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Quasi contraction nonself mappings on Banach spaces
and common fixed point theorems

By VLADIMIR RAKOČEVIĆ (Nǐs)

Abstract. Ljubomir �Ciri�c [2] has proved recently fixed point theorems for quasi
contraction nonself mappings on Banach spaces. In this paper we consider quasi con-
traction nonself mappings on Banach spaces and common fixed point theorems for a

pair of maps, and offer an etension of Ćirić’s result. The main results of K. M. Das and
K. V. Naik are also recovered.

Let X be a complete metric space. A map T : X 7→ X such that for
some constant λ ∈ (0, 1) and for every x, y ∈ X

(0.1) d(Tx, Ty) ≤ λ ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}

is called quasicontraction. Let us remark that Ćirić [1] introduced and
studied quasicontraction as one of the most general contactive type map.
The well known Ćirić’s ([1], [3], [5]) result is that quasicontraction f

possesses a unique fixed point.

For the convenience of the reader we recall the following recent Ćirić’s
result.

Theorem (Ćirić [2, Theorem 2.1]) 1. Let X be a Banach space, C a

nonempty closed subset of X, and ∂C the boundary of C. Let T : C 7→ X

be a nonself mapping such that for some constant λ ∈ (0, 1) and for every
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x, y ∈ C

d(Tx, Ty) ≤ λ ·max
{
d(x, y), d(x, Tx), d(y, Ty),(1.1)

d(x, Ty), d(y, Tx)
}
.

Suppose that

(1.2) T
(
∂C

) ⊂ C.

Then T has a unique fixed point in C.

Following Ćirić [2], let us remark that problem to extend the known
fixed point theorem for self mappings T : C 7→ C, defined by (0.1), to
corresponding nonself mappings T : C 7→ X, C 6= X, was open more than
20 years.

In [2] Ćirić has used new methods and proved a fixed point theorem
for the class of nonself mappings defined by (1.1), which satisfy added
condition (1.2).

Assume now that X is a normed space. For x, y ∈ X we shall write

seg[x, y] = {z ∈ X : z = (1− t)x + ty, 0 ≤ t ≤ 1}.

In the proof of the next result we shall use the following observation. Let
us remark that if u ∈ X, and z0 = (1− t0)x + t0y ∈ seg[x, y], 0 ≤ t0 ≤ 1,
then

‖u− z0‖ = ‖(1− t0)u + t0u− (1− t0)x− t0y‖
≤ (1− t0)‖u− x‖+ t0‖u− y‖ ≤ max

{‖u− x‖, ‖u− y‖}.

Following Sessa [6] we shall say that f, g : X 7→ X are weakly com-
muting if

d(fgx, gfx) ≤ d(fx, gx) for every x ∈ X.

Clearly weak commutativity of f and g is a generalization of the conven-
tional commutativity of f and g.

In this paper we offer the following extension of Ćirić’s result.
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Theorem 2. Let X be a Banach space, C a nonempty closed subset

of X, and ∂C the boundary of C. Let g : C 7→ X, f : X 7→ X and

f : C 7→ C. Suppose that ∂C 6= ∅, f is continuous, and let us assume that

f and g satisfy the following conditions:

(i) There exists a constant λ ∈ (0, 1) such that for every x, y ∈ C

(2.1) d(gx, gy) ≤ λ · M(x, y),

where

M(x, y) = max
{
d(fx, fy), d(fx, gx),(2.2)

d(fy, gy), d(fx, gy), d(fy, gx)
}
.

(ii) f and g are weakly commutative on C, that is

(2.3) d(fgx, gfx) ≤ d(fx, gx) for every x ∈ C.

(iii) g(C) ∩ C ⊂ f(C).(2.4)

(iv) g
(
∂C

) ⊂ C.(2.5)

(v) f
(
∂C

) ⊃ ∂C.(2.6)

Then f and g have a unique common fixed point in C.

