On the exponential diophantine equation $\left(m^{3}-3 m\right)^{x}+\left(3 m^{2}-1\right)^{y}=\left(m^{2}+1\right)^{z}$

By MAOHUA LE (Guangdong)

Abstract

Let m be a positive integer. In this paper we prove that if $2 \| m$ and $m>206$, then the equation $\left(m^{3}-3 m\right)^{x}+\left(3 m^{2}-1\right)^{y}=\left(m^{2}+1\right)^{z}$ has only one positive integer solution $(x, y, z)=(2,2,3)$ satisfying $x>1, y>1$ and $z>1$.

1. Introduction

Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of integers, positive integers and rational numbers respectively. Let a, b, c, m, n, r be fixed positive integers satisfying
(1) $a^{m}+b^{n}=c^{r}, \quad \operatorname{gcd}(a, b)=1, a>1, b>1, m>1, n>1, r>1$.

In 1994, Terai [4] conjectured that the equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z}, \quad x, y, z \in \mathbb{N}, x>1, y>1, z>1 \tag{2}
\end{equation*}
$$

has only one solution $(x, y, z)=(m, n, r)$. This is a rather difficult question. In [4], Terai considered the case that a, b and c can be expressed as

$$
\begin{equation*}
a=m^{3}-3 m, \quad b=3 m^{2}-1, \quad c=m^{2}+1, \tag{3}
\end{equation*}
$$

where m is a positive integer with $2 \mid m$. Then (1) holds for $(m, n, r)=$ $(2,2,3)$. Terai [4] showed that if b is a prime and there exists a prime p
such that $p \mid m^{2}$ and $3 \mid e$, where e is the order of 2 modulo p, then (2) has only one solution $(x, y, z)=(2,2,3)$. Afterwards, the author [2] proved that if $2 \| m$ and b is a prime, then (2) has only one solution $(x, y, z)=(2,2,3)$. In this paper, we prove a general result as follows:

Theorem. Let a, b, c be fixed positive integers satisfying (3). If $2 \| m$ and $m>206$, then (2) has only solution $(x, y, z)=(2,2,3)$.

The remaining cases $2 \leq m \leq 206$ in our theorem have been solved. A detailed proof will be given in an other paper.

2. Preliminaries

Lemma 1 ([3, pp. 12-13]). Every solution (X, Y, Z) of the equation

$$
\begin{equation*}
X^{2}+Y^{2}=Z^{2} \quad X, Y, Z \in \mathbb{N}, \operatorname{gcd}(X, Y)=1,2 \mid X \tag{4}
\end{equation*}
$$

can be expressed as

$$
X=2 u v, \quad Y=u^{2}-v^{2}, \quad Z=u^{2}+v^{2},
$$

where u, v, are positive integers satisfying

$$
\begin{equation*}
u>v, \quad \operatorname{gcd}(u, v)=1,2 \mid u v . \tag{5}
\end{equation*}
$$

Lemma 2 ([3, Theorem 4.2]). The equation

$$
X^{4}-Y^{4}=Z^{2}, \quad X, Y, Z \in \mathbb{N}, \operatorname{gcd}(X, Y)=1
$$

has no solution (X, Y, Z).
Lemma 3. Let a, b, c be a positive integers satisfying (3). If $2 \| m$ and (x, y, z) is a solution of (2) with $(x, y, z) \neq(2,2,3)$, then we have either

$$
\begin{equation*}
x=2, \quad 2 \mid y, \quad y \geq 6, \quad 2 \nmid z \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
x=4, \quad 2\|y, \quad y \geq 10, \quad 2\| z . \tag{7}
\end{equation*}
$$

Proof. By the proof of [2, Theorem], we have $2 \mid x$ and $2 \mid y$. If $2 \nmid z$, then $b^{y} \equiv 1(\bmod 8)$ and $c^{z} \equiv 5(\bmod 8)$. It implies that $x=2$.

Further, since $(x, y, z) \neq(2,2,3)$, we get $y \geq 4$ and $z>3$. If $y=4$, then we have $a^{2}+b^{4} \equiv 0\left(\bmod c^{z}\right)$ and $a^{2}+b^{2} \equiv 0\left(\bmod c^{3}\right)$. Hence, we get $b^{2} \equiv 1\left(\bmod c^{3}\right)$ and $b^{2}-1 \geq c^{3}=a^{2}+b^{2}>1+b^{2}$, a contradiction. So we have $y \geq 6$ and (6) holds.

