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The order theoretic structure
of the set of P -sums of a sequence

By REINHARD WINKLER (Vienna)

Abstract. Let P be a finite set of reals and (λn) a sequence of positive reals
with

P∞
n=1 λn < ∞. Define the set S to consist of all values

P∞
n=1 pnλn with pn ∈ P .

There are several papers of diverse authors on the topological structure of S. Here
we start the order theoretic analysis of this topic. In some cases the order theoretic
approach leads to a more lucid insight why certain sets play a universal role. In other
cases we see that the list of possibilities known up to now is not complete. This decides
a question stated by J. E. Nymann and R. A. S�aenz in a recent paper.

1. Introduction

1.1 Motivation

In [N-S1] and [N-S2] the topological structure of sets S = S(P, Λ) of the
following type has been studied. Let P be a finite set of reals with at least
two elements and Λ = (λn), λn > 0, a sequence of positive reals such that
the series

∞∑
n=1

λn < ∞

converges. The set S = S(P, Λ) contains all P -sums (w.r.t. Λ), i.e. all
sums of the type

∞∑
n=1

pnλn, pn ∈ P.
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Key words and phrases: digital expansion, sets of P -sums, Cantor set, Cantorval,

coloured ordering, order topology.



468 Reinhard Winkler

Such sets S are called sets of P -sums. A short list of possibilities for the
topological structure of sets of P -sums has been given in [N-S2]. It has been
conjectured that this list is complete. In this paper we show that this is not
the case. Before we give a new example not contained in the list of [N-S2]
we study the order structure of the sets under consideration. To clarify
the essential points of the investigations we also consider arbitrary closed
sets and then make additional assumptions which are always satisfied by
sets of P -sums. This seems to have several advantages:

• One of the main constructions in [N-S2] (and similar in the appen-
dix of [M-O]) produces a homeomorphism which in fact is an order
isomorphism. A purely order theoretic formulation makes the idea
clearer and gives hints for further investigations.

• The order theoretic investigation is finer: Two closed sets S1 and S2

with the same order structure have the same topological structure,
but the converse may fail.

• The order structure is more vivid in a psychological sense and hence
leads to a rather clear description and understanding of the situation.
It shows how many possibilities are left by the necessary conditions
for sets of P -sums known up to now.

• The question whether two given different order structures correspond
to homeomorphic spaces can be decided in many cases which are in-
teresting for us. (Further investigations on this question are contained
in [W].)

Nevertheless there are many problems left open by this paper. But we
hope that they get clearer by our approach.

Finally we want to mention that in [M-O] related topological questions
have been treated for sums of Cantor sets instead of sets of P -sums.

1.2 Notations

We are going to study certain subsets S, S′ of the real line R. From the
order theoretic point of view we call them isomorphic, in symbols S ∼=o S′,
if there is a strictly increasing bijection ϕ : R→ R with ϕ(S) = S′. If S, S′

are homeomorphic, i.e. there exists a continuous bijection ϕ : S → S′ with
continuous inverse, we write S ∼=t S′. Since the natural topology on R is
its order topology we have the implication

S ∼=o S′ ⇒ S ∼=t S′.
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Clearly the converse implication is not true: Take S = [0, 1] ∪ {2} and
S′ = {0} ∪ [1, 2] or (if we would allow decreasing order isomorphisms)
S = [0, 1] ∪ {2} ∪ [3, 4] and S′ = [0, 1] ∪ [2, 3] ∪ {4}. A more interesting
example will be presented in Section 7.

We note that for closed sets A,A′ ⊆ R we have A ∼=o A′ if and only if
there is an increasing bijection ψ : A → A′, not necessarily defined on the
whole real line. This holds since such a ψ can be extended on the (open)
components of the complement of A, for instance linearly, to a bijection
ϕ : R→ R as required in the definition of ∼=o.

For given P we consider the space Y of all sequences (p1, p2, . . . ), pn ∈
P , equipped with the compact Tychonoff topology. Then, for Λ = (λn),
the set S = S(P, Λ) can be considered to be the image of Y under the
mapping Φ = ΦΛ, which maps the sequence (pn) ∈ Y to the real number

Φ((pn)) =
∞∑

n=1

pnλn.

Φ is continuous, hence S = Φ(Y ) is compact. Since the λn > 0 get arbi-
trarily small and P contains at least two different elements, S contains no
isolated points and, therefore, is a perfect set.

In the following intervals or, more precisely, nonvoid convex subsets of
linear orderings, play a very important role. As usual, in a linear ordering
let (a, b) denote the open interval between a and b, [a, b] the closed one
and (a, b] resp. [a, b) the left resp. right half open interval. In the left open
case also the value −∞ is allowed for a, in the right open case the value
∞ for b. Sometimes it is convenient to leave open whether the end points
are contained. In this case we write 〈a, b〉 etc.

To each closed A ⊆ R we will associate a countable linear ordering
consisting of pairwise disjoint intervals I, In, J etc. (The order relation is
inherited from R.) In this context we are interested in successor relations:
If I1 < I2 and there is no J with I1 < J < I2, we write I1 ≺ I2 or I2 Â I1.
A chain of length n is a finite set {I0 ≺ I1 ≺ · · · ≺ In}. If In ≺ In+1 for
all integers n ≥ 0, we call the set a right side infinite chain; if the relation
holds for all integers n < 0 we call it a left side infinite chain; if we have
such a relation for all integers n we call the set a both side infinite chain.

Let X1,X2 be subsets of the linear ordering O = (X ,≤). X1 is called
dense in X2 if for all J1 < J2 in X2 there is an I ∈ X1 with J1 < I < J2.
X1 is called dense if it is dense in X . In this case it follows that X is dense
in itself. X is called bounded if it contains a minimum and a maximum.
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1.3 Content of the paper

After the introduction, Section 2 describes how the order theoretic struc-
ture of any closed set A ⊆ R on the real line is reflected by a countable
ordering O(A). The points of O(A) correspond to non-singleton connected
components of either A or R\A and are therefore painted with two colours.

Section 3 recalls several properties of sets of P -sums already known,
in particular the self similarity property from [N-S2]. We prove a further
property of such sets and take all these properties as a definition for what
we call admissible sets A or admissible orderings O which are considered
in the rest of the paper.

In Section 4 we distinguish four possible types of admissible orderings.
Two of them lead to unique order theoretic isomorphism types and hence
unique homeomorphism types (we call them Cantor sets resp., according
to [M-O], M-Cantorvals). The remaining two cases (R/L-Cantorvals and
interval type) are more complicated. They are treated in Sections 5 and 6.

Section 7 asks in which cases different admissible orderings correspond
to different homeomorphism types. In the well-understood examples of P -
sums known up to now the answer is affirmative. Nevertheless there exist
homeomorphic sets A ∼=t B with an interval type A and an R-Cantorval B.

Section 8 presents examples of sets of P -sums corresponding to dif-
ferent types. In particular we give an example showing that the list from
[N-S2] is not complete.

The concluding Section 9 is devoted to the discussion of open questions
which could lead to further investigations.

