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A Hosszú-like functional equation

By T. M. K. DAVISON (Hamilton)

Abstract. The equation f(x + y) + f(xy) = f(xy + x) + f(y) is solved over both
the natural numbers and the integers.

1. Introduction

Hosszú’s equation [2] is

(1) f(x + y − xy) + f(xy) = f(x) + f(y),

where the domain of f is understood to be a ring, and the codomain is an
abelian group. When the domain in equation (1) is a field with at least 5
elements then Hosszú’s equation is equivalent to Cauchy’s equation [5], in
the sense that any solution of the one is a solution of the other. Of course,
Cauchy’s equation in its affine form is

(2) f(x + y) + f(0) = f(x) + f(y).

A few years ago [3] I mentioned that the equation

(3) f(x + y) + f(xy) = f(xy + x) + f(y)

might be worthy of discussion. In equation (3) the domain is a subset
of a ring, the variables enter in a bilinear way as they do in equation
(1), and any solution of equation (2) is a solution of equation (3). Hence
the last equation is Hosszú-like. I proved (unpublished) that any solution
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of equation (3) where the domain of f is the rational field must satisfy
equation (2): again making the equation Hosszú-like. At ISFE 17 (1979)
W. Benz proved that every continuous solution of equation (3) (the domain
being the real field) is indeed an affine Cauchy function.

Recently Girgensohn and Lajkó ([6], to appear) showed that over
a field of characteristic not 2 or 3 any solution of equation (3) is a solution
of equation (2).

Indeed Lajkó [8] has shown that if f satisfies equation (3) then g :
x 7−→ f(−x) satisfies equation (1). This implies in particular that when
the domain of equation (3) is a field with at least 5 elements all solutions
must satisfy equation (2).

In this paper I solve equation (3) in two, I believe, interesting cases;
Firstly when the domain of f is N = {1, 2, 3, . . . } the set of natural num-
bers and secondly when the domain is Z, the ring of (rational) integers.
Basically what I show is that every solution is a linear combination (in the
codomain) of four functions:

χ0
2 : x 7→

{
1 if x is even

0 if x is odd
χ1

2 : x 7→
{

0 if x is even

1 if x is odd

q2 : x 7→ q2(x) where x = 2q2(x) + r2(x) and r2(x) ∈ {0, 1}
q3 : x 7→ q3(x) where x = 3q3(x) + r3(x) and r3(x) ∈ {0, 1, 2} .

See also my paper ([6], to appear).

2. Linearizing the equation

Let f : S → H. Here S is either N or Z and H is an abelian group
written additively.

Proposition 1. If f : S → H satisfies equation (3) then for each x ∈ S

(4) f(2x) = f(x + 1) + f(x)− f(1)

and

(5) f(2x + 1) = f(x + 3) + f(x + 2)− f(3)− f(2) + f(1).
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Proof. Put y = 1 in equation (3) to deduce (4). With y = 2, 3 in
equation (3) we deduce that

f(2x) + f(x + 2) = f(3x) + f(2)(6)

f(3x) + f(x + 3) = f(4x) + f(3)(7)

for all x ∈ S.
Now from (4) we deduce that

f(4x) = f(2x + 1) + f(2x)− f(1)

so substituting this in (7) yields

f(3x) + f(x + 3) = f(2x + 1) + f(2x)− f(1) + f(3).

Finally using equation (6) we deduce (5). ¤

We notice that f(2x + 4) and f(2x + 1) differ by a constant
(f(3) + f(2)− 2f(1)): so some 3-periodicity has already surfaced. It is
this phenomenon that inspires our next step.

Definition. Suppose f : S → H satisfies equation (3). For each x ∈ S

we set

(8) f̂(x) := f(x + 4) + f(x + 3)− f(x + 1)− f(x),

so, f̂ : S → H too.

Proposition 2. If f satisfies equation (3) then, for each x ∈ S

f̂(2x) = f̂(x)(9)

and

f̂(2x + 1) = f̂(x + 1).(10)

Proof. Immediate. ¤
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Corollary.

(i) If S = N then, for all x ∈ S

(11) f̂(x) = f̂(1).

(ii) If S = Z, then for all x ∈ S,

(12) f̂(x) =

{
f̂(1) x ∈ N,

f̂(0) x /∈ N.

