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On p-subnormal subgroups of finite p-soluble groups

By M. GÓMEZ-FERNÁNDEZ (Pamplona)

Abstract. In this paper we present some results for p-subnormal subgroups (con-
cept introduced by Kegel in [6]). These statements are analogous to some well-known
results for subnormal subgroups, mainly due to Wielandt, and they hold in all p-soluble
groups.

Nevertheless, since the set of all p-subnormal subgroups of a group fails to be a
lattice new arguments have to be used.

1. Introduction

Throughout this paper, we will denote with p a fixed prime number.
All groups considered will be finite.

O. Kegel, in a celebrated paper in 1962, [6], introduced the concept
of π-subnormal subgroups, with π a set of prime numbers, as the sub-
groups whose intersections with all Sylow p-subgroups of the group are
Sylow p-subgroups of the subgroup, for all p ∈ π. In this paper he stated
a famous conjecture that was proved almost 30 years later: a subgroup H

is subnormal in a group G if and only if every Sylow subgroup of G meets
H in a Sylow subgroup of H, i.e. a subgroup H is subnormal in G if and
only if H is p-subnormal in G for all primes p. H. Wielandt, in [9], when
the classification of finite simple groups was almost achieved, included this
conjecture as one of the important research areas after the classification
(cf. [9]). He called it the Kegel’s Problem and, since then, this question
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was called the Kegel–Wielandt conjecture. Finally in [7], P. B. Kleid-
man published a proof of this conjecture (cf. [7]) which depends upon the
classification of finite simple groups. This paper focused the attention on
the systematic study of p-subnormality as an embedding property. In this
line, the first contribution, after Kegel’s paper, came again from Kleidman
himself together with R. Guralnik and R. Lyons in [4] (cf. [4]).

All subnormal subgroups of a group form a lattice with the usual join
and meet of subgroups. Lattice properties are crucial in the study of sub-
normal subgroups (cf. [8]) and most of the theorems about subnormality
make a strong use of lattice properties in their proofs. However, it is easy
to find examples showing that the set of all p-subnormal subgroups of a
group is not a lattice. In [2], the class of groups in which all p-subnormal
subgroups form a lattice is characterized as the class of p-soluble groups
whose p-lenght and p′-lenght are both less or equal to 1. In this class it
is not difficult to prove for p-subnormality analogous properties to those
of subnormality. The aim of this paper is to present some results for p-
subnormal subgroups which are analogous to some others for subnormal
subgroups (mainly due to Wielandt) and whose validity holds in all p-
soluble groups. This is not an empty exercise in generalization since, by
the above remarks, we cannot use lattice properties. So we have to build
new proofs.

Definition. A subgroup H of a group G is said to be a p-subnormal
subgroup of G if P ∩H is a Sylow p-subgroup of H, for any P ∈ Sylp(G).

We collect some basic results from p-subnormality.

Proposition 1. Let G be a group and N a normal subgroup of G.

i) If H is a p-subnormal subgroup of G, then HN/N is a p-subnormal
subgroup of G/N .

ii) If HN/N is a p-subnormal subgroup of G/N , then HN is a p-subnor-
mal subgroup of G. Moreover if N is a p-group, then H is p-subnormal
in G.

iii) If H is a p-subnormal subgroup of G and K is a p-subnormal subgroup
of H, then K is p-subnormal in G.

iv) If H and K are p-subnormal subgroups of G and HK = KH, then
HK and H ∩K are p-subnormal in G.

v) If H is p-subnormal in G, then Op(H) ≤ Op(G).

Proof. These are straightforward consequences of the definition.
¤

An important property of p-subnormal subgroups is the following
(cf. Lemma 2.6 of [4], and 2.4, 2.5 of [7]).
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Lemma. Let h be a p-element of a group G and write

ΘG(h) =
| Sylp(G)|

|{P ∈ Sylp(G): h ∈ P}| .

Then, if H is a p-subnormal subgroup of G, we have that ΘG(h) = ΘH(h)
for any p-element h of H.