2. Closed sets of reals and coloured orderings

Let (X ,≤) be any linear ordering and χ : X → C a mapping, then
we call O = (X ,≤, χ) a C-coloured linear ordering. C is called the set of
colours. We write Xc = χ−1(c) for each colour c ∈ C. Two C-coloured lin-
ear orderings Oi = (Xi,≤i, χi), i = 1, 2, are called isomorphic, in symbols
O1

∼= O2, if there is a colour preserving order isomorphism ϕ : X1 → X2.
More explicitly this means that ϕ is a bijection with x ≤1 y iff ϕ(x) ≤2 ϕ(y)
and χ2(ϕ(x)) = χ1(x) for all x, y ∈ X1.

Given a closed subset A ⊆ R of the real line we are now going to define
the C0 = {f, g}-coloured ordering O(A) = (X ,≤, χ) (f, g fixed distinct
symbols). The point is that X = X (A) will be countable and that O(A)
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contains all order theoretic and hence all topological information about A.
This gives rise to a satisfactory description of closed subsets of R.

Let Xf be the set of nonsingleton components of A, Xg the set of
components of the complement R \A, X = Xf ∪Xg. Every I ∈ X is a set
of the form 〈a, b〉 with a < b. X is ordered in the natural way: I1 < I2

if and only if x1 < x2 for some and, since the Ij are convex and pairwise
disjoint, hence for all xj ∈ Ij , j = 1, 2. Thus we get indeed a linear
ordering O(A) = (X ,≤, χ). We call it the coloured ordering induced by
A. For each I ∈ X the colour χ(I) ∈ C0 = {g, f} is defined to be g if
I ∈ Xg and f if I ∈ Xf . The way how O(A) reflects the structure of A is
expressed by the following theorem.

Theorem 1. 1. Let O = (X ,≤, χ) be a C0-coloured linear ordering.

Then there exists a closed set A ⊆ R with O(A) ∼= O if and only if

1 ≤ |X | ≤ ℵ0 and Xg is dense in Xf .

2. For closed sets A,B ⊆ R we have A ∼=o B if and only if O(A) ∼=
O(B).

Proof. 1. Necessity: Suppose O ∼= O(A), w.l.o.g. O = O(A). If
|X | = 0, then Xg = R \A = ∅, hence A = R ∈ Xf ⊆ X = ∅, contradiction.
The upper bound |X | ≤ ℵ0 follows, since X is a collection of pairewise
disjoint subsets of the real line, each containing a nonempty open set.
Such a collection is at most countable. To prove that Xg is dense in Xf

suppose F1 = 〈a1, b1] < F2 = [a2, b2〉 ∈ Xf . If we had (b1, a2) ⊆ A,
then F1, F2 were no components of A, contradiction. Hence the open set
(b1, a2) \ A 6= ∅ contains a component G ∈ Xg with G ⊆ (b1, a2), i.e.
F1 < G < F2.

Sufficiency: We first treat the trivial cases with |X | ≤ 2. For X = {I}
we have to take A = R if χ(I) = f and A = ∅ if χ(I) = g. If X = {I1 < I2}
distinguish according to the pair p = (χ(x1), χ(x2)). The case p = (f, f)
is excluded by the density condition. For p = (f, g) take A = (−∞, 0], for
p = (g, f) take A = [0,∞), and for p = (g, g) take A = {0}.

Suppose now |X | ≥ 3 and take an enumeration X = {I1, I2, . . . }. We
are going to define open or closed intervals Jn = 〈an, bn〉 in such a way
that for the closed set

A = R \
⋃

n:Jn open

Jn

the mapping ψ : In 7→ Jn is the desired isomorphism. If there is a minimum
In0 in X let Jn0 = (−∞, 0〉 with 0 ∈ Jn0 iff χ(In0) = f . Similarly, if a
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maximum In1 exists, let In1 = 〈1,∞) with 1 ∈ Jn1 iff χ(In1) = f . W.l.o.g.
we may assume n0 = 1 and n1 ∈ {1, 2} whenever defined. It remains
to define Jn+1 = 〈an+1, bn+1〉 if J1, . . . , Jn are defined and where In+1 is
neither the maximum nor the minimum in X . By induction hypothesis
there is a permutation π of {1, . . . , n} with

Iπ(1) < Iπ(2) < · · · < Iπ(n)

and
aπ(1) < bπ(1) ≤ aπ(2) < bπ(2) ≤ · · · ≤ aπ(n) < bπ(n).

For the position of In+1 we have to distinguish three possibilities.
• In+1 < Iπ(1): Put an+1 = bn+1−1, where bn+1 = aπ(1) if In+1 ≺ Iπ(1)

and bn+1 = aπ(1) − 1 else.
• In+1 > Iπ(n): Symmetric to the first possibility; put bn+1 = an+1 +1,

where an+1 = bπ(n) if In+1 Â Iπ(n) and an+1 = bπ(n) + 1 else.
• Iπ(k) < In+1 < Iπ(k+1) with 1 ≤ k ≤ n − 1: If Iπ(k) ≺ In+1 put

an+1 = bπ(k), else an+1 = (bπ(k) + aπ(k+1))/2. If Iπ(k+1) Â In+1 put
bn+1 = aπ(k+1), else bn+1 = (an+1 + aπ(k+1))/2.

We put Jn+1 = [an+1, bn+1] if χ(In+1) = f and Jn+1 = (an+1, bn+1)
if χ(In+1) = g. Note that, by the density assumption on Xg, the Jn have
no end points in common and therefore are pairewise disjoint.

The first statement of the theorem follows, if we can prove the follow-
ing three assertions for A as defined as above.

a) All Jn with χ(In) = f are components of A.
b) If x is in no Jn, then {x} is a component of A.
c) All Jn with χ(In) = g are components of R \A.

ad a) By the definition of A and the disjointness of the Jn we have Jn ⊆ A

whenever χ(In) = f . Since Jn is connected it is contained in a connected
component B ⊆ A. It remains to show B ⊆ Jn. If Jn = [a, b〉, a > −∞,
we have to show that, for each ε > 0, (a− ε, a) intersects with at least one
Jn′ with χ(Jn′) = g. (The symmetric argument works if b < ∞.) Note
that the construction guarantees that the union of all Jn is dense in R.
Together with the density assumption on Xg this provides such a Jn′ .

ad b) Similarly as in the proof of a) one sees that, given ε > 0, there are
n1, n2 such that χ(In1) = χ(In2) = g, Jn1 ∩ (x − ε, x) 6= ∅ and Jn2 ∩ (x,

x + ε) 6= ∅, proving b).
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ad c) Let Jn = 〈a, b〉 and χ(In) = g. Since Jn ⊆ R \ A by definition,
it suffices (by symmetry) to derive a contradiction from the assumption
−∞ < a, a ∈ Jn′ , n′ 6= n and χ(In′) = g. Indeed, since Jn′ is open, we get
(a−ε, a+ε) ⊆ Jn′ for some ε > 0, thus ∅ 6= (a,min{a+ε, b}) ⊆ Jn∩Jn′ = ∅,
contradiction.

