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A generalization of the Ando–Krieger theorem

By ROMAN DRNOVŠEK (Ljubljana)

Abstract. Using a recent remarkable result of Turovskii we prove the following
extension of the famous Ando–Krieger theorem to multiplicative semigroups of opera-
tors. Let E be a Dedekind complete Banach lattice of dimension at least two, and let S
be a multiplicative semigroup of quasinilpotent positive abstract kernel operators on E.
Then S has a non-trivial invariant closed ideal.

1. Introduction

The Ando–Krieger theorem asserts that every quasinilpotent positive
kernel operator on an Lp-space (1 ≤ p < ∞) has a non-trivial invariant
closed ideal. This beautiful theorem has been extended by several authors.
For instance, the papers [15], [4], [2], and [1] proved it under weaker as-
sumptions on the operator and on the underlying Banach space. On the
other hand, the authors of the papers [5] and [9] have considered mul-
tiplicative semigroups of quasinilpotent positive kernel operators on the
L2-space and on the space C(K), respectively. The aim of this note is to
extend the results of these two papers to semigroups of operators on a
Banach lattice. For the terminology concerning Banach lattices we refer
to the standard books [10], [14], [18], [3], and [11].

Let X be a real or complex Banach space of dimension at least two.
By an operator on X we mean a bounded linear transformation from X
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into itself. We denote by B(X) the Banach algebra of all operators on X.
Let C be a subset of B(X), and let x ∈ X. Define

‖C‖ := sup{‖T‖ : T ∈ C} and ‖Cx‖ := sup{‖Tx‖ : T ∈ C}.

If D is another subset of B(X), we write CD := {TS : T ∈ C, S ∈ D}.
The powers Cn are defined inductively by C1 := C, Cn := CCn−1 for n ≥ 2.
The Rota–Strang spectral radius or the joint spectral radius r̂(C) of C is
defined by

r̂(C) = inf
n∈N

‖Cn‖1/n.

If C is bounded, then the infimum is actually the limit (see [13]). In [6]
and [8] the following notion has been introduced. The joint spectral radius
of C at a vector x ∈ X is defined by the formula

r̂(C, x) = lim sup
n→∞

‖Cnx‖1/n.

Following [16] the collection C is said to be finitely quasinilpotent if r̂(F)= 0
for any finite subset F of C. Similarly, the collection C is finitely quasinilpo-
tent at a vector x0 ∈ X whenever r̂(F , x0) = 0 for any finite subset F of C.

The following remarkable result has been shown very recently by
Yu. Turovskii [17].

Theorem 1.1. Every multiplicative semigroup of quasinilpotent com-

pact operators on X is finitely quasinilpotent.

Yu. Turovskii has obtained this theorem together with the following
result that gives the answer to the long standing open question.

Theorem 1.2. Let S be a multiplicative semigroup of quasinilpotent

compact operators on X. Then S has a non-trivial invariant closed sub-

space.

Let E be a real or complex Banach lattice. Let S and T be positive
operators on E. We say that S is dominated by T whenever S ≤ T , that
is, the operator T − S is positive. In such a case we shall also say that T

dominates S.
We now recall the famous result of Aliprantis and Burkinshaw

(see e.g. [3]).
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Theorem 1.3. Let E, F , G, and H be real or complex Banach lattices.

If each of positive operators S : E → F , T : F → G, U : G → H is

dominated by a compact positive operator, then the operator UTS is also

compact.

From now on, we assume that E is a real or complex Banach lattice
of dimension at least two. In [8] we have shown the following result in a
slightly more general form.

Theorem 1.4. Let C be a collection of positive operators on E that

is finitely quasinilpotent at a non-zero positive vector. If C contains an

operator that dominates a non-zero positive compact operator, then C has

a non-trivial invariant closed ideal.

The proof of the following lemma can be found in [7]. Recall that a
subset I of a multiplicative semigroup S is said to be a semigroup ideal if
ST and TS belong to I for all S ∈ S and T ∈ I.

Lemma 1.5. Let S be a multiplicative semigroup of positive operators

on E. If a non-zero semigroup ideal of S has a non-trivial invariant closed

ideal, then the semigroup S has a non-trivial invariant closed ideal as well.

For the rest of this section let us assume that E is Dedekind complete.
Denote by E∗ the norm dual of E. A rank-one operator on E is any
operator of the form u ⊗ f , where u ∈ E and f ∈ E∗. A finite sum of
such operators is known as a finite rank operators. Let (E∗ ⊗E)dd be the
band in the Banach lattice of all regular operators on E that is generated
by all finite rank operators. As in [1] we call the operators in this band
abstract kernel operators. It should be noted that in the usual definition
of abstract kernel operators the norm dual E∗ is replaced by the subband
E∗

n in E∗ of all order continuous functionals (see e.g. [18, Chap. 13]).
If E is a Banach function space with respect to σ-finite positive mea-

sure µ, then (E∗ ⊗ E)dd contains all kernel operators on E (see [18,
Chap. 13]). Recall that an operator T on a Banach function space E

is said to be a kernel operator if there exists a µ× µ-measurable function
kT (s, t) such that

(1) (Tf)(s) =
∫

kT (s, t)f(t) dµ(t) for almost all s,

(2)
∫ |kT ( · , t)f(t)| dµ(t) ∈ E for each f ∈ E.
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2. Results

We first apply Theorems 1.1 and 1.4 to obtain the following extension
of the famous result of de Pagter [12].

Theorem 2.1. Let S be a multiplicative semigroup of quasinilpotent

positive operators on a Banach lattice E. If S contains an operator that

dominates a non-zero positive compact operator on E, then S has a non-

trivial invariant closed ideal.