Subnormality is the embedding property which arise when we extend
the pro-perty of being normal by transitivity. In our first result we ob-
tain that in the class of p-soluble groups, p-subnormality is the transitive
extension of p-quasinormality.

Definition. A subgroup H of a group G is said to be p-quasinormal
in G if for every Sylow p-subgroup P of G, the product HP is a subgroup
of G.

An easy order consideration proves that p-quasinormal subgroups are
p-subnormal.

Proposition 2. Let G be a p-soluble group and H a maximal
p-subnormal subgroup of G (i.e. H is p-subnormal in G and if K is a
p-subnormal subgroup of G with H ≤ K ≤ G, then either H = K or
K = G). Then one of the following holds:

i) if p does not divide the index |G : H|, then Op′(G) ≤ H,

ii) if p divides |G : H|, then |G : H| = pα.

In particular, in both cases, H is a p-quasinormal subgroup of G and
H is indeed a maximal subgroup of G.

Proof. Part (i) is clear. To prove (ii) we can assume without loss of
generality that H contains no nontrivial normal subgroup of G. Therefore,
maximality of H as p-subnormal subgroup of G forces G = HN for every
minimal normal subgroup N of G. In this case p divides the order of N .
Since G is p-soluble, N is a p-group and the conclusion follows. ¤

In the alternating group of degree 5, G = Alt(5), the normalizer H
in G of each Sylow 5-subgroup of G is a maximal subgroup of G which
is 2-subnormal. Nevertheless the index |G : H| = 6. Therefore the above
proposition fails in non p-soluble groups.

Corollary. Let G be a p-soluble group. A subgroup H of G is a p-
subnormal subgroup of G if and only if there exists a chain of subgroups

H = H0 ≤ H1 ≤ · · · ≤ Hn = G

such that Hi is a p-quasinormal subgroup of Hi+1 for every i = 0, . . . , n−1.
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2. Theorems like Wielandt’s

Our first result is a version of the famous “Wielandt’s first maxi-
mizer lemma” (see [8] Lemma 7.3.1) for p-subnormal subgroups in p-soluble
groups.

Theorem 1. Let G be a p-soluble group and let A be a subgroup of G.
Suppose that A is not p-subnormal in G, but A is p-subnormal in H for
all proper subgroups H of G containing A. Then

i) A is contained in a unique maximal subgroup M of G, and

ii) if g ∈ G, then Ag ≤ M if and only if g ∈ M .

Proof. (i) Suppose the claim is not true and let G be a minimal
counterexample. We choose a subgroup A of G of minimal order such that
A is not p-subnormal in G, A is a p-subnormal subgroup of every proper
subgroup of G containing A and A is contained in at least two different
maximal subgroups, say M and L, of G.

We take a normal subgroup N of G and consider C = AN . Assume
that C is a proper subgroup of G. Then A is p-subnormal in C. Moreover,
C is not p-subnormal in G. This implies that C/N is not p-subnormal in
G/N . On the other hand, it is clear that if K is a proper subgroup of G
such that C ≤ K, then A is p-subnormal in K. Therefore C/N = AN/N is
p-subnormal in K/N . By minimality of G, the subgroup C/N is contained
in a unique maximal subgroup of G/N . From here we deduce that either
N � L or N � M . Suppose that N � M then G = MN . From the p-
subnormality of A in M , we deduce the p-subnormality of AN/N in G/N =
MN/N , and then C is p-subnormal in G, a contradiction. Therefore G =
AN for any normal subgroup of G. In particular, coreG(A) = 1. Moreover,
coreG(M) = coreG(L) = 1 and then G is a primitive group. Since A is not
a maximal subgroup of G, the Socle of G is non-abelian.

Suppose that N is a minimal normal subgroup of G. Now N is a
p′-group and the index |M : A| is a p′-number. Since A is p-subnormal
in M , the subgroup Op′(A) = Op′(M) is normal in M . Analogously we
deduce that Op′(A) is a normal subgroup of L. Therefore Op′(A) is normal
in 〈L,M〉 = G. This implies that A is p-subnormal in G, a contradiction.