2. It is clear that an order automorphism ϕ : R→ R with ϕ(A) = B

induces the colour preserving isomorphism ψ : O(A) → O(B) by ψ(I) =
ϕ(I). Therefore it remains to construct ϕ from a given ψ. X (A) consists
of intervals I = 〈a, b〉. Accordingly let I ′ = 〈a′, b′〉 = ψ(I). For the
definition of ϕ on the open kernel of I we have to distinguish four cases.
If In = R, then everything is trivial with the identity map ϕ(x) = x. If
−∞ = a < b < ∞ define ϕ(b − x) = b′ − x for x > 0. Similarly, if
−∞ < a < b = ∞, define ϕ(a+x) = a′+x for x > 0. If −∞ < a < b < ∞
define ϕ(a + x(b− a)) = a′ + x(b′ − a′) for 0 < x < 1. Now consider an x

which is not in the open kernel of any I. Let X0 be the set of all I ∈ X (A)
with sup I ≤ x and X1 = X (A) \ X0 the rest. It is clear that

x = sup
⋃
X0 = inf

⋃
X1.

Thus we have to define

ϕ(x) = x′ = sup
⋃
X ′0 = inf

⋃
X ′1

with X ′i = ψ(Xi), i = 1, 2. By the construction this ϕ has all required
properties. ¤

3. Admissible orderings

In the introduction we restated the result, already presented in [N-S1],
that sets S = S(P, Λ) of P -sums are perfect and compact. Furthermore
(cf. [N-S2]) they have the following self similarity property:

Let a0 = max S, b0 = min S and J = (a, b) ⊆ (b0, a0) a component of
R \ S. Then there is an ε > 0 such that

(S ∩ (a− ε, a])− a = (S ∩ (a0 − ε, a0])− a0

and

(S ∩ [b, b + ε))− b = (S ∩ [b0, b0 + ε))− b0.
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Let us call a compact perfect set S with this property self similar.
According to this we call a {g, f}-coloured ordering O = (X ,≤, χ)

self similar if the following holds: G0 = minX and G0 = maxX exist with
χ(G0) = χ(G0) = g and for any G0 < G < G0 with χ(G) = g, there exist
I1, I

′
1, I2, I

′
2 ∈ X (G0 < I1, G < I ′1, I ′2 < G, I2 < G0) such that we have

the isomorphisms [G0, I1] ∼= [G, I ′1] and [I2, G
0] ∼= [I ′2, G] between intervals

in O.
We collect the following simple facts showing how properties of A ⊆ R

are reflected in O(A).

Theorem 2. Let A ⊆ R be a closed set, O = (X ,≤, χ) = O(A) its

induced coloured ordering.

1. A is compact if and only if G0 = minX and G0 = maxX exist and

χ(G0) = χ(G0) = g.

2. A is perfect, i.e. has no isolated points, if and only if there are no

G1 ≺ G2 ∈ X with χ(G1) = χ(G2) = g.

3. If A is self similar then O is self similar.

Proof. Clear. ¤

We want to mention that it is an interesting and not trivial question
whether something like a converse of Theorem 2.3 holds. In this paper we
leave this question open. A further interesting property of sets of P -sums
is the following one.

Theorem 3. Let O = (X ,≤, χ) = O(S) with the set S = S(P, Λ) of

P -sums. If Xf 6= ∅, i.e. χ(F ) = f for some F ∈ X , then Xf is dense in Xg.

Proof. Note that, if Ek denotes the finite set of all
∑k

n=1 pinλn,
Λk = (λ′n) with λ′n = λn+k, and Sk = S(P, Λk), we have the representation

S = Ek + Sk =
⋃

s∈Ek

s + Sk.

First we show that each Sk contains an open interval. [a, b] = F ⊆ S

implies that S =
⋃

s∈Ek
(s + Sk) is of second category. By Baire’s theorem

and translation invariance of Baire category, each Sk has to be of second
category. Since Sk is closed, this is possible only if Sk contains an open
interval.
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To prove the theorem suppose now that G1 = (a1, b1) < G2 =
(a2, b2) ∈ Xg. Since G1 and G2 are components of R \ S and S is
a perfect set, there is an x ∈ S ∩ (b1, a2). Since limn→∞ dn = 0 for
dn = max Sn−min Sn, we have b1 +dn0 < x < a2−dn0 for some n0. Since
x ∈ S = En0 + Sn0 we get an s ∈ En0 such that s + Sn0 ⊆ (b1, a2). By the
above reasoning, s+Sn0 ⊆ S contains an interval I, thus G1 < I < G2 for
some I ∈ Xf . ¤

Remark. Note that in the situation of the theorem Xf need not be
dense in X , although Xg is dense in Xf by Theorem 1. The most simple
example is X = {(−∞, 0) < [0, 1] < (1,∞)} for S = S(P, λ) with P =
{0, 1} and λn = 2−n.

For the rest of our investigations of sets of P -sums we restrict our
considerations to what we call admissible orderings O = (X ,≤, χ), defined
by the following properties.

1. O is a nonempty and at most countable C0 = {f, g}-coloured ordering.

2. Xg is dense in Xf .

3. In O minimum G0 as well as maximum G0 exist and G0, G
0 ∈ Xg.

4. O is self similar.

5. Xf is either dense in Xg or empty.

Accordingly we call a closed set A ⊆ R admissible, if O(A) is admissible.
By the above results all sets S(P, Λ) of P -sums are admissible.

4. A rough order theoretic classification

Using the notions of R/L/M-Cantorvals from [M-O] we distinguish
the following cases for an admissible set S resp. an admissible ordering
O = (X ,≤, χ) = O(S) with minX = G0 and maxX = G0.

• Cantor set: S contains no interval, i.e. Xf = ∅. In this case S turns
out to be order isomorphic to the classical Cantor set S({0, 2}, (3−n))
by Theorem 4.

• M-Cantorval: Xf 6= ∅ but there is no F ∈ Xf with G0 ≺ F or F ≺ G0.
Note that in this case Xf and Xg are dense in X . As Theorem 6 will
show, this implies that S is uniquely determined up to ∼=o. According
Mendes and Oliveira [M-O] we call such sets M-Cantorvals.
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• L-(R-)Cantorval: S is called an L-Cantorval if G0 ≺ F for some F ∈
Xf but there is no F ≺ G0. (Similarly S is called an R-Cantorval if
F ≺ G0 but not G0 ≺ F for any F ∈ Xf .) For a detailed analysis cf.
Section 5.

• Interval type: G0 ≺ F0 and F 0 ≺ G0 for some F0, F
0 ∈ Xf . For a

detailed analysis cf. Section 6.

Now we are going to prove the announced facts that in case of Cantor
sets and M-Cantorvals the order theoretic structure is unique, first for
Cantor sets. (Theorem 4 is folklore but the new proof, using Cantor’s
theorem on the uniqueness of countable dense orderings, may be of some
interest.)

