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S-unit equations, linear recurrences
and digit expansions

By ATTILA PETHŐ (Debrecen) and ROBERT F. TICHY (Graz)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. We consider diophantine equations the solutions of which have bound-
ed digits. More precisely we deal with equations in algebraic number fields, canonical
number systems and digital representations based on linear recurrences. Our main
result is an extension of a recent result of H.-P. Schlickewei giving a bound for the
number of solutions of such equations.

1. Introduction

In 1973 Senge and Straus [SS] proved that the number of integers
the sum of whose digits in each of the bases a and b lies below a fixed
bound is finite if and only if a and b are multiplicatively independent.
A quantitative version of this result was given by Stewart [St] using
Baker’s method. In 1989 Schlickewei [Sch1] established the following
extension of the problem to equations ±n1 ± n2 ± . . .± nk = 0.

Theorem 0. Let k ≥ 2 and suppose that b1, . . . , bk are integers larger
than 1 such that bj and bl are multipicatively independent for j 6= l. Let c
be a positive integer and let n1, n2, . . . , nk be non-negative integers such
that for each j with 1 ≤ j ≤ k the number nj has sum of digits in base bj

bounded by c. Then the equation

±n1 ± n2 ± . . .± nk = 0

has only finitely many solutions. Moreover the number of solutions is
bounded by
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(
8(ω + 1)

)226c(ω+1)6

,

where ω denotes the number of prime factors of b1 · · · bk.

The proof of this theorem uses the quantitative version of the theo-
rem on S-unit equations, which is an application of Schlickewei’s p-adic
version of Schmidt’s subspace theorem. For a detailed survey on S-unit
equations see [EGST].

In the theory of automatic sequences digit expansions with respect
to linear recurring sequences play an important role. In the papers [PT],
[GT1] and [GT2] such expansions were studied in some detail. The main
results are concerned to the asymptotic behaviour of the sum of digits
function. In the present paper we extend the above theorem to such digital
systems. Let G = (Gk), k = 0, 1, . . . be a linear recurring sequence of order
d ≥ 1

Gk+d = a1Gk+d−1 + a2Gk+d−2 + · · ·+ adGk

with integral coefficients and integral initial values. For d = 1 we assume
G0 = 1 and a1 > 1. For d ≥ 2 we assume that the coefficients a1 ≥ a2 ≥· · · ≥ ad > 0 are non-increasing and

1 = G0, Gk ≥ a1Gk−1 + · · ·+ akG0 + 1 for k = 1, . . . , d− 1.

For an arbitrary positive integer n define L = L(n) by GL ≤ n < GL+1

and put L(0) = 0. Set mL = n and ([t] denoting the integral part)

εj =
[
mj

Gj

]
and mj−1 = mj −Gjεj (1 ≤ j ≤ L) and ε0 = m0.

Hence we obtain a well-defined representation of any positive integer n in
the form

n =
L(n)∑

j=0

εjGj ,

the so-called G-ary expansion of n with digits εj = εj(n). Furthermore we
define

s(n) = sG(n) =
L(n)∑

j=0

εj ,

the sum of G-ary digits of n.

Remark 1. The (t + 1)-tuple (ε0, . . . , εt) of non-negative integers is
the sequence of G-ary digits of an integer if and only if

k∑

j=0

εjGj < Gk+1 for all 0 ≤ k < d− 1



S-unit equations, linear recurrences and digit expansions 147

and
(εk, . . . , εk−d+1) < (a1, . . . , ad) for all 0 ≤ k ≤ t.

This characterization is proved in [PT] and [Fr]. It should be noted here
that a much more general situation is treated in [GT2].

Remark 2. From a theorem of A. Brauer [Br] it follows that the
characteristic roots of linear recurrences with non-increasing coefficients
are PV-numbers, i.e. algebraic integers such that all but one conjugates
are in absolute value less than 1. Furthermore Brauer has shown that
the characteristic polynomial is irreducible in that case. In the sequel the
in absolute value largest root of such a polynomial is called the dominating
root.

In this paper we extend Schlickewei’s theorem in two directions.
The first is the above described G-ary representation of integers and the
second is the radix representation of algebraic integers in certain number
fields.

