, . . . ),
entails aj−k = 0.

When j = (1, 0, 0, 0, . . . ) equation Ej
r = 0, with r = (0, 0, 1, 0, . . . , 0),

yields aj−k = 0. On the other hand, as we can assume to work with at
least 6 digits (this case does not occur for n = 4, since j > 2n−1), to
the right of the first four digits of j, there appears at least a one (since
j > 2n−1), say corresponding to the place of power 2t.

Then equation Ej
s = 0, with s = 2t, entails aj = 0. ¤
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Lemma 7. For even n ≥ 4, we have aj = aj+k = 0, for those j such
that k < j < 2n−1.

Proof. By Proposition 2, it suffices to prove that either aj = 0 or
aj+k = 0, for each j, k < j < 2n−1.

Let us begin by considering the cases j = k+1, k+2: Ek+1
1 = 0 yields

a2k+1 = 0, and Ek+2
2 = 0, ak+2 = 0. These cases exhaust all possibilities

when n = 4, so that in the rest of the proof we will assume n ≥ 6 and,
consequently, the binary expansion of k will contain at least 3 couples
(0,1). As k < j < 2n−1, the binary expansion of j consists of a couple
(0,1) on the left, then there may be more of these couples but, on going
to the right, we eventually get a place where a 0 has been replaced by a 1.
Except for the cases k + 1 and k + 2 (solved above), where after the last
couple (0,1) there appear two digits, in the remaining cases, after the last
couple (0,1) there are at least four digits, which we can denote as

j = (. . . , 0, 1, x, y, z, t, . . . )

where, on the left of (0,1) there may appear more couples (0,1), and on the
right of t there may appear more digits. In any case, the group of digits
(x, y, z, t) has to be of one of the following eight types:

a) 1, 0, 0, 0 b) 1, 0, 0, 1 c) 1, 0, 1, 0 d) 1, 0, 1, 1

e) 1, 1, 0, 0 f) 1, 1, 0, 1 g) 1, 1, 1, 0 h) 1, 1, 1, 1.

In case there appear more digits on the right of t, in adding j + k
(from right to left, as usual), we have two possibilities on arriving at the
digit t:

1) we carry nothing from previous digits,
2) we carry a unit from previous digits.
There are thus, 16 possible cases. In each one of them, we will choose

an r of which we will just indicate its digits corresponding to the places of
0, 1, x, y, z, t in j, with the understanding that the remaining digits are
zeros. Now it is immediate that taking r = (. . . , 0, 0, 1, 0, 1, 0, . . . ) for (a.2),
(b.1), (b.2), (c.2), (d.1), (d.2), (g.1) and (g.2); r = (. . . , 0, 0, 1, 0, 0, 1, . . . )
for (a.1), (c.1), (f.1) and (f.2); r = (. . . , 0, 0, 1, 1, 0, 1, . . . ) for (h.1) and
(h.2); and r = (. . . , 0, 0, 1, 0, 0, 0, . . . ) for (e.1) and (e.2), then

(
j
r

)
lies inside

triangle ABC, so that exactly 2 of the 3 binomial coefficients occurring in
the associated equation are zero: consequently aj = 0 or aj+k = 0. ¤

Proposition 3 together with the four preceding lemmas establish the
following.
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Theorem 8. For q = 2n, n even ≥ 6, the solutions (a2, a3, . . . , a3k) of

(3) are given by

at =
{

0, if t is not a power of 2,

arbitrary, otherwise,

for 2 ≤ t ≤ 3k.

Next we include the cases q = 22 and 24.

Theorem 9. For q = 22, any couple of elements in F4 is a solution

of (3).

Proof. (3) reduces in this case to equation 0a2 +(1+1)a3 = 0. ¤

Theorem 10. For q = 24, the solutions (a2, a3, . . . , a15) of (3) are

given by:

aj = 0, for j 6= 2, 4, 5, 8, 10, 15,

a15 = a10 = a5, and

a2, a22 , a23 and a5 may be arbitrarily chosen.

Proof. By Lemma 4, a23 is arbitrary and a3 = a13 = 0. By Lem-
mas 6 and 7, a9 = a14 = 0, a6 = a11 = 0 and a7 = a12 = 0 and,
consequently, according to Proposition 3, a2 and a22 may be arbitrarily
chosen. And bearing in mind that the only equations of (3) relating rows
k, 2k and 3k are:

a5 + a15 = 0

a10 + a15 = 0

}

we conclude that a5 = a10 = a15 is arbitrary. ¤

4. Solutions of functional equation (1)
in characterisitic 2

Theorem 11. The solutions f : F2n → F2n of functional equation (1),
for n 6= 2, 4, are exactly those of the usual Cauchy functional equation,

and may be expressed by the polynomial functions

f(x) = a1x + a2x
2 + a22x22

+ · · ·+ a2n−1x2n−1
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where a1, a2, . . . , a2n−1 belong to F2n .

However, for n = 2 and 4, there appear more solutions, namely those

given by

f(x) = a1x + a2x
2 + a3x

3, if n = 2,

and

f(x) = a1x + a2x
2 + a4x

4 + a5x
5 + a8x

8 + a5x
10 + a5x

15, if n = 4,

where the coefficients are assumed to lie in the respective fields F22 and F24 .

Proof. The case n odd is immediate, since there exist (2n)n solutions
of the Cauchy equation (see the beginning of Section 1), so we can assume n

even, and f induced by a polynomial of type (2).
By Theorem 8, for n ≥ 6, any solution f of (1) is actually induced by

a polynomial of type

P (T ) = a0 + a1T + a2T
2 + a22T 22

+ · · ·+ a2n−1T 2n−1
,

since the mixed terms of P (X3 + Y 3) vanish. Now, reducing and equat-
ing P (X3 + Y 3) and P (X3) + P (Y 3), we obtain a0 = 2a0 = 0 (observe
that the reduction of the only non-reduced terms of P (X3 + Y 3), namely
a2n−1

(
X3·2n−1

+ Y 3·2n−1)
is a2n−1

(
X2n−1+1 + Y 2n−1+1

)
, whose terms do

not overlap with the remaining ones), so that the solutions have to be as
stated in the theorem. A direct checking shows in fact that these work
and we are done.

For the cases n = 2 and n = 4 we proceed in a similar manner,
replacing Theorem 8 by Theorems 9 and 10, respectively, and taking into
account the following subtleties:

For n = 2, it is convenient to observe that the map x 7→ x3 sends F∗4
into 1 (and 0 into 0), so that it satisfies (1).

For n = 4, we observe first that the map ϕ(x) := x5 + x10 + x15 from
F16 into itself takes the value 1 on all nonzero cubes, and 0, otherwise
(sum of geometric progression). In order to prove that ϕ satisfies (1), the
only difficulty arises in trying to check (1) for a couple of nonzero distinct
elements x, y, for which it suffices to see that x3 + y3 is not a nonzero
cube. This, in turn, is equivalent to seeing (x3 + y3)5 6= 1. Expanding the
left-hand side we are led to check that we have t3 + t−3 6= 1, and so, it is
enough to prove that t6 + t3 + 1 does not vanish on any element of F16.
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But this follows from the fact that X2 + X + 1 is a defining equation for
the extension F2 ⊆ F4, and (because F43 ∩ F42 = F4) that X3 −α, for any
α ∈ F4\F2, is irreducible in F4[X], since it has degree 3 and no roots in F4

(alternatively, if there exists β in F16 such that β3 = α, then α5 = 1 and
as α3 = 1, we get α2 = 1, i.e. α = 1, a contradiction). ¤
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