Theorem 4. If a nonempty compact perfect set A ⊆ R contains no

interval then A ∼=o S = S({0, 2}, (3−n)), Cantor’s middle-third set.

Proof. Since A and S are nowhere dense, both Xf (A) and Xf (S)
are empty. On the other hand Theorem 2.2 implies that both Xg(A) and
Xg(S) are countable dense orderings with minimum and maximum. By a
well known theorem of Cantor (cf. for instance [H] p. 100 without minimum
and maximum, or the back-and-forth argument in the proof of Theorem 5)
any order with this properties is isomorphic to the order of all rationals
in [0, 1]. It follows immediately that O(A) ∼= O(S). Thus, by Theorem 1,
A ∼=o S. ¤

To treat the everywhere dense case, we first prove a purely order
theoretic result. It is the coloured analogue of Cantor’s theorem used
in the previous proof. Theorem 5 may also be considered as a special
case of the more general concepts of back-and-forth structures as treated
for instance in [H]. But in our simple situation the presentation of these
notions would take more space than an explicit proof.

Theorem 5. Let C be a set of colours and O = (X ,≤, χ),
O′ = (X ′,≤′, χ′) two countable infinite C-coloured bounded orderings with

minX = I0, maxX = J0, minX ′ = I ′0 and maxX ′ = J ′0. If each Xc,

resp. X ′c, c ∈ C, is dense in X resp. in X ′ then O ∼= O′ if and only if

χ(I0) = χ′(I ′0) and χ(J ′0) = χ′(J ′0).

Proof. It is clear that the condition is necessary. The interesting
part is to show that, provided that min and max have the same colours in
both orderings, we can construct a colour-preserving order isomorphism
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ϕ : X → X ′. It is clear that we have to define ϕ(I0) = I ′0 and ϕ(J0) = J ′0.
Let In and I ′n, n ≥ 1, be enumerations of the members of X \{I0, J0} resp.
X ′ \ {I ′0, J ′0}. For notational convenience (identifying the action In 7→ I ′n′
with the action n 7→ n′) we consider ϕ to be a permutation of the positive
integers. We define ϕ =

⋃
n ϕn, ak 7→ bk, with ϕn = {(ak, bk) : k ≤ n}

inductively. Suppose that ϕn−1 is a bijection ak 7→ bk for k < n such that
Iak

7→ Ibk
and which preserves colours and the ordering. If n is odd let

an be the minimal positive integer with an 6= ak for all k < n. Since X ′c is
dense in X ′, for c = χ(Ian) there is a bn 6= bk for k < n with χ′(I ′bn

) = c

and such that ϕn respects the order of the Iak
and I ′bk

for k ≤ n. If n is
even change the roles of O and O′. It is obvious that ϕ constructed in this
way has all required properties. ¤

Theorem 6. If S and S′ are M-Cantorvals, then S ∼=o S′.

Proof. By Theorem 1 it suffices to show that O(S) ∼= O(S′). We
have to check that for M-Cantorvals S and S′ the orderings O = O(S) and
O′ = O(S′) satisfy the assumptions of Theorem 5. But this follows from
the fact that each O associated to an M-Cantorval is a countable infinite
C0 = {f, g}-coloured bounded ordering with

χ(minX ) = χ(maxX ) = g,

and that for M-Cantorvals Xg and Xf are dense in X . ¤

An example for an M-Cantorval which is a set S = S(P, Λ) of P -
sums has already been given in [Gu-N] and will be recalled in Section 8
(example 3).

5. L/R-Cantorvals

It suffices to consider L-Cantorvals. (R-Cantorvals can be treated in
a symmetric way.) Thus this section deals with admissible orderings O
with minimum G0 ∈ Xg and neighbour F0 Â G0, F0 ∈ Xf , but without
F ≺ G0 = maxX . By self similarity, each G ∈ Xg \ {G0} has a succes-
sor F Â G. On the other hand F ≺ G is impossible. Therefore we can,
without ambiguity, consider the pairs (G,F ) of neighbours G ≺ F to be
points with a new colour p (pairs). With the exception of the maximum
G0 the remaining structure contains no points with colour g. Let us, for
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simplicity, omit G0. Then all F ∈ Xf which are not member in a pair
(G,F ) cannot have neighbours. Let them be coloured with a (accumula-
tion point). Let us consider the resulting C∗ = {p, a}-coloured structure
O∗ with supporting set X ∗. If O∗ stems from a set A ⊆ R via O(A) we
write O∗ = O∗(A).

Theorem 7. If A ⊆ R is an admissible L-Cantorval, then O∗ = O∗(A)
has the following properties:

1. O∗ has the minimum P0 = (G0, F0) ∈ X ∗p but no maximum.

2. X ∗p is dense in X ∗, hence there are no successors in O∗.
3. O∗ is self similar at Xp to the left, i.e. for each P1, P2 ∈ X ∗p \ {P0}

there are P ′1 < P1 and P ′2 < P2 such that the C∗-coloured intervals

(P ′1, P1) and (P ′2, P2) are isomorphic.

Proof. The properties are inherited fromO, so we may omit a formal
proof. ¤

Let us call a C∗ = {p, a}-coloured ordering an ∗-admissible ordering
if it has the three properties stated in Theorem 7. We also call any closed
set A ⊆ R ∗-admissible if it induces a ∗-admissible ordering O∗(A).

Theorem 8.

1. For every ∗-admissible ordering O∗ there is a ∗-admissible A ⊆ R such

that O∗ = O∗(A).

2. If A1 and A2 are ∗-admissible, then O∗(A1) ∼= O∗(A2) if and only if

A1
∼=o A2.

3. If A is ∗-admissible with X ∗a = ∅, then A ∼=o A0 for a universal closed

set A0 ⊆ R (unique up to ∼=o).

4. If A is ∗-admissible with X ∗a dense in X ∗, then A ∼=o A1 for a universal

closed set A1 ⊆ R (unique up to ∼=o).

Proof. 1. It is clear that to each O∗ there is an O giving rise to an
appropriate L-Cantorval by Theorem 1.

2. The reconstruction of A from O∗ in part 1 is unique up to ∼=o.

3. X ∗a = ∅ implies that O∗ is in fact a {p}-coloured (i.e. monochro-
matic or uncoloured), countable, dense order with minimum and without
maximum. Thus O∗ is order isomorphic to the rationals in [0, 1). There-
fore, by the second part, all A with O∗(A) ∼= O∗ are pairewise order
isomorphic.
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4. Generalize the arguments of part 3 in the same way as Theorems 5
and 6 generalize Theorem 4. ¤

The existence of a set A0 as in the third part of Theorem 8 will follow
from Theorem 9 with the empty ordering A = (∅,≤). A more concrete
description of such a set is involved in Section 7: The set B in Theorem 12
is of this type. Similarly one can construct a set A1 as in statement 4
of Theorem 8. We omit a detailed proof.

In the last section of [N-S2] the question has been stated, whether self
similarity of sets determines their structure. As we proved in preceding
sections this is true for Cantor sets and for M-Cantorvals. Nevertheless,
for L/R-Cantorvals and for the interval type the answer is no. This is
illustrated by Theorems 9 and 10.