If $2 \mid z$, then $(X, Y, Z)=\left(a^{x / 2}, b^{y / 2}, c^{z / 2}\right)$ is a solution of (4). By Lemma 1, we get

$$
\begin{equation*}
a^{x / 2}=2 u v, \quad b^{y / 2}=u^{2}-v^{2}, \quad c^{z / 2}=u^{2}+v^{2}, \tag{8}
\end{equation*}
$$

where u, v are positive integers satisfying (5). Further, if $2 \mid y / 2$, the from (8) we get $2 \nmid u$ and $4 \mid u$. It implies that $c^{z / 2} \equiv 1(\bmod 8)$ and $2 \mid z / 2$. However, by Lemma 2, it is impossible. So we have $2|\mid y$. Since $b \equiv 3(\bmod 8)$, by (8), we get $2 \| u$ and $2 \nmid u$. Hence, we obtain $2 \| z$ and $x=4$ by (8). Further, if $y=2$, then we have $a^{4}+b^{2} \equiv 0$ $\left(\bmod c^{z}\right)$ and $a^{2}+b^{2} \equiv 0\left(\bmod c^{3}\right)$. It implies that $a^{2} \equiv 1\left(\bmod c^{3}\right)$ and $a^{2}-1 \geq c^{3}=a^{2}+b^{2}>a^{2}+1$, a contradiction. Similarly, if $y=6$, then we get $b^{2}+1 \equiv 0\left(\bmod c^{3}\right)$. It is impossible. So we have $y \geq 10$ and (7) holds. The lemma is proved.

Lemma 4. Let a, b, c be a positive integers satisfying (3). If (x, y, z) is a solution of (2) satisfying (6) or (7), then it satisfies

$$
\begin{equation*}
z+3 y-9 \equiv\left(\bmod 2 m^{2}\right) \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
z+3 y \equiv 0\left(\bmod 2 m^{2}\right) \tag{10}
\end{equation*}
$$

Proof. If the solution (x, y, z) satisfies (6), then from (2) and (3) we get

$$
\begin{equation*}
(z+3 y-9)+\left(\binom{z}{2}-9\binom{y}{2}+6\right) m^{2} \equiv 0 \quad\left(\bmod m^{4}\right) . \tag{11}
\end{equation*}
$$

It implies that $z+3 y-9 \equiv 0\left(\bmod m^{2}\right)$. Since $y>2$ and $z>3$, we have

$$
\begin{equation*}
z+3 y-9=t m^{2}, \quad t \in \mathbb{N} \tag{12}
\end{equation*}
$$

Substitute (12) into (11), we get $t+7 z-21 \equiv 0\left(\bmod m^{2}\right)$. Since $2 \nmid z$ and $2 \mid m$, we obtain $2 \mid t$ and (9) holds by (12).

Similarly, if (x, y, z) satisfy (7), then we have

$$
\begin{equation*}
(z+3 y)+\left(\binom{z}{2}-9\binom{y}{2}+6\right) m^{2} \equiv 0 \quad\left(\bmod m^{4}\right) \tag{13}
\end{equation*}
$$

whence we get $z+3 y \equiv 0\left(\bmod m^{2}\right)$ and

$$
\begin{equation*}
z+3 y=t m^{2}, \quad t \in \mathbb{N} . \tag{14}
\end{equation*}
$$

By (13) and (14), we obtain $t+6 y+6 \equiv 0\left(\bmod m^{2}\right)$. It implies that $2 \mid t$ and (10) holds by (14). The lemma is proved.

Lemma 5. Let $a_{1}, a_{2}, b_{1}, b_{2}$ be positive integers satisfying $\min \left(a_{1}, a_{2}\right) \geq 10^{3}$. Further let $\Lambda=b_{1} \log a_{1}-b_{2} \log a_{2}$. If $\Lambda \neq 0$, then

$$
\begin{equation*}
\log |\Lambda|>-17.61\left(\log a_{1}\right)\left(\log a_{2}\right)(1.7735+B)^{2}, \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
B \geq \max \left(8.445,0.2257+\log \left(\frac{b_{1}}{\log a_{2}}+\frac{b_{2}}{\log a_{1}}\right)\right) . \tag{16}
\end{equation*}
$$

Proof. For any real number ρ with $\rho>1$, by [1, Theorem 2], we have

$$
\begin{equation*}
\log |\Lambda| \geq-\frac{16 A_{1} A_{2}}{9 \lambda^{3}}\left(B+\lambda+\frac{\lambda^{2}}{4 B}\right)^{2} \tag{17}
\end{equation*}
$$

$$
\times\left(1+\frac{3}{2} \lambda^{3}\left(A_{1}^{-1}+A_{2}^{-1}\right)\left(B+\lambda+\frac{\lambda^{2}}{4 B}\right)^{-1}+\sqrt[3]{2} \lambda^{3 / 2}\left(A_{1} A_{2}\left(B+\lambda+\frac{\lambda^{2}}{4 B}\right)\right)^{-1 / 2}\right.
$$

$$
\left.+\frac{9 \lambda^{3}}{8 A_{1} A_{2}}\left(B+\lambda+\frac{\lambda^{2}}{4 B}\right)^{-1}+\frac{9 \lambda^{3}}{16 A_{1} A_{2}}\left(B+\lambda+\frac{\lambda^{2}}{4 B}\right)^{-2} \log \left(A_{1} A_{2}(B+\lambda)^{2} / \lambda^{2}\right)\right)
$$

$$
+\frac{\lambda}{2}+\log \lambda-0.15
$$

where $\lambda=\log \rho, a_{j} \geq \max \left(2,2 \lambda,(\rho+1) \log a_{j}\right)(j=1,2)$,

$$
B \geq \max \left(5 \lambda, 1.56+\log \lambda+\log \left(\frac{b_{1}}{A_{2}}+\frac{b_{2}}{A_{1}}\right)\right) .
$$

We now choose $\rho=e^{1.689}$. Then $A_{j} \geq\left(e^{1.689}+1\right) \log a_{j}(j=1,2)$ and B satisfies (16). Therefore, if $\min \left(a_{1}, a_{2}\right) \geq 10^{3}$, then from (17) we get (15). The lemma is proved.