(ii) This is an immediate consequence of (i). If Ag ≤ M , then
A ≤ Mg−1

and by (i), we deduce that g ∈ NG(M). If M were a nor-
mal subgroup of G, then A would be p-subnormal in G, a contradiction.
Hence M = NG(M) and g ∈ M . ¤
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Example. The p-solubility restriction in the above result is necessary.
Let G = Alt(6) be the alternating group of degree 6 and consider in G the
following subgroups:

A = 〈t1 = (123), t2 = (12)(34), t3 = (12)(45)〉,
and

B = 〈s1 = (124)(653), s2 = (16)(25), s3 = (14)(53)〉.

It is clear that A is the stabilizer of the point 6 and then A ∼= Alt(5). We
see also that t31 = 1 = s3

1, t22 = s2
2 = 2 = t23 = s2

3, (t1t2)3 = (t2t3)3 = 1 =
(s1s2)3 = (s2s3)3, (t3t1)2 = (t1t3)2 = 1 = (s3s1)2 = (s1s3)2. This implies
that the mapping θ defined by tθi = si, for i = 1, 2, 3, can be extended to
an isomorphism from A to B and then B ∼= Alt(5).

Now a = ss1
2 = (25)(43) and b = s3s = (14523). Then ba = b−1.

Thisimplies that the subgroup H = 〈b, a〉 ∼= Dih(5) and H ≤ A ∩ B. In
fact P = 〈b〉 is a Sylow 5-subgroup of A and B and H = NA(P ) = NB(P ).
At least, there are two different maximal subgroups of G containing H.

In fact if K is a proper subgroup of G such that H ≤ K, then either
H = K of K ∼= Alt(5) and then H = NK(P ). Therefore H is 2-subnormal
in every proper subgroup of G containing H.

On the other hand, for any involution x ∈ H we have ΘH(x) = 5.
G possesses 45 involutions all conjugate. Each Sylow 2-subgroup of G is
isomorphic to Dih(4) and contains 5 involutions. Then ΘG(x) = 45

5 = 9.
Then H is not 2-subnormal in G

After the above theorem it is not difficult to deduce a criterion for
p-subnor-mality in p-soluble groups analogous to Wielandt’s (see [8] The-
orem 7.3.3).

Theorem 2. Let G be a p-soluble group and a subgroup H of G. The

following statements are pairwise equivalent:

i) H is a p-subnormal subgroup of G;

ii) for every g ∈ G, H is a p-subnormal subgroup of 〈H, g〉;
iii) for every g ∈ G, H is a p-subnormal subgroup of 〈H, Hg〉.

Proof. The only non-obvious implication is (iii) =⇒ (i). To prove it,
we assume that there exists a counterexample G of minimal order: there
exists a proper subgroup H of G which is not p-subnormal in G despite H

is a p-subnormal subgroup of 〈H, Hg〉 for all g ∈ G.
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By minimality of G, we deduce that the subgroup H is p-subnormal
in every proper subgroup of G containing H and no proper p-subnormal
subgroup of G contains H. We apply the Theorem 1a and we deduce that
there exists a unique maximal subgroup M of G such that H ≤ M . Take
an element g ∈ G \M and consider the subgroup K = 〈H, Hg〉. Clearly
K is a proper subgroup of G and then K is contained in some maximal
subgroup of G. This maximal subgroup contains also H. The uniqueness
of M forces Hg ≤ M . But by Theorem 1b, we have g ∈ M . This is the
final contradiction. The minimal counterexample does not exist and the
claim is true. ¤

Notice that in the last theorem, taking all the primes that divide the
order of the group G, we obtain a proof of the criterion of subnormality,
due to Wielandt, for subgroups of a soluble group.

Theorem 3. Let G be a p-soluble group and H,K ≤ G such that

G = HK. Let A be a p-subnormal subgroup of H and of K. Then A is a

p-subnormal subgroup of G.