Theorem 9. Let A = (A,≤) be an arbitrary ({a}-coloured) at most

countable ordering. Then there exists a ∗-admissible O∗ = (X ∗,≤∗, χ∗)
such that A ∼= X ∗a .

Proof. We first mention that there is an embedding ϕ : A → S,
where S = S({0, 2}, (3−n)) denotes Cantor’s middle-third set. This gets
clear if one considers the subset S′ ⊆ S containing those numbers x 6= 0
in S which have a finite representation x =

∑k
n=1

pn

3n , pn ∈ {0, 2}. S′ is
a countably infinite set without minimum and maximum and dense in S.
Therefore the countable ordered set A = {a1, a2, . . . } can be embedded
into S′ via a mapping ϕ by the obvious inductive construction similar
to the proof of Theorem 5. Let X ∗a = ϕ(A) ⊆ S′ ⊆ S. We claim that
O∗ = (X ∗,≤, χ∗) with X ∗ = X ∗a ∪X ∗p , X ∗p = [0, 1)∩Q \S, has the desired
properties. Indeed X ∗a ∩ X ∗p = ∅ and O∗ has the minimum 0 ∈ X ∗p but no
maximum. Furthermore, since S is nowhere dense in R, and Q is dense,
we conclude that X ∗p is dense in X ∗ and there are no successors. X ∗ is
self similar to the left at x ∈ X ∗p : For every x ∈ S′ there is an ε > 0
with (x− ε, x) ∩ S = ∅. Thus in this neighbourhood we have a countable
dense ordering, isomorphic to the rationals, independently from the special
choice of x ∈ X ∗p . ¤

Remark. Since X ∗p is dense, its structure is uniquely determined, nam-
ely X ∗p ∼= Q∩[0, 1). But even if the structure of X ∗a is given, the structure of
X ∗ is not uniquely determined. To illustrate this fact consider the following
example. Let X ∗p = Q∩ [0, 1) and A = {

√
2

4n : n = 1, 2, . . . } ⊆ [0, 0.5]. Both
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sets A1 = {
√

2
4 } ∪ (

√
2

4 + A) and A2 = {
√

2
8 } ∪ (

√
2

4 + A) have the same
order structure, namely A1

∼=o A2
∼= (ω + 1)−1. (Here α−1 denotes the

inverse order of the ordinal type α.) Nevertheless, with X ∗a = Ai we get
different ∗-admissible orders depending whether i = 1 or i = 2. In the
first case

√
2

4 = minX ∗a is an accumulation point of X ∗a , in the second case√
2

8 = minX ∗a is an isolated point of X ∗a .

6. The interval type

Although the interval type is a bit more complicated, it can be treated
in a similar way like L/R-Cantorvals. Therefore it suffices to be somewhat
sketchy.

First we note that a finite union A = I1 ∪ · · · ∪ In of pairwise disjoint
closed intervals In induces an O of interval type with X = {G0 < F1 <

G1 < · · · < Gn−1 < Fn < Gn = G0}. Obviously the order type is
completely determined by the positive integer n and the classification is
trivial. Hence, for the rest of this section, we are mainly interested in the
case that O is an infinite ordering.

In this case we have the following situation. For each G ∈ Xg \ {G0 =
minX , G0 = maxX} there are F, F ′ ∈ Xf with F ≺ G ≺ F ′. But an
identification to triples (F,G, F ′) with a new colour t is not successful for
the following reason. F ′ might be the predecessor of another G′ ∈ Xg.
Thus we have to identify the points of maximal chains. Explicitly the
following cases are possible: Finite chain of length n ≥ 1:

F0 ≺ G1 ≺ F1 ≺ G2 ≺ · · · ≺ Fn

(or G0 ≺ F1 · · · ≺ Fn resp. F1 ≺ · · · ≺ Fn ≺ G0). We identify the members
of a finite chain of length n to one point with the colour sn. Right side
infinite chain:

(G0 ≺)F0 ≺ G1 ≺ F1 ≺ G2 ≺ F2 ≺ . . .

We identify the members of a right side infinite chain to one point with
the colour s+. Left side infinite chain:

· · · ≺ G−2 ≺ F−2 ≺ G−1 ≺ F−1(≺ G0).
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We identify the members of a left side infinite chain to one point with the
colour s−. Both side infinite chain:

· · · ≺ G−2 ≺ F−2 ≺ G−1 ≺ F−1 ≺ G ≺ F0 ≺ G1 ≺ F1 ≺ . . .

We identify the members of a both side infinite chain to one point with the
colour s. Each F ∈ Xf which is not a member of a chain has no neighbours
and, therefore, is an accumulation point. Let such points be coloured
with the colour a. We get a C∗∗-coloured ordering O∗∗ = (X ∗∗,≤∗∗, χ∗∗)
with the infinite set C∗∗ = {sn : n = 1, 2, . . . } ∪ {s+, s−, s, a} of colours.
Similarly to L/R-Cantorvals we write O∗∗ = O∗∗(A) if the ordering stems
from a set A ⊆ R of the interval type via O(A).

Theorem 10. If A is an admissible set of the interval type, thenO∗∗ =
O∗∗(A) is a C∗∗-coloured ordering with the following properties.

1. In O∗∗ there exists a minimum S0 and a maximum S0 with χ∗∗(S0) 6=
a 6= χ∗∗(S0).

2. If S1 ≺ S2 in O∗∗, then χ∗∗(S1) ∈ {s, s+} or χ∗∗(S2) ∈ {s, s−}.
3. X ∗∗ \ X ∗∗a is dense in Xa.

Proof. Follows from the construction ofO∗∗ and the properties char-
acterizing sets of the interval type. ¤

Let us call a C∗∗-coloured ordering O∗∗ with the properties stated in
the theorem an ∗∗-admissible ordering, the corresponding A a ∗∗-admis-
sible set. Similarly as for L/R-Cantorvals we get the following theorem.

Theorem 11.

1. For every ∗∗-admissible O∗∗ there is a ∗∗-admissible set A with O∗∗ ∼=
O∗∗(A).

2. If A1 and A2 are ∗∗-admissible sets, then O∗∗(A1) ∼= O∗∗(A2) if and
only if A1

∼=o A2.

3. Let A be an arbitrary ({a}-coloured) at most countable ordering.
Then there exists a ∗∗-admissible O∗∗ = (X ∗∗,≤∗∗, χ∗∗) such that
A ∼= X ∗∗a .