We introduce now the second concept based on Kovács and Pethő
[KP]. Let K be an algebraic number field and let ZK denote its ring of
integers. Assume that ZK has a power integral basis. Then there exists
an α ∈ ZK such that every γ ∈ ZK − {0} can be written uniquely in the
form

γ =
L(γ)∑

i=0

aiα
i,

where ai ∈ Nα = {0, 1, . . . , |NK/Q(α)| − 1}, i = 0, . . . , L(γ); (see [KP]).
The pair (α, Nα) is called a canonical number system or CNS in ZK . We
define the sum of digit function with respect to the CNS (α,Nα) as

sK,α(γ) =
L(γ)∑

i=0

ai

for γ ∈ ZK − {0} and sK(0) = 0.
Our main tool for extending Schlickewei’s theorem is the following

general result on S-unit equations.

Theorem 1. Let K be an algebraic number field of degree d over the
rationals Q. Let α1, . . . , αk ∈ K be multiplicatively independent of degrees
m1, . . . , mk respectively, βi,j ∈ K − {0} for i = 1, . . . , k, j = 1, . . . , mi

and set M = m1 + . . . + mk. Let S be a set of places of K (including
the archimedian places) having s elements and such that ‖αi‖v = 1 for all
i = 1, . . . , k and v 6∈ S. Then the diophantine equation

(1.1)
k∑

κ=1

mκ∑

i=1

βκ,iα
λκ,i
κ = 0
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has at most

(1.2) B(M) := (4sd!)2
36Md!s6

solutions in (λ1,1, . . . , λ1,m1 , . . . , λk,1, . . . , λk,mk
) ∈ ZM such that

(1.3)
∑

i∈J

βκ,iα
λκ,i
κ 6= 0

holds for every J ⊆ {1, . . . ,mκ}, κ = 1, . . . , k.

In section 2 we will establish some auxiliary results for PV-numbers
and for the proof of Theorem 1. In section 3 we will complete the proof
and we will show the following consequences of Theorem 1 which is a
generalization of the above Theorem 0.

Theorem 2. Let k ≥ 2 and suppose that G1, . . . , Gk are non-degener-
ate linear recurrences of order n1, . . . , nk, respectively with non-increasing
coefficients as considered above. Assume further that the dominating char-
acteristic roots are multiplicatively independent. Let c ≥ 0 and u1, . . . , uk

be non-negative integers such that sGj (uj) ≤ c for each j ≤ k. Then the
equation

(1.4) ±u1 ± u2 ± . . .± uk = 0

has only D solutions where D depends only on the degree of the splitting
field L of the product p(x) of the characteristic polynomials of G1, . . . , Gk

and on the number of distinct prime ideal factors in L of the constant term
of p(x).

Theorem 3. Let K be an algebraic number field of degree d such
that ZK has a power integral basis. Let k ≥ 2 and α1, . . . , αk ∈ ZK

be multiplicatively independent and such that (αi, Nαi), i = 1, . . . , k is a
CNS in ZK . Let S be the minimal set of places (including the archimedean
ones) of K for which ∏

v∈S

‖αi‖v = 1

holds for i = 1, . . . , k. Let s denote the number of elements of S and let c
be a positive integer and w1, . . . , wk ∈ ZK such that sK,αj (wj) ≤ c holds
for all 1 ≤ j ≤ k. Then the equation

w1 + . . . + wk = 0

has only finitely many solutions.
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2. Auxiliary Results

Let K be an algebraic number field of degree d over the rationals Q.
Let S be a finite set of places of K containing all archimedean places and
let s denote the cardinality of S. The element α ∈ K is called an S-unit if

∏

v∈S

‖α‖v = 1.

In the proof of Theorem 1 we use the following result of Schickewei [Sch1,
Theorem 1.1].

Lemma 1. Let α1, . . . , αm ∈ K − {0}.Then the equation

α1y1 + . . . + αmym = 1

has at most
γ(m) := (4sd!)2

36md!s6

solutions in S-units y1, . . . , ym such that no proper subsum αi1yi1 + . . . +
αiryir vanishes.

In the proof of Theorem 2 we need the following two properties of PV -
numbers. If α is an algebraic number of degree d then α = α(1), α(2), . . . ,
α(d) denote its conjugates. For a PV -number α we assume |α(1)| > 1 >
|α(2)| ≥ . . . ≥ |α(d)|.

Lemma 2. Let α be a PV -number of degree d. If d > 2 then the
conjugates of α are pairwise multiplicatively independent. If d = 2 and
α(1) and α(2) are multiplicatively dependent then |α(1)α(2)| = 1.

Proof. We consider first the case d > 2. Assume that there exist
1 ≤ i < j ≤ d and u, v ∈ Z with |u|+ |v| 6= 0 such that

(2.1) α(i)u = α(j)v.