Proof. Starting with an arbitrary x0 ∈ ∂C, we construct a se-
quence {xn} of points in C as follows. By (2.5) g(x0) ∈ C. Hence,
(2.4) implies that there is x1 ∈ C such that f(x1) = g(x0). Let us
consider g(x1). If g(x1) ∈ C, again by (2.4) there is x2 ∈ C such that
f(x2) = g(x1). If g(x1) /∈ C, by (2.6) there is x2 ∈ ∂C such that
f(x2) ∈ ∂C ∩ seg[f(x1), g(x1)].

Hence, by induction we construct a sequence {xn} of points in C as
follows. If g(xn) ∈ C, than by (2.4) f(xn+1) = g(xn) for some xn+1 ∈ C;
if g(xn) /∈ C, then by (2.6) pick xn+1 ∈ ∂C such that

f(xn+1) ∈ ∂C ∩ seg
[
f(xn), g(xn)

]
.

We shall prove that f(xn) and g(xn) are Cauchy sequences.
First let us prove that

(2.7) f(xn+1) 6= g(xn) ⇒ f(xn) = g(xn−1).
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Suppose the contrary that f(xn) 6= g(xn−1). Then xn ∈ ∂C. Now, by
(2.4) g(xn) ∈ C, hence f(xn+1) = g(xn), a contradiction. Thus we prove
(2.7). Now set

B(n, k) = {f(xj), g(xj) : n ≤ j ≤ n + k} b(n, k) = diam(B(n, k))

B(n) = {f(xj), g(xj) : n ≤ j} b(n) = diam(B(n))

and note that b(n, k) ↑ b(n) as k → ∞ and b(n) ↓ and hence b =
limn b(n) ≥ 0 exists. To see that f(xn) and g(xn) are Cauchy sequences
we must show that b = 0. We claim that

(2.8) b(n, k) ≤ λb(n− 2, k + 2), n, k ≥ 2.

To prove (2.8) we have to consider three cases.

Case 1. b(n, k) = d(f(xi), g(xj)) with n ≤ i, j ≤ n + k.
If f(xi) = g(xi−1), then

b(n, k) = d(g(xi−1), g(xj)) ≤ λM(xi−1, xj) ≤ λb(n− 2, k + 2).

If f(xi) 6= g(xi−1), then f(xi−1) = g(xi−2) and so
f(xi) ∈ seg[f(xi−1), g(xi−1)] = seg[g(xi−2), g(xi−1)]. Thus

b(n, k) = d(f(xi), g(xj)) ≤ max
{

d(g(xi−2), g(xj)), d(g(xi−1), g(xj))
}

≤ λ max
{

M(xi−2, xj), M(xi−1, xj)
}
≤ λb(n− 2, k + 2).

Case 2. b(n, k) = d(f(xi), d(xj)) with n ≤ i, j ≤ n + k.
If f(xj) = g(xj−1), then Case 2 reduces to Case 1.
If f(xj) 6= g(xj−1), then as in the Case 1 we have j ≥ 2, f(xj−1) = g(xj−2),
and

f(xj) ∈ ∂C ∩ seg
[
g(xj−2), g(xj−1)

]
.

Hence

b(n, k) = d
(
f(xi), f(xj)

) ≤ max
{

d
(
f(xi), g(xj−2)

)
, d

(
f(xi), g(xj−1)

)}

and Case 2 reduces to Case 1.
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Case 3. The remaining case b(n, k) = d(g(xi), g(xj)) with n ≤ i, j ≤
n + k is trivial.
Now let k → ∞ in (2.8) to obtain b(n) ≤ λb(n − 2) and let n → ∞ to
obtain b ≤ λb, that is b = 0. It follows that both {f(xn)} and {g(xn} are
Cauchy sequences. Since f(xn) ∈ C and C is a closed subset of a Banach
space X we conclude that lim f(xn) = y ∈ C. Since

d
(
f(xn), g(xn)

) ≤ bn → 0, n →∞,

we have lim g(xn) = y. Hence,

lim g(xn) = lim f(xn) = y ∈ C.