Proof. Let G be a counterexample of minimal order to the theorem.
Consider a triple of subgroups H, K, A such that G = HK, A is p-
subnormal in both H and K but A is not p-subnormal in G and |H|+ |K|
is of maximal order with these requirements.

If M is a maximal subgroup of G such that H is a proper subgroup
of M , then M = H(K ∩M), by Dedekind’s law. Since A is p-subnormal
subgroup in H and in K ∩ M , the subgroup A is p-subnormal in M by
minimality of G. Now G = MK and |M |+ |K| > |H|+ |K|. Maximality
of |H|+ |K| forces A to be p-subnormal in G, a contradiction. Therefore
H is a maximal subgroup of G.

Suppose that N is a proper normal subgroup of G. The triple HN/N ,
KN/N , AN/N satisfy the hypotheses of the theorem in the group G/N .
By minimality of G the subgroup AN/N is p-subnormal in G/N . Then
AN is a p-subnormal subgroup of G.

Suppose now that N is a minimal normal subgroup of G and N ≤ H.
Since AN ≤ H, we have that A is a p-subnormal in AN and then in G, a
contradiction. Therefore coreG(H) = 1.

Analogously it can be deduced that K is a core-free maximal subgroup
of G.
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So, G is a soluble primitive group and both H and K complement the
unique minimal normal subgroup N of G. Hence H and K are conjugate
in G. But in this case G 6= HK by Ore’s Theorem (cf. [3] Th. A.16.2).
This is the final contradiction. ¤

In the above example, notice that G = AB and H = A∩B. Therefore
H is 2-subnormal in A and B but H is not 2-subnormal in AB = G, i.e.
the solubility hypothesis is necessary in the Theorem 3.

3. On p-subnormalizers

The classical Wielandt’s criteria of subnormality allow the introduc-
tion of the subnormalizer of a subgroup in a group (cf. [8], 7.7). Here, the
criteria of p-subnormality in Theorem 2 allow us to introduce a similar
concept.

Definition. Given a group G and H ≤ G we consider the subset

Sp
G(H) = {g ∈ G: H is p-subnormal in 〈H, g〉}.

This subset will be called the p-subnormalizer of H in G.

Remarks. Let G be a group and H ≤ G.
1) If G is p-soluble, it is clear, by Theorem 2, that a subgroup H of G is

p-subnormal in G if and only if Sp
G(H) = G.

2) If H ≤ K ≤ G, then Sp
K(H) = Sp

G(H) ∩K.

3) Sp
G(H) =

⋃{K ≤ G: H is p-subnormal in K}. In particular, if Sp
G(H)

is a subgroup, then Sp
G(H) is the largest subgroup of G in which H is

p-subnormal.

4) If T is a p-subnormal subgroup of H, then Sp
G(H) ⊆ Sp

G(T ).

5) If H is a p-subgroup of G, then Sp
G(H) = SG(H), the subnormalizer

of H in G.

6) If N is a normal subgroup of G, then Sp
G(H)N/N ⊆ Sp

G/N (HN/N).
If moreover N ≤ H, then Sp

G(H)/N = Sp
G/N (H/N).

7) Sp
G(H) ⊆ Sp

G(Op′(H)). Moreover, if Sp
G(Op′(H)) is a p-soluble sub-

group, then Sp
G(H) = Sp

G(Op′(H)).
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Proof. If Sp
G(Op′(H)) is a p-soluble subgroup of G, then Op′(H) is p-

subnormal in Sp
G(Op′(H)) and H ≤ Sp

G(Op′(H)). Hence H is p-subnormal
in Sp

G(Op′(H)). ¤

8) If G is a p-soluble group, then Sp
G(H) is a subgroup of G if and only

if for every pair of subgoups A,B of G such that H is p-subnormal in
both of them, we have that H is p-subnormal in 〈A,B〉.
Proof. If Sp

G(H) is a subgroup of G, it is easy to see, by Remark 3,
that the claim is true. To prove the sufficiency, we suppose that x1, x2 ∈
Sp

G(H). Then, for i = 1, 2, H is p-subnormal in 〈H, xi〉 = Ai. Hence
H is p-subnormal in 〈A1, A2〉. Since x1x2 ∈ 〈A1, A2〉 we conclude that
x1x2 ∈ Sp

G(H); i.e. Sp
G(H) is a subgroup of G. ¤

9) If H is a subgroup of G and p does not divides to |G : H|, then
Sp

G(H) = NG(Op′(H)).