Proof. Similar as for the corresponding properties of L/R-Cantor-
vals, cf. Theorems 8.1, 8.2 and 9. ¤

The Remark at the end of Section 5 holds mutatis mutandis in the
interval type case. Note that statements 3 and 4 of Theorem 8 have no
simple analogues for interval type sets. This is due to the fact that C∗∗

contains more than two colours.
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7. Order theoretic and topological structure

Motivated from the fact that for closed sets A,B ⊆ R a topologi-
cal isomorphism A ∼=t B in general does not imply an order isomorphism
A ∼=o B one might ask which admissible orderings can be distinguished
from the topological point of view. (For certain types of compact sets
of reals, [W] treats the question how many different order theoretic iso-
morphism types lead to the same homeomorphism type.) For notational
convenience we restrict our attention to compact sets A, B. We start with
the observation that every homeomorphism ϕ : A → B maps components
of connectedness on components of connectedness. Singleton components
{x} of A (we call such an x a single point of A) are mapped on singleton
components {ϕ(x)} of B, interval components I = [a, b], a < b are mapped
on proper intervals ϕ(I). Among all points x ∈ I the end points a and b
can be characterized topologically by the property that I\{x} is connected
if and only if x ∈ {a, b}. Thus ϕ maps end points of an interval of A to end
points of an interval of B. For the end point a the following two situations
can be distinguished. If G ≺ I = [a, b] for some G ∈ Xg(A) then a ∈ A
has a neighbourhood base of connected subsets [a, a + ε) ⊆ A. We call I
an isolated interval (from the left). Similarly we call I isolated from the
right if I ≺ G for some G ∈ Xg(A). If G1 ≺ I ≺ G2 we call I both-sided
isolated. If no G with G ≺ I = [a, b] exists, then a has no connected neigh-
bourhood in A and we call I accumulated from the left (similarly from the
right or both-sided). Thus both-sided isolated intervals are preserved by
homeomorphisms as well as one-sided isolated (hence one-sided accumu-
lated) intervals and both-sided accumulated intervals. Therefore we can
distinguish the following topological cases for an admissible set A:

• A contains no interval. By Theorem 4, A is a Cantor set and uniquely
determined from the order theoretic point of view.

• A contains intervals which are all both-sided accumulated. Then A is
an M-Cantorval. By Theorem 6, A is determined uniquely from the
order theoretic point of view.

• A contains intervals which are not both-sided accumulated. This in-
cludes the L/R-Cantorval and the interval type case. Theorems 9 and
11.3 show that very different situations are possible.
The question arises whether A ∼=t B is possible with an interval type

A and an L-Cantorval B. Since in B we have G ≺ F but never F ≺ G
(F ∈ Xf , G ∈ Xg), there are no both-sided isolated intervals of B. Hence
A ∼=t B yields that in A only chains of the type F1 ≺ G ≺ F2 are possible
and of course must occur, but no longer chains. It may be surprising at
first glance that such sets A and B indeed might be homeomorphic.
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Theorem 12. Consider an interval type A ⊆ R such that O∗∗ =
O∗∗(A) is a dense order with all points of colour s1. Similarly let B ⊆ R
denote an admissible L-Cantorval such that O∗ = O∗(B) is a dense order

with all points of colour p. Then A ∼=t B. Such sets A and B exist.

Proof. From Theorems 1.1, 8 and 11.1 it gets clear that sets A and
B with the given order theoretic structure exist. The proof of A ∼=t B

proceeds in five steps.
First step, parametrization for A resp. O∗∗ and B resp. O∗: Note

that the order structures of O∗∗ and O∗ are uniquely determined by the
assumption. Let D denote the set of all dyadic numbers d ∈ [0, 1], i.e.
d = k

2n with integers n ≥ 0 and 0 ≤ k ≤ 2n. Let X (A) consist of
Fd = [αd, βd] ∈ Xf (A) (d ∈ D \ {0}), Gd = (βd, γd) ∈ Xg(A) (d ∈ D)
and F ′d = [γd, δd] ∈ Xf (A) (d ∈ D \ {1}) such that δd1 < αd2 if and only
if d1 < d2. Since D is a countable dense ordering, A is as assumed in
the theorem if and only if O(A) has this structure. Similarly B can be
described by Id = (ρd, σd) ∈ Xg(B) (d ∈ D) and Jd = [σd, τd] ∈ Xf (B)
(d ∈ D \ {1}) with τd1 < ρd2 if and only if d1 < d2.

Second step, further notations: Let 2n denote the set of all 0-1-
sequences a = (a1, a2, . . . , an), ai ∈ 2 = {0, 1}, of length n ≥ 0, 2<ω

the union of all 2n, 2ω the set of all infinite 0-1-sequences ā = (a1, a2, . . . ).
To any finite sequence a ∈ 2n we associate the numbers qa =

∑n
i=1

ai

2i ,
q′a = qa + 1

2n and the sets

Aa =
⋃
{Fq ∪ F ′q : qa < q < q′a} ∪ F ′qa

∪ Fq′a

and

Ba =
⋃
{Jq : qa ≤ q < q′a}.

The sets Aa and Ba are clopen in A resp. in B. If we are given an infinite
sequence ā = (a1, a2, . . . ) ∈ 2ω, we write ān = (a1, . . . , an) for its initial
segments, furthermore

qā = lim
n→∞

qān =
∞∑

n=1

an

2n

and

Aā =
⋂
n

Aān , Bā =
⋂
n

Bān .
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Let 2ω
0 denote the set of all 0-1-sequences where the an are eventually 0,

2ω
1 the set of those where the an are eventually 1 and 2ω

∗ = 2ω \ 2ω
0 \ 2ω

1

the rest of 2ω. Note that with q = qā we have ā ∈ 2ω
0 iff Aā = F ′q iff

Bā = Jq; ā ∈ 2ω
1 iff Aā = Fq (in this case Bā = {yqā} is a single point of

B); ā ∈ 2ω
∗ iff Aā = {xqā} is a single point of A. Furthermore we mention

that limn→∞ xn = x, xn ∈ Aān (resp. Bān) implies x ∈ Aā (resp. Bā).
Third step, construction of a bijection ψ̄ : 2ω → 2ω:

For ā = (a1, a2, . . . ) ∈ 2ω we define ψ̄(ā) = b̄ = (b1, b2, . . . ) in the fol-
lowing way. Given ā, there is a unique finite or infinite sequence 0 =
n0 < n1 < n2 < . . . , nk+1 ≥ nk + 2, of maximal length such that
(ank−1+1, . . . , ank

) either is of the form (0, 0, . . . , 0, 1) or (1, 1, . . . , 1, 0).
In the first case we put (bnk−1+1, . . . , bnk

) = (0, 0, . . . , 0, 1), in the sec-
ond case = (1, 0, 0, . . . , 0, 0, 1). If the sequence of the nk is finite, i.e.
(ank+1, ank+2, . . . )=(0, 0, . . . ) or = (1, 1, . . . ), then let (bnk+1, bnk+2, . . . )=
(0, 0, . . . ) in the first case and = (1, 0, 0, . . . ) in the second one:

(0, 0, 0, . . . , 0, 0, 1) 7→ (0, 0, 0, . . . , 0, 0, 1)

(1, 1, 1, . . . , 1, 1, 0) 7→ (1, 0, 0, . . . , 0, 0, 1)

(0, 0, 0, . . . , 0, . . . ) 7→ (0, 0, 0, . . . , 0, . . . )

(1, 1, 1, . . . , 1, . . . ) 7→ (1, 0, 0, . . . , 0, . . . )

In the remaining steps of the proof we shall frequently use the following
properties of ψ̄.