3. Proof of Theorem

We now assume that $2 \| m$ and $m>206$. Then we have $m \geq 210$ and $b>c>10^{4}$. Let (x, y, z) be a solution of (2) with $(x, y, z) \neq(2,2,3)$. By Lemma 3, it satisfies either (6) or (7).

If (6) holds, then we have

$$
\begin{equation*}
a^{2}+b^{y}=c^{z}, \quad 2 \mid y, \quad y \geq 6, \quad 2 \nmid z, \quad z>3 . \tag{18}
\end{equation*}
$$

By (18), we get

$$
\begin{equation*}
z \log c-y \log b=\frac{2 a^{2}}{c^{z}+b^{y}} \sum_{i=0}^{\infty} \frac{1}{2 i+1}\left(\frac{a^{2}}{c^{z}+b^{y}}\right)^{2 i}<\frac{2 a^{2}}{c^{z}} \tag{19}
\end{equation*}
$$

Let $\Lambda=z \log c-y \log b$. We see from (19) that

$$
\begin{equation*}
\log 2 a^{2}-\log |\Lambda|>z \log c \tag{20}
\end{equation*}
$$

Since $b>c>10^{4}$, by Lemma 5 , we have

$$
\begin{equation*}
\log |\Lambda|>-17.61(\log b)(\log c)(1.7735+B)^{2} \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\max \left(8.445,0.2257+\log \left(\frac{z}{\log b}+\frac{y}{\log c}\right)\right) . \tag{22}
\end{equation*}
$$

Further, if $8.445 \geq 0.2257+\log (z / \log b+y / \log c)$, then we have

$$
\begin{equation*}
\frac{2 z}{\log b}-\frac{2 a^{2}}{c^{z}}<\frac{z}{\log b}+\frac{y}{\log c} \leq e^{8.2193}<3712-\frac{2 a^{2}}{c^{z}} . \tag{23}
\end{equation*}
$$

On the other hand, since $z \geq y+1$ by (18), we get

$$
\begin{equation*}
4 z-12 \geq z+3 y-9 \geq 2 m^{2} \tag{24}
\end{equation*}
$$

by (9). The combination of (23) and (24) yields

$$
\begin{equation*}
m^{2}+6<3712 \log b<3712\left(\log 3+\log m^{2}\right), \tag{25}
\end{equation*}
$$

whence we obtain $m<210$, a contradiction. So we have

$$
\begin{equation*}
8.445<0.2257+\log \left(\frac{z}{\log b}+\frac{y}{\log c}\right) . \tag{26}
\end{equation*}
$$

Substitute (26) into (21) and (22), we get

$$
\begin{align*}
1 & +17.61\left(1.9992+\log \frac{2 z}{\log b}\right)^{2} \\
& >\frac{\log \left(2 a^{2}\right)}{(\log b)(\log c)}+17.61\left(1.9992+\log \left(\frac{z}{\log b}+\frac{y}{\log c}\right)\right)^{2} \tag{27}\\
& >\frac{z}{\log b},
\end{align*}
$$

whence we calculate that $m<210$, a contradiction. Thus, if $2 \| m$ and $m>206$, then (2) has no solution (x, y, z) satisfying (6).

Using the same method, we can prove that if $2 \| m$ and $m>206$, then (2) has no solution (x, y, z) satisfying (7). Therefore, by Lemma 3, the theorem is proved.

Acknowledgement. The author would like to thank Professor M. MiGNOTTE for his valuable suggestions.

References

[1] M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéairies en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
[2] M.-H. Le, A note on the diophantine equation $\left(m^{3}-3 m\right)^{x}+\left(3 m^{2}-1\right)^{y}=\left(m^{2}+1\right)^{z}$, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 148-149.
[3] L. J. Mordell, Diophantine Equations, Academic Press, New York, 1969.
[4] N. Terai, The diophantine equation $a^{x}+b^{y}=c^{z}$, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 22-26.

```
MAOHUA LE
ZHANJIANG NORMAL COLLEGE
POSTAL CODE }52404
ZHANGJIANG,GUANGDONG
P.R. CHINA
AND
DEPARTMENT OF MATHEMATICS
ZHANJIANG UNIVERSITY OF OCEANOGRAPHY
POSTAL CODE 524088
ZHANGJIANG, GUANGDONG
P.R. CHINA
```

(Received July 20, 1999; revised January 26, 2000)

