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On the exponential diophantine equation
(m3 − 3m)x + (3m2 − 1)y = (m2 + 1)z

By MAOHUA LE (Guangdong)

Abstract. Let m be a positive integer. In this paper we prove that if 2 ‖ m and
m > 206, then the equation (m3−3m)x +(3m2−1)y = (m2 +1)z has only one positive
integer solution (x, y, z) = (2, 2, 3) satisfying x > 1, y > 1 and z > 1.

1. Introduction

Let Z, N, Q be the sets of integers, positive integers and rational num-
bers respectively. Let a, b, c, m, n, r be fixed positive integers satisfying

(1) am + bn = cr, gcd(a, b) = 1, a > 1, b > 1, m > 1, n > 1, r > 1.

In 1994, Terai [4] conjectured that the equation

(2) ax + by = cz, x, y, z ∈ N, x > 1, y > 1, z > 1

has only one solution (x, y, z) = (m,n, r). This is a rather difficult ques-
tion. In [4], Terai considered the case that a, b and c can be expressed
as

(3) a = m3 − 3m, b = 3m2 − 1, c = m2 + 1,

where m is a positive integer with 2 | m. Then (1) holds for (m,n, r) =
(2, 2, 3). Terai [4] showed that if b is a prime and there exists a prime p
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such that p | m2 and 3 | e, where e is the order of 2 modulo p, then
(2) has only one solution (x, y, z) = (2, 2, 3). Afterwards, the author [2]
proved that if 2 ‖ m and b is a prime, then (2) has only one solution
(x, y, z) = (2, 2, 3). In this paper, we prove a general result as follows:

Theorem. Let a, b, c be fixed positive integers satisfying (3). If 2 ‖ m
and m > 206, then (2) has only solution (x, y, z) = (2, 2, 3).

The remaining cases 2 ≤ m ≤ 206 in our theorem have been solved.
A detailed proof will be given in an other paper.

2. Preliminaries

Lemma 1 ([3, pp. 12–13]). Every solution (X, Y, Z) of the equation

(4) X2 + Y 2 = Z2 X,Y, Z ∈ N, gcd(X, Y ) = 1, 2 | X

can be expressed as

X = 2uv, Y = u2 − v2, Z = u2 + v2,

where u, v, are positive integers satisfying

(5) u > v, gcd(u, v) = 1, 2 | uv.

Lemma 2 ([3, Theorem 4.2]). The equation

X4 − Y 4 = Z2, X, Y, Z ∈ N, gcd(X, Y ) = 1

has no solution (X, Y, Z).

Lemma 3. Let a, b, c be a positive integers satisfying (3). If 2 ‖ m
and (x, y, z) is a solution of (2) with (x, y, z) 6= (2, 2, 3), then we have
either

x = 2, 2 | y, y ≥ 6, 2 - z(6)

or

x = 4, 2 ‖ y, y ≥ 10, 2 ‖ z.(7)

Proof. By the proof of [2, Theorem], we have 2 | x and 2 | y. If
2 - z, then by ≡ 1 (mod 8) and cz ≡ 5 (mod 8). It implies that x = 2.
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Further, since (x, y, z) 6= (2, 2, 3), we get y ≥ 4 and z > 3. If y = 4, then
we have a2 + b4 ≡ 0 (mod cz) and a2 + b2 ≡ 0 (mod c3). Hence, we get
b2 ≡ 1 (mod c3) and b2 − 1 ≥ c3 = a2 + b2 > 1 + b2, a contradiction. So
we have y ≥ 6 and (6) holds.

If 2 | z, then (X, Y, Z) = (ax/2, by/2, cz/2) is a solution of (4). By
Lemma 1, we get

(8) ax/2 = 2uv, by/2 = u2 − v2, cz/2 = u2 + v2,

where u, v are positive integers satisfying (5). Further, if 2 | y/2, the
from (8) we get 2 - u and 4 | u. It implies that cz/2 ≡ 1 (mod 8) and
2 | z/2. However, by Lemma 2, it is impossible. So we have 2 ‖ y.
Since b ≡ 3 (mod 8), by (8), we get 2 ‖ u and 2 - u. Hence, we obtain
2 ‖ z and x = 4 by (8). Further, if y = 2, then we have a4 + b2 ≡ 0
(mod cz) and a2 + b2 ≡ 0 (mod c3). It implies that a2 ≡ 1 (mod c3) and
a2 − 1 ≥ c3 = a2 + b2 > a2 + 1, a contradiction. Similarly, if y = 6, then
we get b2 + 1 ≡ 0 (mod c3). It is impossible. So we have y ≥ 10 and (7)
holds. The lemma is proved. ¤

Lemma 4. Let a, b, c be a positive integers satisfying (3). If (x, y, z)
is a solution of (2) satisfying (6) or (7), then it satisfies

z + 3y − 9 ≡ (mod 2m2)(9)

or

z + 3y ≡ 0 (mod 2m2).(10)

Proof. If the solution (x, y, z) satisfies (6), then from (2) and (3) we
get

(11) (z + 3y − 9) +
((

z

2

)
− 9

(
y

2

)
+ 6

)
m2 ≡ 0 (mod m4).