By continuity of f

lim f(g(xn)) = lim f(f(xn)) = f(y) ∈ C.

By (2.3), we have

d
(
gf(xn), f(y)

) ≤ d
(
gf(xn), fg(xn)

)
+ d

(
fg(xn), f(y)

)
(2.9)

≤ d
(
f(xn), g(xn)

)
+ d

(
fg(xn), f(y)

) → 0, n →∞.

Hence

(2.10) lim(gf)(xn) = f(y).

Now, by (2.9) and (2.10)

M(fxn, y) → d(fy, gy) n →∞,

and
d(fy, gy) ≤ λ · d(fy, gy).

Hence, as λ < 1,

(2.11) f(y) = g(y).

We shall prove that g(y) is a common fixed point for f and g. By (2.11)
and (2.3) it follows that

(2.12) fg(y) = gf(y) = gg(y).
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By (2.1), (2.11) and (2.12) we have

d
(
gg(y), g(y)

) ≤ λ ·M(gy, y) = λ · d(
gg(y), g(y)

)
,

and hence gg(y) = g(y). From (2.12), we conclude that g(y) is also a
fixed point of f . The uniqueness of the common fixed point is immediate
from (2.1). ¤

Let us remark that in Theorem 2, setting f = IX , the identity map
on X, we get Theorem 1.

If f is not continuous, but fm is continuous for any fixed integer m,
we can prove the next result.

Theorem 3. Let X be a Banach space, C a nonempty closed subset

of X, and ∂C the boundary of C. Let g : C 7→ X, f : X 7→ X and

f : C 7→ C. Suppose that fm, m any fixed positive integer, is continuous,

and let us assume that f and g satisfy (2.1), (2.4), (2.5), (2.6) and f and

g are commutative on C, that is

(3.1) (fg)x = (gf)x for each x ∈ C.

Then f and g have a unique common fixed point in C.

Proof. Let {xn}, g(xn) and f(xn) be the sequences as in the proof
of Theorem 2. Hence,

lim g(xn) = lim f(xn) = y ∈ C.

By (2.2), for each n ≥ 1

d
(
fmg(xn), gfm−1(y)

)
= d

(
gfm(xn), gfm−1(y)

)

≤ λ ·M(
fm(xn), fm−1(y)

)

= λ ·max
{

d
(
fmf(xn), fm(y)

)
, d

(
fmf(xn), fmg(xn)

)
,

d
(
fm(y), gfm−1(y)

)
, d

(
fmf(xn), gfm−1(y)

)
, d

(
fm(y), fmg(xn)

)}
.

Now, by continuity of fm

d
(
fm(y), gfm−1(y)

) ≤ λ · d(
fm(y), gfm−1(y)

)
.
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Whence, fm(y) = gfm−1(y), since λ < 1. Now fm(y) is a common fixed
point for f and g (see (2.11) and (2.12)). The uniqueness of the common
fixed point follows immediate from (2.1). ¤

Let us remark that in Theorem 3, setting f = IX , the identity map
on X, we get Theorem 1.

The next result is connected with [2, Theorem 2.2] and Theorem 2.

Theorem 4. Let X be a Banach space, C a nonempty compact subset

of X, and ∂C the boundary of C. Let g : C 7→ X, f : X 7→ X and

f : C 7→ C. Suppose that g and f are continuous, and let us assume that

f and g satisfy (2.3), (2.4), (2.5), (2.6) and for all x, y ∈ C, x 6= y

d(gx, gy) < M(x, y),(4.1)

where

M(x, y) = max
{
d(fx, fy), d(fx, gx),(4.2)

d(fy, gy), d(fx, gy), d(fy, gx)
}
.

Then f and g have a unique common fixed point in C.

Proof. Suppose that f and g do not have a unique common fixed
point in C. Then, as d(fx, gx) > 0 and d(fy, gy) > 0, for all x, y ∈ C, we
have 0 < M(x, y). Let Q : C × C 7→ [0, 1) be the mapping defined by

Q(x, y) =
d(gx, gy)
M(x, y)

, x, y ∈ C.