There exists an element σ in the Galois group G of the normal closure
over Q of Q(α) with σ(α(i)) = α. Applying this automorphism to (2.1) we
see that we may assume without loss of generality i = 1 and j > 1.As α is
not a root of unity we may assume v < 0 < u.

As d > 2 there exists a τ ∈ G with τ(α(j)) = α(k) 6= α. Applying τ to
(2.1) we get

α(l)u = α(k)v.

We have α(l) 6= α since otherwise α(j)/α(k) would be a root of unity,
which is impossible. Hence 1 < |αα(l)| < |α| and |α(j)α(k)| < |α(j)| < 1.
Multiplying (2.1) with the last equation we get

|α|u > |αα(l)|u = |α(j)α(k)|v > |α(j)|v,
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in contradiction with (2.1). Hence the first assertion is true.
Let now d = 2. Applying the non-trivial automorphism of Q(α) to

(2.1) we get
α(2)u = αv.

This equation together with (2.1) implies

|αα(2)|u−v = 1,

thus |αα(2)| = 1 as asserted, and the lemma is proved.

Lemma 3. Let α1 and α2 be multiplicatively independent PV -num-

bers of degree d1 and d2, respectively. Then α
(i)
1 and α

(j)
2 are multiplica-

tively independent for all pairs (i, j) with 1 ≤ i ≤ d1 and 1 ≤ j ≤ d2.

Proof. This is similar to the proof of Lemma 2 except that we have
to argue with the elements of the Galois group of the normal closure over
Q of Q(α1, α2).

3. Proof of Theorems

Theorem 1 is a generalization of the Proposition of [Sch1]. It would
be possible to prove it by the generalization of the argument used by
Schlickewei. But using Lemma 1 and the adapted version of the proof of
Theorem 1 of Becker [Be] we have chosen a more direct way.

Proof of Theorem 1. The assertion is true for k = 1 and every
M ≥ 1 because then (1.1) has no solution satisfying (1.3).

Let k = 2 and M = 2, then m1 = m2 = 1 and (1.1) becomes

β1,1α
λ1,1
1 + β2,1α

λ2,1
2 = 0.

Thus
α

λ1,1
1

α
λ2,1
2

=
−β2,1

β1,1
.

As α1 and α2 are multiplicatively independent, this equation has at
most one solution in (λ1,1, λ2,1) ∈ Z2. Since B(2) > 1 the assertion is true
in this case too.

Assume now that k ≥ 2 and Theorem 1 is true for any 2 ≤ M ′ < M .
Let m1 + . . . + mk = M .

Put

m′
κ =

{
mκ, if κ < k

mκ − 1, if κ = k,

β̂κ,i = − βκ,i

βk,mk

,
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and

yκ,i =
α

λκ,i
κ

α
λk,mk

k

for κ = 1 . . . , k; i = 1, . . . , mκ.
The numbers α1 . . . , αk are multiplicatively independent, hence the

mapping ϕ : ZM 7→ KM−1 defined by

(λ1,1, . . ., λ1,m1 , . . ., λk,1, . . ., λk,mk
) 7→ (y1,1, . . ., y1,m′

1
, . . ., yk,1, . . ., yk,m′

k
)

is injective.
Dividing (1.1) by βk,mk

αλkmk

k we get

(3.1)
k∑

κ=1

m′
κ∑

i=1

β̂κ,iyκ,i = 1.

The number of non-degenerate solutions (i.e. without a vanishing
subsum) of (3.1) in S-units y1,1, . . . , yk,m′

k
, is at most γ(M − 1). Hence

the number of non-degenerate solutions of (1.1) is also at most γ(M − 1).
Corresponding to the degenerate solutions of (1.1) there exist degenerate
solutions of (3.1) satisfying the following system of equations

k∑
κ=1

∑

i∈Jκ

β̂κ,iyκ,i = 0(3.2’)

k∑
κ=1

∑

i∈J ′κ

β̂κ,iyκ,i = 1,(3.2”)

where Jκ ⊆ {1, . . . , m′
κ} and J ′κ denotes the complementary of Jκ with

respect to {1, . . . , m′
κ}; κ = 1, . . . , k, furthermore

1 ≤ |J1 ∪ . . . ∪ Jk| ≤ m′
1 + . . . + m′

k = M − 1.

