Publ. Math. Debrecen 58 / 3 (2001), 515–521

A generalization of the Ando-Krieger theorem

By ROMAN DRNOVŠEK (Ljubljana)

Abstract. Using a recent remarkable result of Turovskii we prove the following extension of the famous Ando-Krieger theorem to multiplicative semigroups of operators. Let E be a Dedekind complete Banach lattice of dimension at least two, and let S be a multiplicative semigroup of quasinilpotent positive abstract kernel operators on E. Then S has a non-trivial invariant closed ideal.

1. Introduction

The Ando-Krieger theorem asserts that every quasinilpotent positive kernel operator on an L^p -space $(1 \leq p < \infty)$ has a non-trivial invariant closed ideal. This beautiful theorem has been extended by several authors. For instance, the papers [15], [4], [2], and [1] proved it under weaker assumptions on the operator and on the underlying Banach space. On the other hand, the authors of the papers [5] and [9] have considered multiplicative semigroups of quasinilpotent positive kernel operators on the L^2 -space and on the space $C(\mathcal{K})$, respectively. The aim of this note is to extend the results of these two papers to semigroups of operators on a Banach lattice. For the terminology concerning Banach lattices we refer to the standard books [10], [14], [18], [3], and [11].

Let X be a real or complex Banach space of dimension at least two. By an *operator* on X we mean a bounded linear transformation from X

Mathematics Subject Classification: 47A15, 47D03.

Key words and phrases: invariant subspaces, closed ideals, Banach lattices, kernel operators, positive operators, semigroups of operators.

This work was supported by the Research Ministry of Slovenia.

Roman Drnovšek

into itself. We denote by $\mathcal{B}(X)$ the Banach algebra of all operators on X. Let \mathcal{C} be a subset of $\mathcal{B}(X)$, and let $x \in X$. Define

$$\|\mathcal{C}\| := \sup\{\|T\| : T \in \mathcal{C}\}$$
 and $\|\mathcal{C}x\| := \sup\{\|Tx\| : T \in \mathcal{C}\}.$

If \mathcal{D} is another subset of $\mathcal{B}(X)$, we write $\mathcal{CD} := \{TS : T \in \mathcal{C}, S \in \mathcal{D}\}$. The powers \mathcal{C}^n are defined inductively by $\mathcal{C}^1 := \mathcal{C}, \mathcal{C}^n := \mathcal{C}\mathcal{C}^{n-1}$ for $n \geq 2$. The Rota-Strang spectral radius or the joint spectral radius $\hat{r}(\mathcal{C})$ of \mathcal{C} is defined by

$$\hat{r}(\mathcal{C}) = \inf_{n \in \mathbb{N}} \|\mathcal{C}^n\|^{1/n}.$$

If C is bounded, then the infimum is actually the limit (see [13]). In [6] and [8] the following notion has been introduced. The joint spectral radius of C at a vector $x \in X$ is defined by the formula

$$\hat{r}(\mathcal{C}, x) = \limsup_{n \to \infty} \|\mathcal{C}^n x\|^{1/n}.$$

Following [16] the collection \mathcal{C} is said to be *finitely quasinilpotent* if $\hat{r}(\mathcal{F}) = 0$ for any finite subset \mathcal{F} of \mathcal{C} . Similarly, the collection \mathcal{C} is *finitely quasinilpotent at a vector* $x_0 \in X$ whenever $\hat{r}(\mathcal{F}, x_0) = 0$ for any finite subset \mathcal{F} of \mathcal{C} .

The following remarkable result has been shown very recently by YU. TUROVSKII [17].

Theorem 1.1. Every multiplicative semigroup of quasinilpotent compact operators on X is finitely quasinilpotent.

Yu. Turovskii has obtained this theorem together with the following result that gives the answer to the long standing open question.

Theorem 1.2. Let S be a multiplicative semigroup of quasinilpotent compact operators on X. Then S has a non-trivial invariant closed subspace.

Let E be a real or complex Banach lattice. Let S and T be positive operators on E. We say that S is *dominated by* T whenever $S \leq T$, that is, the operator T - S is positive. In such a case we shall also say that T*dominates* S.