Proof. Obviously Sp
G(H) ⊆ NG(Op′(H)). Now, we suppose that H

is p-subnormal in 〈H, g〉 = K. Since p does not divides to |G : H| we can
deduce that Op′(H) = Op′(K). Then K is a subgroup of NG(Op′(H)) and
therefore NG(Op′(H) ⊆ Sp

G(H). ¤

Now we turn our attention to the study of the class of p-soluble groups
in which the p-subnormalizers of all their subgroups are subgroups too.
We denote this class of groups by X. Casolo obtained important results
about the class of finite groups, which he call sn-groups, in which the
subnormalizers of all subgroups are subgroups too (cf. [1]). This results
will be helpful in study of the class X.

Casolo (see [1] Lemma 1.2) shows that if H is a subnormal subgroup
of G and Q ∈ Sylp(H), then G = H〈SG(Q)〉. In the case of p-subnormal
subgroups of a p-soluble group we obtain the following result.

Proposition 5. If H is a p-subnormal subgroup of a p-soluble group

G and Q ∈ Sylp(H), then G = H〈Sp
G(Q)〉.

Proof. First we suppose that H is a maximal p-subnormal subgroup
of G and we apply Proposition 2. If p does not divide the index |G : H|,
then Sylp(H) = Sylp(G). An easy Frattini argument proves that G =
HNG(Q). If pα = |G : H|, then G = HP for any Sylow p-subgroup P

of G. Moreover, Q = P ∩H ∈ Sylp(H) and Q is a p-subnormal subgroup
of P , i.e. P ⊆ 〈Sp

G(Q)〉. Hence the result follows clearly in both cases.
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In the general case, let K be a maximal p-subnormal subgroup of G

such that H ≤ K. We can assume that H < K < G and by induction
K = H〈Sp

K(Q)〉 with Q ∈ Sylp(H). Now, we take a Sylow p-subgroup P

of K such that Q ≤ P . Since Q is p-subnormal in P , we have Sp
G(P ) ⊆

〈Sp
G(Q)〉. Hence, G = K〈Sp

G(P )〉 = H〈Sp
K(Q)〉〈Sp

G(Q)〉 = H〈Sp
G(Q)〉. ¤

Proposition 5 suggests that if G is a p-soluble group in X and H is a
subgroup of G, then Sp

G(H) = HSp
G(Q), where Q ∈ Sylp(H). Nevertheless

this is not true in general. Some others conditions are needed as we see
next.

Proposition 6. If G is a p-soluble group and H ≤ G is a subgroup

of G then:

i) Sp
G(H) ⊆ H〈SG(Q)〉, for any Q ∈ Sylp(H);

ii) if G is a sn-group and HSG(Q) is a subgroup of G, for some Q ∈
Sylp(H), then Sp

G(H) = HSG(Q)

Proof. (i) Let K be a subgroup of G such that H is p-subnormal
in K. By Proposition 5, for any Q ∈ Sylp(H), we have K = H〈SK(Q)〉.
Notice that 〈SK(Q)〉 ≤ 〈SG(Q)〉∩K. This implies that K = H〈SK(Q)〉 ≤
H(〈SG(Q)〉 ∩ K) = H〈SG(Q)〉 ∩ K. Hence K ≤ H〈SG(Q)〉. Finally, we
obtain Sp

G(H) ⊆ H〈SG(Q)〉, by Remark 3.
(ii) We denote by K the subgroup HSG(Q). We prove that K ⊆

Sp
G(H). By an easy order consideration we have, |K|p = |SG(Q)|p, i.e.