Clearly, Q is a continuous function and Q(x, y) < 1, x, y ∈ C. Now,
as in the proof of [2, Theorem 2.2], there exists x0, y0 ∈ C such that
sup{Q(x, y) : x, y ∈ C} = Q(x0, y0) < 1. Hence g is a quasicontraction,
and by Theorem 2 f and g have a common unique fixed point in C. This
is in contradiction with our assumption that f and g have not a common
unique fixed point. The uniqueness follows from (4.1). ¤

Again, in Theorem 4, setting f = IX , the identity map on X, we get
[2, Theorem 2.2].

By the proof of Theorem 2 we can recover some results of K. M. Das

and K. V. Naik [3] and Jungck [4].
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Theorem 5 (K. M. Das and K. V. Naik [3, Theorem 2.1]). Let X

be a complete metric space. Let f be a continuous self-map on X and g

be any self-map on X that commutes with f . Further let f and g satisfy

(5.1) g(X) ⊂ f(X)

and there exists a constant λ ∈ (0, 1) such that for every x, y ∈ X

d(gx,gy) ≤ λ · M(x, y),(5.2)

where

M(x, y) = max
{
d(fx, fy), d(fx, gx),(5.3)

d(fy, gy), d(fx, gy), d(fy, gx)
}
.

Then f and g have a unique fixed point.

Proof. We follow the proof of Theorem 2. Let us remark that
the condition (5.1) implies that starting with an arbitrary x0 ∈ X, we
construct a sequence {xn} of points in X such that f(xn+1) = g(xn),
n = 0, 1, 2, . . . . The rest of the proof follows by the proof of Theorem 2.

¤

Now, by the proof of Theorem 2 we can recover the main result of
K. M. Das and K. V. Naik [3].

Theorem 6 (K. M. Das and K. V. Naik [3, Theorem 3.1]). Let X

be a complete metric space. Let f2 be a continuous self-map on X and g

be any self-map on X that commutes with f . Further let f and g satisfy

(6.1) gf(X) ⊂ f2(X)

and f(g(x)) = g(f(x)) whenever both sides are defined. Further, let there

exists a constant λ ∈ (0, 1) such that for every x, y ∈ f(X)

d(gx,gy) ≤ λ ·M(x, y),(6.2)

where

M(x, y) = max
{
d(fx, fy), d(fx, gx),(6.3)

d(fy, gy), d(fx, gy), d(fy, gx)
}
.
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Then f and g have a unique common fixed point.

Proof. Again, we follow the proof of Theorem 2. By (6.1) starting
with an arbitrary x0 ∈ f(X), we construct a sequence {xn} of points in
f(X) such that f(xn+1) = g(xn) = yn, n = 0, 1, 2, . . . . Now f(yn+1) =
f(g(xn)) = g(f(xn)) = g(yn−1) = zn, n = 1, 2, . . . . By (2.11) {zn} is a
Cauchy sequence in X and hence convergent to some z ∈ X. Further as in
the proof of [3, Theorem 3.1] or as in the proof of Theorem 2, m = 2, we
conclude that f2z = gfz, and gfz is a unique common fixed of f and g.

¤

Let us remark that from Theorem 2 and the proof of Theorem 5, we
get

Theorem 7. Let X be a complete metric space. Let f be a continuous

self-map on X and g be any self-map on X that weakly commutes with f .

Further let f and g satisfy (5.1) and (2.1). Then f and g have a unique

common fixed point.

Now as a corollary we get the following result of G. Jungck [4].

Corollary 8 (Jungck [4]). Let X be a complete metric space. Let f

be a continuous self-map on X and g be any self-map on X that commutes

with f . Further let f and g satisfy (5.1) and there exists a constant

λ ∈ (0, 1) such that for every x, y ∈ X

d(gx, gy) ≤ λ · d(fx, fy).

Then f and g have a unique common fixed point.
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