It implies that z + 3y − 9 ≡ 0 (mod m2). Since y > 2 and z > 3, we have

(12) z + 3y − 9 = tm2, t ∈ N.

Substitute (12) into (11), we get t + 7z − 21 ≡ 0 (mod m2). Since 2 - z

and 2 | m, we obtain 2 | t and (9) holds by (12).
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Similarly, if (x, y, z) satisfy (7), then we have

(13) (z + 3y) +
((

z

2

)
− 9

(
y

2

)
+ 6

)
m2 ≡ 0 (mod m4),

whence we get z + 3y ≡ 0 (mod m2) and

(14) z + 3y = tm2, t ∈ N.

By (13) and (14), we obtain t + 6y + 6 ≡ 0 (mod m2). It implies that 2 | t
and (10) holds by (14). The lemma is proved. ¤

Lemma 5. Let a1, a2, b1, b2 be positive integers satisfying

min(a1, a2) ≥ 103. Further let Λ = b1 log a1 − b2 log a2. If Λ 6= 0, then

(15) log |Λ| > −17.61(log a1)(log a2)(1.7735 + B)2,

where

(16) B ≥ max
(

8.445, 0.2257 + log
(

b1

log a2
+

b2

log a1

))
.

Proof. For any real number ρ with ρ > 1, by [1, Theorem 2], we
have

log |Λ| ≥ −16A1A2

9λ3

�
B + λ +

λ2

4B

�2

(17)

×
 

1 +
3

2
λ3(A−1

1 + A−1
2 )

�
B + λ +

λ2

4B

�−1

+
3√

2λ3/2

�
A1A2

�
B + λ +

λ2

4B

��−1/2

+
9λ3

8A1A2

�
B + λ +

λ2

4B

�−1

+
9λ3

16A1A2

�
B + λ +

λ2

4B

�−2

log
�
A1A2(B + λ)2/λ2

�!
+

λ

2
+ log λ− 0.15,

where λ = log ρ, aj ≥ max(2, 2λ, (ρ + 1) log aj) (j = 1, 2),

B ≥ max
(

5λ, 1.56 + log λ + log
(

b1

A2
+

b2

A1

))
.

We now choose ρ = e1.689. Then Aj ≥ (e1.689 + 1) log aj (j = 1, 2) and B

satisfies (16). Therefore, if min(a1, a2) ≥ 103, then from (17) we get (15).
The lemma is proved. ¤
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3. Proof of Theorem

We now assume that 2 ‖ m and m > 206. Then we have m ≥ 210
and b > c > 104. Let (x, y, z) be a solution of (2) with (x, y, z) 6= (2, 2, 3).
By Lemma 3, it satisfies either (6) or (7).

If (6) holds, then we have

(18) a2 + by = cz, 2 | y, y ≥ 6, 2 - z, z > 3.

By (18), we get

(19) z log c− y log b =
2a2

cz + by

∞∑

i=0

1
2i + 1

(
a2

cz + by

)2i

<
2a2

cz
.

Let Λ = z log c− y log b. We see from (19) that

(20) log 2a2 − log |Λ| > z log c.

Since b > c > 104, by Lemma 5, we have

(21) log |Λ| > −17.61(log b)(log c)(1.7735 + B)2,

where

(22) B = max
(

8.445, 0.2257 + log
(

z

log b
+

y

log c

))
.

Further, if 8.445 ≥ 0.2257 + log(z/ log b + y/ log c), then we have

(23)
2z

log b
− 2a2

cz
<

z

log b
+

y

log c
≤ e8.2193 < 3712− 2a2

cz
.

On the other hand, since z ≥ y + 1 by (18), we get

(24) 4z − 12 ≥ z + 3y − 9 ≥ 2m2,

by (9). The combination of (23) and (24) yields

(25) m2 + 6 < 3712 log b < 3712(log 3 + log m2),

whence we obtain m < 210, a contradiction. So we have

(26) 8.445 < 0.2257 + log
(

z

log b
+

y

log c

)
.
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Substitute (26) into (21) and (22), we get

(27)

1 + 17.61
(

1.9992 + log
2z

log b

)2

>
log(2a2)

(log b)(log c)
+ 17.61

(
1.9992 + log

(
z

log b
+

y

log c

))2

>
z

log b
,

whence we calculate that m < 210, a contradiction. Thus, if 2 ‖ m and
m > 206, then (2) has no solution (x, y, z) satisfying (6).

Using the same method, we can prove that if 2 ‖ m and m > 206,
then (2) has no solution (x, y, z) satisfying (7). Therefore, by Lemma 3,
the theorem is proved.
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