Proof. Let K be a non-zero positive compact operator on E that
is dominated by some S ∈ S. The semigroup generated by S and K is a
non-zero semigroup of quasinilpotent positive operators on E. So, there is
no loss of generality in assuming that K ∈ S. Let I be the semigroup ideal
of S generated by the operator K. By Theorem 1.1, the semigroup I is
finitely quasinilpotent. It follows that I has a non-trivial invariant closed
ideal by Theorem 1.4. Now Lemma 1.5 implies that S has a non-trivial
invariant closed ideal. This completes the proof of the theorem. ¤

Given a collection C of positive operators on E, let N(C) denote the
intersection of all null ideals of operators from C, that is,

N(C) =
⋂

T∈C
{x ∈ E : T |x| = 0}.

A slight modification of Lemma 6.2 of [1] gives the following generalization
of it.

Lemma 2.2. Let C be a collection of positive abstract kernel operators

on a Dedekind complete Banach lattice E. If N(C) = {0}, then for each

non-zero x0 ∈ E+ there exist operators S, T , and U ∈ C and a positive

compact operator K on E such that K ≤ UTS and Kx0 > 0.

Proof. Let x0 ∈ E+ be a non-zero vector. Since N(C) = {0}, there
exists S ∈ C such that Sx0 > 0. Since S is an abstract kernel operator,
there exists a net {Sα} such that 0 ≤ Sα ↑ S and each Sα is dominated by
a positive finite rank operator. From Sαx0 ↑ Sx0 and Sx0 > 0 it follows
that there exists some index α0 such that Sαx0 > 0 for all α ≥ α0. Since
N(C) = {0}, there exists T ∈ C such that T (Sα0x0) > 0. Furthermore,
there exists a net {Tβ} such that 0 ≤ Tβ ↑ T and each Tβ is dominated
by a positive finite rank operator. Similarly, from Tβ(Sα0x0) ↑ T (Sα0x0)
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and T (Sα0x0) > 0 it follows that there exists some index β0 such that
Tβ(Sα0x0) > 0 for all β ≥ β0. Repeating this once more, we obtain an
operator U ∈ C such that U(Tβ0Sα0x0) > 0, and a net {Uγ} such that
0 ≤ Uγ ↑ U and each Uγ is dominated by a positive finite rank operator.
Also, there exists some index γ0 such that Uγ0Tβ0Sα0x0 > 0.

If we let K := Uγ0Tβ0Sα0 , then K is a non-zero positive operator sat-
isfying K ≤ UTS and Kx0 > 0. Since it is also compact by Theorem 1.3,
the proof is finished. ¤

We are now able to prove the following extension of the Ando–Krieger
theorem.

Theorem 2.3. Let S be a multiplicative semigroup of quasinilpotent

positive abstract kernel operators on a Dedekind complete Banach lat-

tice E. Then S has a non-trivial invariant closed ideal.

Proof. We may assume that S is non-zero. If N(S) 6= {0}, then
N(S) is a non-trivial closed ideal that is also invariant under any member
of S. So, assume that N(S) = {0}. Then Lemma 2.2 implies that there
exist operators S, T , and U ∈ S and a non-zero positive compact operator
K on E such that K ≤ UTS ∈ S. Now, an application of Theorem 2.1
completes the proof. ¤

In the case of Banach function spaces we obtain the following

Corollary 2.4. Let S be a multiplicative semigroup of quasinilpotent

positive kernel operators on a Banach function space of dimension greater

than 1. Then S has a non-trivial invariant closed ideal.

Observe that the last corollary is an extension of Theorem 3.4 of [5],
where kernel operators on a L2-space with some additional assumptions
were considered.

We conclude this note by giving another application of Theorem 2.1.
To prove an extension of a very recent result of Jahandideh [9, Theo-
rem 3.4], we recall some relevant definitions and remarks from [9].

Let X be a locally compact Hausdorff–Lindelöf space. We consider
the Banach lattice C0(X) of all real continuous functions on X that vanish
at infinity. Let µ be a positive σ-finite Borel measure on X. By the
Lindelöf property we may assume that every non-empty open subset of X

has positive measure; see [5, Section 3] for the proof of this. An operator T
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on C0(X) is said to be integral operator on C0(X) by way of µ if the exists
µ× µ-measurable real function kT on X ×X such that

(Tf)(x) =
∫

X

kT (x, y)f(y) dµ(y)

for each f ∈ C0(X). The following result is the promised extension of [9,
Theorem 3.4].

Theorem 2.5. Let S be a multiplicative semigroup of quasinilpotent

positive operators on C0(X). Assume that S contains an integral oper-

ator S by the way of µ such that its kernel kS : X × X → [0,∞) is

lower semicontinuous at some point (x0, y0) ∈ X ×X with kS(x0, y0) > 0.

Then S has a non-trivial invariant closed ideal.

Proof. Denote kS(x0, y0) = 2c. Lower semicontinuity implies that
there exist open sets U and V of X such that kS(x, y) ≥ c for all x ∈ U

and y ∈ V . By Urysohn’s lemma, there exists a continuous function u :
X → [0, 1] such that u(x0) = 1 and the support of u lies in U . Similarly,
there is a continuous function v : X → [0, 1] such that v(y0) = 1 and
the support of v lies in V . Define the function kA : X × X → [0, c] by
kA(x, y) = c u(x) v(y). The corresponding integral operator A on C0(X) by
the way of µ (with the kernel kA) is a non-zero positive compact operator
that is dominated by S. An application of Theorem 2.1 now completes the
proof. ¤
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