We now recall the famous result of ALIPRANTIS and BURKINSHAW (see e.g. [3]).

516

Theorem 1.3. Let E, F, G, and H be real or complex Banach lattices. If each of positive operators $S : E \to F, T : F \to G, U : G \to H$ is dominated by a compact positive operator, then the operator UTS is also compact.

From now on, we assume that E is a real or complex Banach lattice of dimension at least two. In [8] we have shown the following result in a slightly more general form.

Theorem 1.4. Let C be a collection of positive operators on E that is finitely quasinilpotent at a non-zero positive vector. If C contains an operator that dominates a non-zero positive compact operator, then C has a non-trivial invariant closed ideal.

The proof of the following lemma can be found in [7]. Recall that a subset \mathcal{I} of a multiplicative semigroup \mathcal{S} is said to be a *semigroup ideal* if ST and TS belong to \mathcal{I} for all $S \in \mathcal{S}$ and $T \in \mathcal{I}$.

Lemma 1.5. Let S be a multiplicative semigroup of positive operators on E. If a non-zero semigroup ideal of S has a non-trivial invariant closed ideal, then the semigroup S has a non-trivial invariant closed ideal as well.

For the rest of this section let us assume that E is Dedekind complete. Denote by E^* the norm dual of E. A rank-one operator on E is any operator of the form $u \otimes f$, where $u \in E$ and $f \in E^*$. A finite sum of such operators is known as a *finite rank operators*. Let $(E^* \otimes E)^{dd}$ be the band in the Banach lattice of all regular operators on E that is generated by all finite rank operators. As in [1] we call the operators in this band *abstract kernel operators*. It should be noted that in the usual definition of abstract kernel operators the norm dual E^* is replaced by the subband E_n^* in E^* of all order continuous functionals (see e.g. [18, Chap. 13]).

If E is a Banach function space with respect to σ -finite positive measure μ , then $(E^* \otimes E)^{dd}$ contains all kernel operators on E (see [18, Chap. 13]). Recall that an operator T on a Banach function space E is said to be a *kernel operator* if there exists a $\mu \times \mu$ -measurable function $k_T(s,t)$ such that

(1) $(Tf)(s) = \int k_T(s,t)f(t) d\mu(t)$ for almost all s,

(2) $\int |k_T(\cdot, t)f(t)| d\mu(t) \in E$ for each $f \in E$.

Roman Drnovšek

2. Results

We first apply Theorems 1.1 and 1.4 to obtain the following extension of the famous result of DE PAGTER [12].

Theorem 2.1. Let S be a multiplicative semigroup of quasinilpotent positive operators on a Banach lattice E. If S contains an operator that dominates a non-zero positive compact operator on E, then S has a non-trivial invariant closed ideal.

PROOF. Let K be a non-zero positive compact operator on E that is dominated by some $S \in S$. The semigroup generated by S and K is a non-zero semigroup of quasinilpotent positive operators on E. So, there is no loss of generality in assuming that $K \in S$. Let \mathcal{I} be the semigroup ideal of S generated by the operator K. By Theorem 1.1, the semigroup \mathcal{I} is finitely quasinilpotent. It follows that \mathcal{I} has a non-trivial invariant closed ideal by Theorem 1.4. Now Lemma 1.5 implies that S has a non-trivial invariant closed ideal. This completes the proof of the theorem. \Box

Given a collection C of positive operators on E, let N(C) denote the intersection of all null ideals of operators from C, that is,

$$N(\mathcal{C}) = \bigcap_{T \in \mathcal{C}} \{ x \in E : T | x | = 0 \}.$$

A slight modification of Lemma 6.2 of [1] gives the following generalization of it.

Lemma 2.2. Let C be a collection of positive abstract kernel operators on a Dedekind complete Banach lattice E. If $N(C) = \{0\}$, then for each non-zero $x_0 \in E^+$ there exist operators S, T, and $U \in C$ and a positive compact operator K on E such that $K \leq UTS$ and $Kx_0 > 0$.