Proof. Use induction x → x + 1 when x ∈ N and x 7→ x − 1 when
x /∈ N, and the proposition. ¤

We need the next result to complete our exploration of (some) linear
consequences of equation (3).

Proposition 3. If f : Z→ H satisfies equation (3) then

(13) f(5) + f(0) = f(3) + f(2).

Proof. Put x = 6, y = −1 in equation (3):

(14) f(−6) + f(5) = f(0) + f(−1).

Now
f(−6) = f(−2) + f(−3)− f(1)

= f(0) + f(−1)− f(1) + f(1) + f(0)− f(3)

− f(2) + f(1)− f(1),
so

(15) f(−6) = 2f(0) + f(−1)− f(3)− f(2)

using equations (4) and (5) to expand f(−2), f(−3) respectively. Substi-
tuting (15) into (14) and simplifying we deduce equation (13). ¤

Corollary. If f : Z→ H satisfies equation (3) then

(16) f̂(1) = f̂(0).

Proof. f̂(1) = f̂(0) iff f(5) + f(4) − f(2) − f(1) = f(4) + f(3) −
f(1)− f(0) iff f(5) + f(0) = f(3) + f(2). ¤

We can now state and prove the main result of this section.
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Theorem 4. Suppose f : S → H satisfies equation (3) where S is N
or Z. Then

(a) f = 0 if f(1) = 0, f(2) = 0, f(3) = 0, and f(5) = 0

and, for all x ∈ S

(b) f(x + 6)− f(x) = f̂(1).(17)

Proof. (a) Assume f(1) = 0, f(2) = 0, f(3) = 0 and f(5) = 0.
Then f(4) = (f(3) + f(2) − f(1)) = 0 also, and so f̂(x) = f̂(1) = 0 for
all x ∈ N. If S = N this yields f(x) = 0 for all x ∈ N. If S = Z we see
that f̂(x) = f̂(0) = 0 (by the Corollary to Proposition 3) for all x ∈ Z\N.
Again this yields f(x) = 0 for all x /∈ N.

(b) Since f̂(1) = f̂(0) we deduce that

f̂(x) = f̂(1) for all x ∈ S.

So f̂(x + 1)− f̂(x) = 0, for all x ∈ S

(18) f(x + 5)− f(x + 3)− f(x + 2) + f(x) = 0.

Thus, replacing x by x + 1,

f(x + 6)− f(x + 4)− f(x + 3) + f(x + 1) = 0.

Rewriting this we deduce that

f(x + 6)− [f(x + 4) + f(x + 3)− f(x + 1)− f(x)]− f(x) = 0.

So f(x + 6)− f̂(1)− f(x) = 0, as claimed. ¤
From part (b) of the theorem we see that 2-periodicity and 3-period-

icity are consequences of equation (3).

3. Solving the equation

Let g : S → H, define G : S2 → H

(19) G(a, b) := g(ab) + g(a + b)− g(ab + a)− g(b).

Definition. (a, b) ∈ S2 is admissible (for equation (3)) iff G(a, b) = 0.

Thus g satisfies equation (3) if, and only if S2 is admissible.
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Proposition 5. Let p ∈ N, α ∈ H. Suppose

g : S → H satisfies

g(x + p) = g(x) + α(20)

for all x ∈ S. Then g satisfies equation (3) if and only if

(21) G(a, b) = 0, 1 ≤ a ≤ p and 1 ≤ b ≤ p.

Proof. The necessity of condition (21) is clear. For the sufficiency,
first we note that for all t ∈ S

(22) g(x + tp) = g(x) + tα.

Next we note that given x, y ∈ S there are a, b ∈ S with 1 ≤ a ≤ p and
1 ≤ b ≤ p such that x = a + sp, y = b + tp where s, t ∈ S ∪ {0}. Now

G(x, y) = g(xy) + g(x + y)− g(xy + x)− g(y)

= g(ab + (at + bs + stp)p) + g(a + b + (s + t)p)

− g(ab + a + (at + bs + stp + s)p)− g(b + tp)

= g(ab) + (at + bs + stp)α + g(a + b) + (s + t)α

− g(ab + a)− (at + bs + stp + s)α− g(b)− tα = G(a, b).

