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Quasi contraction nonself mappings on Banach spaces
and common fixed point theorems

By VLADIMIR RAKOCEVIC (Nis)

Abstract. LiusoMIR CIRIC [2] has proved recently fixed point theorems for quasi
contraction nonself mappings on Banach spaces. In this paper we consider quasi con-
traction nonself mappings on Banach spaces and common fixed point theorems for a
pair of maps, and offer an etension of Cirié’s result. The main results of K. M. Das and
K. V. Naik are also recovered.

Let X be a complete metric space. A map T : X — X such that for
some constant A € (0,1) and for every z,y € X

(0.1) d(Tz,Ty) < X max{d(z,y),d(z,Tz),d(y,Ty),d(z,Ty),d(y, Tz)}

is called quasicontraction. Let us remark that Ciri¢ [1] introduced and
studied quasicontraction as one of the most general contactive type map.
The well known CIri¢’s ([1], [3], [5]) result is that quasicontraction f
possesses a unique fixed point.

For the convenience of the reader we recall the following recent Ciri¢’s
result.

Theorem (CIRIC [2, Theorem 2.1]) 1. Let X be a Banach space, C a
nonempty closed subset of X, and OC the boundary of C. Let T : C — X
be a nonself mapping such that for some constant A € (0, 1) and for every
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z,yeC

(1.1) d(Tz,Ty) < X - max {d(w, y),d(x, Tz),d(y, Ty),
d(z,Ty),d(y, Tx)}

Suppose that
(1.2) T(0C) c C.
Then T has a unique fixed point in C.

Following CIRIC [2], let us remark that problem to extend the known
fizxed point theorem for self mappings T : C — C, defined by (0.1), to
corresponding nonself mappings T : C — X, C # X, was open more than
20 years.

In [2] CIRIC has used new methods and proved a fixed point theorem
for the class of nonself mappings defined by (1.1), which satisfy added
condition (1.2).

Assume now that X is a normed space. For x,y € X we shall write
seglr,y ={zeX:z2=(1—-t)z+ty, 0<t<1}.

In the proof of the next result we shall use the following observation. Let
us remark that if u € X, and zp = (1 — tg)x + toy € seg[z,y], 0 < tg < 1,
then

lu — 20| = [|(1 —to)u + tou — (1 — to)x — toy||
< (1 —to)|lu— || + tol|u — y|| < max{||lu — |, |lu—yll}.

Following SESSA [6] we shall say that f,g: X +— X are weakly com-
muting if
d(fgz,gfz) < d(fz,gz) forevery =z € X.
Clearly weak commutativity of f and g is a generalization of the conven-

tional commutativity of f and g.

In this paper we offer the following extension of Ciri¢’s result.
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Theorem 2. Let X be a Banach space, C' a nonempty closed subset
of X, and 0C the boundary of C. Let g : C — X, f: X — X and
f:C+— C. Suppose that 0C # (0, f is continuous, and let us assume that
f and g satisfy the following conditions:

(i) There exists a constant A € (0,1) such that for every x,y € C

(21) d(g;v,gy) < A M(a:,y),
where
(2:2) M(z,y) = max{d(fz, fy),d(fz, gz),

d(fy, gy),d(fz, gy),d(fy,gz)}.

(ii) f and g are weakly commutative on C, that is

(2.3) d(fgz,gfzx) < d(fx,gx) forevery z € C.
(2.4) (iii) g(C)NnC C f(O).

(2.5) (iv) g(8C) c C.

(2.6) (v) f(oC) > ac.

Then f and g have a unique common fixed point in C.

PRrROOF. Starting with an arbitrary zo € 0C, we construct a se-
quence {x,} of points in C as follows. By (2.5) g(zp) € C. Hence,
(2.4) implies that there is z; € C such that f(z1) = g(z9). Let us
consider g(x1). If g(z1) € C, again by (2.4) there is x5 € C such that
flxa) = g(xy). If g(z1) ¢ C, by (2.6) there is o € OC such that
f(z2) € 0C Nseg[f(z1), g(21)].

Hence, by induction we construct a sequence {x,} of points in C' as
follows. If g(x,) € C, than by (2.4) f(zn+1) = g(x,) for some z, 1 € C;
if g(z,,) ¢ C, then by (2.6) pick z,,+1 € 9C such that

f(nt1) € 0C Niseg [f(xn)ag(xn)]

We shall prove that f(x,) and g(x,) are Cauchy sequences.
First let us prove that

(2.7) f(@ny1) # 9(xn) = f(2n) = g(2n-1)-
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Suppose the contrary that f(z,) # g(z,—1). Then z, € 9C. Now, by
(2.4) g(zy) € C, hence f(xnt1) = g(x,), a contradiction. Thus we prove
(2.7). Now set

B(n,k) ={f(z;),g9(zj) :n<j<n+k} b(n, k) = diam(B(n, k))
B(n) = {f(x;),9(x;) : n < j} b(n) = diam(B(n))

and note that b(n,k) 7 b(n) as k — oo and b(n) | and hence b =
lim,, b(n) > 0 exists. To see that f(x,) and g(x,) are Cauchy sequences
we must show that b = 0. We claim that

(2.8) b(n,k) < Xb(n—2,k+2), n,k>2.