• (b1, . . . , bn) depends only on (a1, . . . , an), not on ak for k > n. Thus
we have mappings ψn : 2n → 2n with ψn(ān) = ψ̄(ā)n. Whenever
convenient we write ψ =

⋃
n ψn : 2<ω → 2<ω.

• ψ, ψn, ψ̄ are bijections. It is easy to check that the following mapping
of blocks induces the inverse of ψ̄ in a similar way as ψ was defined:

(0, 0, 0, . . . , 0, 0, 1) 7→ (0, 0, 0, . . . , 0, 0, 1)

(1, 0, 0, . . . , 0, 0, 1) 7→ (1, 1, 1, . . . , 1, 1, 0)

(0, 0, 0, . . . , 0, . . . ) 7→ (0, 0, 0, . . . , 0, . . . )

(1, 0, 0, . . . , 0, . . . ) 7→ (1, 1, 1, . . . , 1, . . . )
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Here, for given b̄=(b1, b2, . . . ), the considered blocks (bnk−1+1, . . . , bnk
)

are defined by taking nk+1 as the minimal l ≥ nk + 2 with bl = 1 (if
such an l exists).

• ψ̄(2ω
0 ∪ 2ω

1 ) = 2ω
0 .

• ψ̄(2ω
∗ ) = 2ω

1 ∪ 2ω
∗ .

Fourth step, construction of ϕ via ψ̄: The mapping ϕ is defined in
such a way that ϕ(Aā) = Bψ̄(ā). If ā ∈ 2ω

∗ , then Aā = {x} is a singleton
component of A, and Bψ̄(ā) = {y} ∈ 2ω

1 ∪ 2ω
∗ is a singleton component of

B, hence ϕ(x) = y is unique by this property. If ā ∈ 2ω
0 ∪ 2ω

1 then both
Aā = [x, y] and Bψ̄(ā) = [v, w] are proper intervals. Hence we define ϕ|[x,y]

to be any homeomorphism between these intervals such that the following
condition is fulfilled: If [x, y] = Fq for some q then let ϕ be decreasing,
if [x, y] = F ′q for some q let ϕ be increasing. This takes care of the fact
that the F ′q and the Jq are accumulated from the right side and the Fq are
accumulated from the left side.

Fifth step, ϕ has the desired properties: From the properties listed
above it is clear that ψ̄ is a bijection on the set of 0-1-sequences. This
implies that ϕ : A → B is also a bijection. We are going to check the
continuity of ϕ at each point x ∈ A. Since A is compact, this will imply
that ϕ is a homeomorphism. We distinguish three different cases for x:

1. Let x ∈ F \A \ F for some F ∈ Xf (A), i.e. x is an inner point of some
interval with respect to the subspace topology on A ⊆ R. Then ϕ,
whose restriction to intervals is a homeomorphism, is continuous in x.

2. If x ∈ A \⋃Xf , i.e. {x} = Aqā is a singleton component of A and ā ∈
2ω
∗ , consider any sequence (xk) in A converging to x. For given ε > 0

we can find an n such that Bψ̄(ā)n
⊆ (y−ε, y+ε), where y = ϕ(x) is the

single point of B forming the component Bψ̄(ā). (Here we used the fact
mentioned at the end of the second step.) For sufficiently large k we
have xk ∈ Aān , therefore ϕ(xk) ∈ Bψ̄(ā)n

, yielding |ϕ(xk)−ϕ(x)| < ε,
i.e. ϕ(xk) converges to ϕ(x).

3. If x ∈ F ∩ A \ F for some F ∈ Xf (A), i.e. x is an accumulation
end point of an interval, then let (xk) be an arbitrary sequence in A
converging to x. We can split (xk) into two subsequences, one in F
and one outside of F . Thus it suffices to show that limk→∞ xk = x
implies limk→∞ ϕ(xk) = ϕ(x) for each of those types. The first type
can be treated as the first case for x (inner point of an interval) and
the second type as the second case (x single point). ¤
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8. Several old and one new example of sets of P -sums

In this section we reconsider four examples of sets of P -sums in our
context and give one further example showing that the list from [N-S2] of
possible structures of sets S = S(P, Λ) of P -sums is not complete.

1. Finite union of intervals. This subordinates to our so-called interval
type. In [N-S1], Theorem 2.4, two conditions on P and Λ are given;
one is sufficient and one is necessary for S to be a finite union of in-
tervals. An interesting example has been presented in [N-S1]: Taking
P = {0, 1, 2, 7, 8, 9} and λn = 3−n one gets S = [0, 13

6 ] ∪ [ 73 , 9
2 ].

2. Cantor set. The classical example is P = {0, 2} and λn = 3−n.
Theorem 2.4. in [N-S1] contains a sufficient condition on P and Λ
which implies that S is homoeomorphic to the Cantor set. In our
paper Theorem 4 is the order theoretic version of this result, stating
that every nowhere dense perfect compact subset of R has the same
order theoretic structure.

3. M-Cantorval. The reader may check that the example of an M-
Cantorval presented in Section 2 in [Gu-N] and reconsidered in [N-S1]
and [N-S2] can be rewritten as S = S(P, Λ) with P = {0, 2, 3, 5} and
λn = 4−n. Theorem 1 in [Gu-N] says that if P = {0, 1} then S is
either a finite union of intervals or a Cantor set or homeomorphic to
this example. In our paper, Theorem 6 says that all M-Cantorvals
have the same order theoretic structure.

4. L-Cantorval. In the last section of [N-S2] the authors give a short
discussion of the example P = {0, 1, 2, 9}, λn = 3−n, and mention
that [0, 9

8 ] is an interval of S, that S has infinitely many gaps in every
neighbourhood of 9

2 = max S and S is not homeomorphic to one of the
previous types. Thus we have indeed an example of an L-Cantorval.
In [N-S2] the conjecture has been stated that now the list of possible
topological structures of such sets is complete. The next example
shows that this is not the case.

5. Interval type with infinitely many intervals. If one takes λn = 4−n

and P = {−12,−11,−10,−9, 0, 9, 10, 11, 12}, one gets a set S of the
interval type. In fact S = −S consists of exactly one single point 0
plus the disjoint union of one increasing and one decreasing sequence
of intervals, both converging to 0 ∈ S. This follows from the theorem
proved below. Since S contains infinitely many both-sided isolated
intervals, it cannot be homeomorphic to any of the previous examples.
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Theorem 13. Let P = P0 ∪ {0} with P0 = {−12,−11,−10,−9, 9, 10,

11, 12}, Λ = (λn), λn = 4−n, S0 = S(P0, Λ) and S = S(P, Λ). Then the

following statements hold:

1. S0 = [−4,− 5
4 ] ∪ [ 54 , 4].

2. S = {0} ∪⋃∞
n=0

1
4n S0.

3. O(S) ∼= {G−0 ≺ F−0 ≺ G−1 ≺ F−1 ≺ · · · ≺ F+
1 ≺ G+

1 ≺ F+
0 ≺ G+

0 },
i.e. S is ∗∗-admissible with O∗∗(S) ∼= {I1 ≺ I2}, χ∗∗(I1) = s+,

χ∗∗(I2) = s−.