So
G(x, y) = 0 ∀(x, y) ∈ S2,

if, and ony if

G(a, b) = 0 ∀(a, b) ∈ [1, p]2 . ¤

We now search for solutions when p = 2 and p = 3, and H = Z.

Proposition 6.

(a) χ0
2, χ1

2 and q2 all satisfy equation (3).

(b) q3 satisfies equation (3).

Proof. (a) Suppose g(x+2)=g(x)+α. Then G(1, 1)=0, G(1, 2)=0,
G(2, 1) = g(2)+g(3)−g(4)−g(1) = g(2)+g(1)+α−g(2)−α−g(1) = 0, and



A Hosszú-like functional equation 511

G(2, 2) = g(4)+g(4)−g(6)−g(2) = g(2)+α+g(2)+α−g(2)−2α−g(2) = 0.
So every function that is 2-periodic on S to Z satisfies equation (3). But
these functions are of the form

g(x) = χ0
2(x) [g(1) + g(2)− g(3)] + χ1

2(x) [g(1)] + q2(x) [g(3)− g(1)]

and α = g(3)− g(1), as it must.
(b) Let g : S → Z satisfy, for all x ∈ S

g(x + 3) = g(x) + α.

Then G(1, b) = 0 for all b, and

G(3, b) = g(3b) + g(3 + b)− g(3b + 3)− g(b)

= g(3) + (b− 1)α + g(b) + α− g(3)− bα− g(b) = 0.

Now

G(2, 1) = g(2) + g(3)− g(4)− g(1)

= g(2) + g(3)− g(1)− α− g(1) = g(3) + g(2)− 2g(1)− α,

G(2, 2) = g(4) + g(4)− g(6)− g(2)

= 2g(1) + 2α− g(3)− α− g(2) = − [g(3) + g(2)− 2g(1)− α]

and G(2, 3) = 0. So g satisfies equation (3) if, and only if α = g(3)+g(2)−
2g(1); that is

g(x + 3) = g(x) + g(3) + g(2)− 2g(1).

Now q3(x + 3) = q3(x) + 1 and 1 = q3(3) + q3(2) − 2q3(1). Thus q3 is a
solution, as claimed. ¤

Putting the above proposition and Theorem 4 together we have:

Theorem 7. Let S be N or Z, and H an abelian group written ad-
ditively. Then f : S → H satisfies equation (3) if and only if there are
elements h1, h2, h3 and h4 in H such that

f(x) = χ0
2(x)h1 + χ1

2(x)h2 + q2(x)h3 + q3(x)h4

for all x ∈ S.

Proof. Clearly, by Proposition 6 each of

x 7→ χ0
2(x)h1, x 7→ χ1

2(x)h2, x 7→ q2(x)h3, x 7→ q3(x)h4
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satisfies equation (3). So does their sum hence the ‘if’ part is proved.
Now suppose f : S → H satisfies equation (3). Define

h1 : = f(2) + f(3)− f(5) h2 := f(1)

h3 : = f(5)− f(3) h4 := 2f(3)− f(1)− f(5)

and consider

f̃(x) := f(x)− χ0
2(x)h1 − χ1

2(x)h2 − q2(x)h3 − q3(x)h4.

Then f̃ satisfies equation (3). Moreover

f̃(1) = f(1)− h2 = 0

f̃(2) = f(2)− h1 − h3 = f(2)− f(2)− f(3) + f(5)− f(5) + f(3) = 0

f̃(3) = f(3)− h2 − h3 − h4

= f(3)− f(1)− f(5) + f(3)− 2f(3) + f(1) + f(5) = 0

f̃(5) = f(5)− h2 − 2h3 − h4

= f(5)− f(1)− 2f(5) + 2f(3)− 2f(3) + f(1) + f(5) = 0.

So f̃ is the zero function by Theorem 4 part (a). Hence f has the form
claimed. ¤

4. Concluding remarks

What is interesting about the linearization of equation (3) is that it
leads to “coupled” equations (4) and (5) whose solutions are very differ-
ent on N and Z. A non-zero Z-solution of equations (4) and (5) can be
identically zero on N. This phenomenon is worthy of further investigation.

Finally the Pexiderization of equation (3) over N and Z is also not
without interest.
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