To prove (2.8) we have to consider three cases.

Case 1. b(n,k) =d(f(z;),g(x;)) withn <i,j <n+k.
If f(z;) = g(zi—1), then

b(n, k) =d(g(zi—1),9(x;)) < AM(xi—1,2j) < Xb(n — 2,k +2).

If f(z;) # g(zi-1), then f(z;—1) = g(z;—2) and so
f(xi) € seg[f(wi-1), g(wi-1)] = segg(wi—2), g(2i-1)]. Thus
b(n, k) = d(f(z:), 9(x;)) < max{d(g(%fZ)ag(wj))yd(g(wz‘fl)ag(%))}
< )\maX{M(a:i,g,xj), M(:ci,l,xj)} < Ab(n —2,k+2).
Case 2. b(n,k) =d(f(x;),d(z;)) withn <i,j <n+k.
If f(z;) = g(z;—1), then Case 2 reduces to Case 1.

If f(z;) # g(z;-1), then as in the Case 1 we have j > 2, f(x;_1) = g(x;_2),
and

f(z;) € 0C'N seg[g(xj_g),g(xj_l)].

Hence

bn, k) = d(f (), f(2y)) < max{d(F (), gla52)) A(F (), glai0) }

and Case 2 reduces to Case 1.
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Case 3. The remaining case b(n, k) = d(g(z;), g(z;)) with n <4,j <
n 4+ k is trivial.
Now let £ — oo in (2.8) to obtain b(n) < Ab(n — 2) and let n — oo to
obtain b < A\b, that is b = 0. It follows that both {f(z,)} and {g(x,} are
Cauchy sequences. Since f(z,) € C and C is a closed subset of a Banach
space X we conclude that lim f(z,) =y € C. Since

d(f(zn),g9(zn)) < by — 0, n— oo,
we have lim g(z,) = y. Hence,
lim g(z,,) = lim f(z,,) = y € C.
By continuity of f
lim f(g(wn)) = lim f(f(za)) = f(y) € C.

By (2.3), we have

(2.9)  d(gf(zn), f(y) < d(gf(zn), fo(wn)) +d(fe(zn), f())
< d(f(wn), g(xn)) +d(fg(zn), f(y)) — 0, n— oo

Hence

(2.10) lim(gf)(xn) = f(y)-

Now, by (2.9) and (2.10)

M(fzn,y) — d(fy,gy) n — oo,

and
d(fy,qy) < X-d(fy,gy).

Hence, as A < 1,

(2.11) fy) =9(y).

We shall prove that g(y) is a common fixed point for f and g. By (2.11)
and (2.3) it follows that

(2.12) fay) =9f(y) =99(y).
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By (2.1), (2.11) and (2.12) we have

d(99(y),9(y)) <A M(gy,y) = X-d(g99(y),9(y)).

and hence gg(y) = g(y). From (2.12), we conclude that g(y) is also a
fixed point of f. The uniqueness of the common fixed point is immediate
from (2.1). O

Let us remark that in Theorem 2, setting f = Ix, the identity map
on X, we get Theorem 1.

If f is not continuous, but f™ is continuous for any fixed integer m,
we can prove the next result.

Theorem 3. Let X be a Banach space, C' a nonempty closed subset
of X, and 0C the boundary of C. Let g : C — X, f : X — X and
f:Cw— C. Suppose that f™, m any fixed positive integer, is continuous,
and let us assume that f and g satisfy (2.1), (2.4), (2.5), (2.6) and f and
g are commutative on C, that is

(3.1) (fg)x = (gf)x for each x € C.

Then f and g have a unique common fixed point in C.

Proor. Let {z,}, g(x,) and f(x,) be the sequences as in the proof
of Theorem 2. Hence,

limg(z,) = lim f(z,) =y € C.
By (2.2), for each n > 1
d(f"g(xn). 9" (y)) = d(gf™ (@n), 9f™ ()
<A M (@), S H(Y))
= X max{ (™ fwa), 7)), A" F (), 7 g(n).
A(f™ W) 9 f " W) A (), g7 W) (™ (), () -
Now, by continuity of f™

A(f™ ), af™ y)) < X-d(f™ (), 9f™ ().
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Whence, f™(y) = gf™ *(y), since A < 1. Now f™(y) is a common fixed
point for f and g (see (2.11) and (2.12)). The uniqueness of the common
fixed point follows immediate from (2.1). O

Let us remark that in Theorem 3, setting f = Ix, the identity map
on X, we get Theorem 1.