Sylp(SG(Q)) ⊆ Sylp(K). Choose P ∈ Sylp(K). It is clear that P k ∈
SG(Q), for some k ∈ K. Moreover if k = hx, with h ∈ H and x ∈ SG(Q),
we deduce that Ph ≤ SG(Q). Since G is a sn-group, by [1] Proposition 1.4,
we have that SG(Q) = NG(R), where R is the intersection of all Sylow
p-subgroups of G containing Q. In particular, Q ≤ R ≤ Op(SG(Q)) ≤ Ph

and then Qh−1
= P ∩H. Then P ∩H ∈ Sylp(H), i.e. H is p-subnormal in

K and K ⊆ Sp
G(H). Therefore, we conclude that K = Sp

G(H). ¤
In the next example we consider a soluble group G in X, p = 3, and we

see that there exists a subgroup H of G, such that S3
G(H) 6= 〈HSG(Q)〉.

Example. Let C be the cyclic group of order 6. Denote C = 〈a, b〉 with
a3 = 1 and b2 = 1. The group C acts on a two dimensional GF (7)-vector
space V in such a way that there exists a basis {w1, w2} of G in which the
action of a has matrix

(
4 0

0 4

)
and the action of b is

(
0 1

1 0

)
. Consider the

semidirect product G = [V ]C.
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Since |G| = 72.3.2, each proper subgroup of G is either a 3′-group
(and therefore is 3-subnormal in G, i.e. S3

G(H) = G) or its index is prime
to 3. Hence, by Remark 9, we deduce that the 3-subnormalizer of each
subgroup is a subgroup of G.

Consider in G the subgroup H = [〈w1〉]〈a〉. The subgroup H is iso-
morphic to the Frobenius group of order 21. For Q = 〈a〉, a Sylow 3-
subgroup of H, we have SG(Q) = NG(Q) = C. Notice that the subset
HC = HSG(Q) is not a subgroup of G. On the other hand, if K < G
and H is 3-submormal in K then, using the above argument, |G : K| = 7.
Therefore K ≤ NG(H) ≤ NG(〈w1〉) = V 〈a〉, a contradiction. Hence
S3

G(H) = H.
Consequently S3

G(H) is a subgroup of G, G is a soluble group in X and
HSG(Q) is not a subgroup of G; moreover H = S3

G(H) 6= 〈HSG(Q)〉 = G
The class X, as the class of the sn-groups, verifies the following prop-

erties:

Proposition 7. The class X verifies the following properties:

i) if G ∈ X and N is a normal subgroup of G, then G/N ∈ X; in other
words, X is an homomorph;

ii) if G ∈ X and H is a subgroup of G, then H ∈ X; this is to say that X
is a S-closed homomorph;

iii) if N is a normal p-subgroup of a group G such that G/N ∈ X, then
G ∈ X; in the notacion of [3], this is SpX = X.

Proof. (i) Let G be a group in X and N a normal subgroup of G.
For any subgroup H/N of G/N we have, by Remark 6, that Sp

G/N (H/N) =
Sp

G(H)/N . Therefore Sp
G/N (H/N) is a subgroup of G/N . Hence G/N ∈ X.

(ii) Let G be a group in X and H a subgroup of G. If A is a subgroup
of H, then Sp

H(A) = Sp
G(A)∩H. In particular Sp

H(A) is a subgroup of H.
Hence H ∈ X.

(iii) Let G be a group and N a normal p-subgroup of G such that
G/N ∈ X. If H is a subgroup of G, then H is p-subnormal in HN . Suppose
that H is a p-subnormal subgroup of two subgroups A and B of G. Since
the p-subnormalizers in G/N are subgroups, we have that HN/N is a p-
subnormal subgroup of 〈A,B〉N/N . Then HN is p-subnormal in 〈A,B〉N .
Hence H is p-subnormal in 〈A,B〉; this implies that Sp

G(H) is a subgroup
of G. Therefore G ∈ X. ¤
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