Proof. 1. Let S′ = [−4,− 5
4 ] ∪ [ 54 , 4].

S′ ⊆ S0: First we prove that if x =
∑∞

n=1
an

4n ∈ S0 with an ∈ {−12, 9}
then [x, x + 1] ⊆ S0. To see this take y ∈ [x, x + 1], i.e. y = x + z with 0 ≤
z ≤ 1. Such a z has a representation z =

∑∞
n=1

bn

4n with bn ∈ {0, 1, 2, 3}.
Thus y =

∑∞
n=1

cn

4n with cn = an + bn ∈ {−12, 9} + {0, 1, 2, 3} = P0 and
y ∈ S0. As special values for x we consider

x1 = −4 =
∑∞

n=1
−12
4n ,

x2 = −4 + 21
64 = −12

4 + −12
42 + 9

43 +
∑∞

n=4
−12
4n ,

x3 = −3 + 20
64 = −12

4 + 9
42 +

∑∞
n=3

−12
4n , and

x4 = −3 + 3
4 = −12

4 +
∑∞

n=2
9
4n .

Since xi ≤ xi+1 and xi+1 ≤ xi + 1 for i = 1, 2, 3, we get [−4,− 5
4 ] =

[x1, x4 + 1] ⊆ S0. Since P0 = −P0 we have S0 = −S0 and get [ 54 , 4] ⊆ S0

and therefore S′ ⊆ S.

S0 ⊆ S′: Pick x ∈ S0, i.e. x =
∑∞

n=1
an

4n with an ∈ P0. x ≥∑∞
n=1

−12
4n = −4 and similarly x ≤ 4. If a1 < 0 we get x ≤ −9

4 +
∑∞

n=2
12
4n =

− 5
4 . Similarly a1 > 0 implies x ≥ 5

4 . This shows x ∈ S′ in each case, hence
S0 ⊆ S′.

2. Now we have to show S = S′′ with S′′ = {0} ∪⋃∞
n=0

1
4n S0.

S′′ ⊆ S: Pick x ∈ S′′. If x = 0 then x =
∑∞

n=1
0
4n ∈ S. If x 6= 0

then we can find an integer n0 ≥ 0 and an x0 ∈ S0 such that x = x0
4n0 . By
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the first statement there is a representation x0 =
∑∞

n=1
an

4n with an ∈ P0.
Thus

x =
1

4n0

∞∑
n=1

an

4n
=

∞∑
n=1

a′n
4n

with a′1 = a′2 = · · · = a′n0
= 0 ∈ P and a′n = an0+n ∈ P0 ⊆ P for n > 0.

Thus x ∈ S and S′′ ⊆ S.

S ⊆ S′′: If x ∈ S then x =
∑∞

n=1
an

4n with an ∈ P . If an = 0 for all n

then x = 0 ∈ S′′. Otherwise there is a minimal k with x =
∑∞

n=k+1
an

4n and
ak+1 6= 0. Similar to the first part of the proof we get − 1

4k−1 ≤ x ≤ 1
4k−1 ,

furthermore x ≤ 1
4k (− 5

4 ) if ak+1 < 0 and x ≥ 1
4k

5
4 if ak+1 > 0. This shows

x ∈ 1
4k S0 ⊆ S′′.

3. From the second statement it gets immediately obvious that with
1
4n S0 = F−n ∪ F+

n , F−n = −F+
n , F+

n = 1
4n [ 54 , 4], G−n = −G+

n , G+
0 = (4,∞)

and G+
n = 1

4n (4, 5) for n ≥ 1 we get the pairwise disjoint intervals of S

and R \ S which are ordered as stated in the theorem. ¤

9. Open problems

In this final section we mention several open problems which could be
a motivation for further research on our topic. We make some observations
which might be considered as indications that there are many possibilities
left open by the examples treated up to now.

First we note that, in all examples treated explicitly up to now, P only
contains integers and λ = λ−n with an integer λ. We do not have strong
arguments to believe that this restriction does not affect the generality
w.r.t. the topological or order theoretic structure. We must not forget
that in this special case the set S has the strong self similarity property
Sn = λ−nS (Sn as in the proof of Theorem 3) which in general does not
hold if the λn do not form a geometric progression.

An almost trivial illustration of this aspect is the following observa-
tion: If S = S(P, (λn)) induces the coloured ordering O = O(S) then we
(essentially) can produce the order structure O × |P | = O + · · · + O by
replacing (λn) by λ′n with λ′n+1 = λn for n ≥ 1 and λ′1 sufficiently large.
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Iterating this process we can, starting with our new example from Theo-
rem 13, generate an infinite series of non homeomorphic examples, namely,
for each integer k ≥ 0 an example with exactly 9k singleton components.

To be less trivial consider the L-Cantorval S = S(P, Λ) with P =
{0, 1, 2, 9} and λn = 3−n (Section 8, example 4). The results of Sec-
tion 5 show that L-Cantorvals can have various structures, maybe quite
complicated. This depends on the question whether there are both-sided
accumulated intervals in S and how they are embedded. It seems to be
not trivial to decide this question. In the concrete example number theo-
retic arguments may be expected. But this is due to the special example.
Therefore from our perspective it cannot be excluded that, for example,
replacing 9 ∈ P by an irrational/transcendental number 9+ ε would affect
the fractal structure of S in a way which cannot be predicted easily.

On the other hand we can imagine the following situation. Suppose
that under certain assumptions on P and Λ = (λn) (for instance λn = λ−1

with λ and all p ∈ P rational or, stronger, integer) one could show that S

has no both-sided accumulated intervals. Then Theorem 8.3 would yield
that in such cases the order theoretic and hence the topological structure
of S is uniquely determined. By Theorem 8.4 similar considerations apply
for the case that one could show that the both-sided accumulated intervals
of S are dense in O(S).

Concerning the interval type we mention that all investigated exam-
ples of ∗∗-admissible sets of P -sums only contain both-sided isolated inter-
vals, finitely or infinitely many. Hence they are all not homeomorphic to
L/R-Cantorvals (∗-admissible sets). Is it possible that, nevertheless, the
phenomenon of Theorem 12 occurs for sets A,B of P -sums?

We also recall the open question mentioned after Theorem 2: Does
self similarity of O imply the existence of a self similar A with O(A) ∼= O?

The problem of earlier papers, namely to give a complete list of the
topological structures of P -sets, now can be modified by asking the fol-
lowing two questions: 1.) Given P and Λ, is S(P, Λ) a Cantor set, an
M-Cantorval, an R/L-Cantorval or of interval type? 2.) Which ∗- and
∗∗-admissible orderings correspond to sets of P -sums and which of them
correspond to homeomorphic sets? It seems that an answer to this question
and looking for satisfactory classification theorems describing the topolog-
ical or order theoretic structure of S(P, Λ) for any given P and Λ requires
much deeper investigations than ours.
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