PROOF. Let $x_0 \in E^+$ be a non-zero vector. Since $N(\mathcal{C}) = \{0\}$, there exists $S \in \mathcal{C}$ such that $Sx_0 > 0$. Since S is an abstract kernel operator, there exists a net $\{S_\alpha\}$ such that $0 \leq S_\alpha \uparrow S$ and each S_α is dominated by a positive finite rank operator. From $S_\alpha x_0 \uparrow Sx_0$ and $Sx_0 > 0$ it follows that there exists some index α_0 such that $S_\alpha x_0 > 0$ for all $\alpha \geq \alpha_0$. Since $N(\mathcal{C}) = \{0\}$, there exists $T \in \mathcal{C}$ such that $T(S_{\alpha_0}x_0) > 0$. Furthermore, there exists a net $\{T_\beta\}$ such that $0 \leq T_\beta \uparrow T$ and each T_β is dominated by a positive finite rank operator. Similarly, from $T_\beta(S_{\alpha_0}x_0) \uparrow T(S_{\alpha_0}x_0)$ and $T(S_{\alpha_0}x_0) > 0$ it follows that there exists some index β_0 such that $T_{\beta}(S_{\alpha_0}x_0) > 0$ for all $\beta \geq \beta_0$. Repeating this once more, we obtain an operator $U \in \mathcal{C}$ such that $U(T_{\beta_0}S_{\alpha_0}x_0) > 0$, and a net $\{U_{\gamma}\}$ such that $0 \leq U_{\gamma} \uparrow U$ and each U_{γ} is dominated by a positive finite rank operator. Also, there exists some index γ_0 such that $U_{\gamma_0}T_{\beta_0}S_{\alpha_0}x_0 > 0$.

If we let $K := U_{\gamma_0} T_{\beta_0} S_{\alpha_0}$, then K is a non-zero positive operator satisfying $K \leq UTS$ and $Kx_0 > 0$. Since it is also compact by Theorem 1.3, the proof is finished.

We are now able to prove the following extension of the Ando–Krieger theorem.

Theorem 2.3. Let S be a multiplicative semigroup of quasinilpotent positive abstract kernel operators on a Dedekind complete Banach lattice E. Then S has a non-trivial invariant closed ideal.

PROOF. We may assume that S is non-zero. If $N(S) \neq \{0\}$, then N(S) is a non-trivial closed ideal that is also invariant under any member of S. So, assume that $N(S) = \{0\}$. Then Lemma 2.2 implies that there exist operators S, T, and $U \in S$ and a non-zero positive compact operator K on E such that $K \leq UTS \in S$. Now, an application of Theorem 2.1 completes the proof.

In the case of Banach function spaces we obtain the following

Corollary 2.4. Let S be a multiplicative semigroup of quasinilpotent positive kernel operators on a Banach function space of dimension greater than 1. Then S has a non-trivial invariant closed ideal.

Observe that the last corollary is an extension of Theorem 3.4 of [5], where kernel operators on a L^2 -space with some additional assumptions were considered.

We conclude this note by giving another application of Theorem 2.1. To prove an extension of a very recent result of JAHANDIDEH [9, Theorem 3.4], we recall some relevant definitions and remarks from [9].

Let X be a locally compact Hausdorff–Lindelöf space. We consider the Banach lattice $C_0(X)$ of all real continuous functions on X that vanish at infinity. Let μ be a positive σ -finite Borel measure on X. By the Lindelöf property we may assume that every non-empty open subset of X has positive measure; see [5, Section 3] for the proof of this. An operator T on $C_0(X)$ is said to be *integral operator* on $C_0(X)$ by way of μ if the exists $\mu \times \mu$ -measurable real function k_T on $X \times X$ such that

$$(Tf)(x) = \int_X k_T(x, y) f(y) \, d\mu(y)$$

for each $f \in C_0(X)$. The following result is the promised extension of [9, Theorem 3.4].

Theorem 2.5. Let S be a multiplicative semigroup of quasinilpotent positive operators on $C_0(X)$. Assume that S contains an integral operator S by the way of μ such that its kernel $k_S : X \times X \to [0, \infty)$ is lower semicontinuous at some point $(x_0, y_0) \in X \times X$ with $k_S(x_0, y_0) > 0$. Then S has a non-trivial invariant closed ideal.