The next result is connected with [2, Theorem 2.2] and Theorem 2.

Theorem 4. Let X be a Banach space, C a nonempty compact subset
of X, and 0C the boundary of C. Let g : C — X, f : X — X and

f:Cw— C. Suppose that g and f are continuous, and let us assume that
f and g satisfy (2.3), (2.4), (2.5), (2.6) and for all x,y € C, x # y

(4.1) d(gz, gy) < M(z,y),
where
(4.2) M(z,y) = max{d(fz, fy),d(fz,gz),

d(fy, gy),d(fz, gy),d(fy,gz)}.

Then f and g have a unique common fixed point in C.

PROOF. Suppose that f and g do not have a unique common fixed
point in C. Then, as d(fz,gx) > 0 and d(fy,gy) > 0, for all z,y € C, we
have 0 < M(z,y). Let Q : C' x C + [0,1) be the mapping defined by

Q) = d(gz, gy)

= , xz,y€eC.
M(x,y)

Clearly, @ is a continuous function and Q(z,y) < 1, z,y € C. Now,
as in the proof of [2, Theorem 2.2], there exists zg,yp € C such that
sup{Q(z,y) : z,y € C} = Q(xo,yo) < 1. Hence g is a quasicontraction,
and by Theorem 2 f and g have a common unique fixed point in C. This
is in contradiction with our assumption that f and g have not a common
unique fixed point. The uniqueness follows from (4.1). O

Again, in Theorem 4, setting f = Ix, the identity map on X, we get
[2, Theorem 2.2].

By the proof of Theorem 2 we can recover some results of K. M. DAS
and K. V. NAIK [3] and JUNGCK [4].
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Theorem 5 (K. M. DAs and K. V. NAIK [3, Theorem 2.1]). Let X
be a complete metric space. Let f be a continuous self~map on X and g
be any self-map on X that commutes with f. Further let f and g satisfy

(5.1) 9(X) C f(X)

and there exists a constant A € (0,1) such that for every x,y € X

(5.2) d(gz.gy) < X- M(x,y),
where
(5.3) M(z,y) = max{d(fz, fy),d(fz,gz),

d(fy, gy),d(fz, gy),d(fy,gz)}.

Then f and g have a unique fixed point.

Proor. We follow the proof of Theorem 2. Let us remark that
the condition (5.1) implies that starting with an arbitrary xo € X, we

construct a sequence {z,} of points in X such that f(z,+1) = g(z,),
n=20,1,2,.... The rest of the proof follows by the proof of Theorem 2.
O

Now, by the proof of Theorem 2 we can recover the main result of
K. M. Das and K. V. NaIK [3].

Theorem 6 (K. M. Das and K. V. NaIK [3, Theorem 3.1]). Let X
be a complete metric space. Let f? be a continuous self-map on X and g
be any self-map on X that commutes with f. Further let f and g satisfy

(6.1) gf(X) € f2(X)

and f(g(z)) = g(f(z)) whenever both sides are defined. Further, let there
exists a constant X € (0,1) such that for every z,y € f(X)

(6.2) d(gz,gy) < X- M(z,y),
where
(6.3) M(z,y) = max{d(fz, fy),d(fz, g),

d(fy, gy),d(fz,gy),d(fy,gz)}.
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Then f and g have a unique common fixed point.

PROOF. Again, we follow the proof of Theorem 2. By (6.1) starting
with an arbitrary zy € f(X), we construct a sequence {x,} of points in
f(X) such that f(zp41) = g(zn) = yn, n = 0,1,2,.... Now f(yns1) =
flg(zn)) = 9(f(zn)) = 9(Yn—1) = 20, n = 1,2,.... By (2.11) {z,} is a
Cauchy sequence in X and hence convergent to some z € X. Further as in
the proof of [3, Theorem 3.1] or as in the proof of Theorem 2, m = 2, we
conclude that f2z = gfz, and gfz is a unique common fixed of f and g.

O

Let us remark that from Theorem 2 and the proof of Theorem 5, we
get

Theorem 7. Let X be a complete metric space. Let f be a continuous
self-map on X and g be any self-map on X that weakly commutes with f.
Further let f and g satisfy (5.1) and (2.1). Then f and g have a unique
common fixed point.

Now as a corollary we get the following result of G. JUNGCK [4].

Corollary 8 (JUNGCK [4]). Let X be a complete metric space. Let f
be a continuous self-map on X and g be any self-map on X that commutes
with f. Further let f and g satisfy (5.1) and there exists a constant
A € (0,1) such that for every z,y € X

d(gz,gy) < A-d(fz, fy).
Then f and g have a unique common fixed point.
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