PROOF. Denote $k_S(x_0, y_0) = 2c$. Lower semicontinuity implies that there exist open sets U and V of X such that $k_S(x, y) \ge c$ for all $x \in U$ and $y \in V$. By Urysohn's lemma, there exists a continuous function u: $X \to [0, 1]$ such that $u(x_0) = 1$ and the support of u lies in U. Similarly, there is a continuous function $v : X \to [0, 1]$ such that $v(y_0) = 1$ and the support of v lies in V. Define the function $k_A : X \times X \to [0, c]$ by $k_A(x, y) = c u(x) v(y)$. The corresponding integral operator A on $C_0(X)$ by the way of μ (with the kernel k_A) is a non-zero positive compact operator that is dominated by S. An application of Theorem 2.1 now completes the proof. \Box

References

- Y. A. ABRAMOVICH, C. D. ALIPRANTIS and O. BURKINSHAW, Invariant subspace theorems for positive operators, J. Funct. Anal. 124 (1994), 95–111.
- [2] Y. A. ABRAMOVICH, C. D. ALIPRANTIS and O. BURKINSHAW, On the spectral radius of positive operators, *Math. Z.* 211 (1992), 593–607.
- [3] C. D. ALIPRANTIS and O. BURKINSHAW, Positive operators, Academic Press, Orlando, 1985.
- [4] V. CASELLES, An extension of Ando-Krieger's theorem to ordered Banach spaces, Proc. Amer. Math. Soc. 103 (1988), 1070–1072.
- [5] M. D. CHOI, E. A. NORDGREN, H. RADJAVI, P. ROSENTHAL and Y. ZHONG, Triangularizing semigroups of quasinilpotent operators with non-negative entries, *Indiana Univ. Math. J.* 42 (1993), 15-25.
- [6] R. DRNOVŠEK, On reducibility of semigroups of compact quasinilpotent operators, Proc. Amer. Math. Soc. 125 (1997), 2391–2394.

- [7] R. DRNOVŠEK, Triangularizing semigroups of positive operators on an atomic normed Riesz space, *Proc. Edinburgh Math. Soc.* **43** (2) (2000), 43–55.
- [8] R. DRNOVŠEK, Common invariant subspaces for collections of operators, Integ. Eq. Oper. Th. (to appear).
- [9] M. T. JAHANDIDEH, On the ideal-triangularizability of semigroups of quasinilpotent positive operators on $C(\mathcal{K})$, Canad. Math. Bull. **41** (1998), 298–305.
- [10] W. A. J. LUXEMBURG and A. C. ZAANEN, Riesz spaces I, North Holland, Amsterdam, 1971.
- [11] P. MEYER-NIEBERG, Banach lattices, Springer-Verlag, Berlin, Heidelberg, 1991.
- [12] B. DE PAGTER, Irreducible compact operators, Math. Z. 192 (1986), 149–153.
- [13] G.-C. ROTA and W. G. STRANG, A note on the joint spectral radius, Indag. Math. 22 (1960), 379–381.
- [14] H. H. SCHAEFER, Banach lattices and positive operators, (Grundlehren Math. Wiss. Bd. 215), Springer, Berlin, Heidelberg, New York, 1974.
- [15] H. H. SCHAEFER, On Theorems of de Pagter and Ando-Krieger, Math. Z. 192 (1986), 155–157.
- [16] V. S. SHULMAN, On invariant subspaces of Volterra operators, Funk. Anal. i Prilozen. 18 (1984), 84–85. (in Russian)
- [17] YU. V. TUROVSKII, Volterra semigroups have invariant subspaces, J. Funct. Anal. 162 (1999), 313–322.
- [18] A. C. ZAANEN, Riesz spaces II, North Holland, Amsterdam, 1983.

ROMAN DRNOVŠEK FACULTY OF MATHEMATICS AND PHYSICS UNIVERSITY OF LJUBLJANA JADRANSKA 19 SI-1000 LJUBLJANA SLOVENIA *E-mail*: roman.drnovsek@fmf.uni-lj.si

(Received September 16, 1999, file received October 14, 2000)