If (y1,1, . . . , yk,m′
k
) is such an S-unit solution of (3.1) which belongs

to the image of ϕ, then we can rewrite (3.2) as

k∑
κ=1

∑

i∈Jκ

βκ,iα
λκ,i
κ = 0(3.3’)

k∑
κ=1

∑

i∈J ′κ

βκ,iα
λκ,i
κ + βk,mk

α
λk,mk

k = 0.(3.3”)
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The last equations have the same structure as (1.1), but both have
at most M − 1 summands. By the induction hypothesis, (3.3’) has at
most B(|J1| + . . . + |Jk|) ≤ B(M − 1) solutions and (3.3”) has at most
B (M − (|J1|+ . . . + |Jk|+ 1)) ≤ B(M − 1) solutions which satisfy (1.3).
For the choice of the sets J1, . . . , Jk we have at most 2M−1 possibilities,
hence

B(M) ≤ γ(M − 1) + 2M−1B(M − 1)2.

From this recursive inequality (1.2) follows immediately and Theorem
1 is proved.

Proof of Theorem 2. Let Gi satisfy the recurrence

Gi
λ+ni

= ai,1G
i
λ+ni−1 + . . . + ai,niG

i
λ

with i = 1, . . . , k. We may assume after possible reordering that G1, . . ., G`

with ` ≤ k are those with ni = 2 and |ai,ni | = 1, i = 1, . . . , `. Furthermore,
if ` < i ≤ k, then either ni > 2 or ni = 2 and |ai,ni | > 1.

Let αi,1 denote the dominating zero of the characteristic polynomial
of Gi with 1 ≤ i ≤ k, and αi,j denote the conjugates of αi,1, 1 ≤ i ≤ k, 1 ≤
j ≤ ni. There exist algebraic integers βi,j , 1 ≤ i ≤ k; 1 ≤ j ≤ ni such that

(3.4) Gi
λ =

ni∑

j=1

βi,jα
λ
i,j

holds for any λ ∈ Z+
0 , where Z+

0 denotes the set of non-negative integers.
As Gi

λ ∈ Z for all λ ∈ Z+
0 , i = 1, . . . , k we have βi,j ∈ Q(αi,j) and βi,j is

a conjugate of βi,1.
Let u1, . . . , uk ∈ Z+

0 satisfying (1.4). We are asking for solutions uκ

of (1.4) with sum of Gκ-ary digits bounded by c. Hence there exist positive
integers dκ,1, . . . , dκ,mκ

(mκ ≤ c) with 0 ≤ dκ,1 + . . . + dκ,mκ
≤ c such

that
uκ = dκ,1G

κ
λκ,1

+ . . . + dκ,mκGκ
λκ,mκ

with suitable non-negative integers λκ,i. Now we divide the set of solutions
of (1.4) into classes by grouping together solutions uκ corresponding to a
fixed mκ-tuple dκ,1, . . . , dκ,mκ with 1 ≤ κ ≤ k.

Those solutions of (1.4) belonging to the same class are solutions of a
fixed equation

k∑
κ=1

(±1)
mκ∑

i=1

dκ,i

nκ∑

j=1

βκ,jα
λκ,i

κ,j =
k∑

κ=1

(±1)
mκ∑

i=1

nκ∑

j=1

(dκ,iβκ,j)α
λκ,i

κ,j = 0.
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We split now the left hand side of the last equation into two summands
and get

∑̀
κ=1

(±1)
mκ∑

h=1

dκ,h(βκ,1α
λκ,h

κ,1 + βκ,2α
λκ,h

κ,2 )

+
k∑

κ=`+1

(±1)
nκ∑

j=1

mκ∑

h=1

dκ,hβκ,jα
λκ,h

κ,j = 0.

(3.5)

By lemmas 2 und 3 the algebraic numbers

α1,1, . . . , α`,1, α`+1,1, . . . , α`+1,n`+1 , . . . , αk,1, . . . , αk,nk

are pairwise multiplicatively independent and all these numbers belong to
the field G defined in the theorem.

Let p(x) be the product of the characteristic polynomials of G1, . . . ,

Gk. Then the free term of p(x) is A =
∏k

i=1 ai,ni . Let S be the minimal
set of places of G such that

∏
v∈S ‖A‖v = 1. If g is the degree of G over

the rationals then |S| ≤ g(ω(A) + 1), where ω(A) denotes the number of
distinct prime divisors of A. Further ακ,j divides A in ZG for all 1 ≤ κ ≤ k
and 1 ≤ j ≤ nj . Thus

∏
v∈S ‖αk,j‖ = 1, i.e. αk,j are S-units.

By Theorem 1 equation (3.5) has at most
B(m1 + . . . + m` +

∑k
κ=`+1 mκnκ) ≤ B(c

∑k
κ=1 nκ) solutions in

λ1,1, λ2,1, . . . , λ`,1, λ`+1,1, . . . , λ`+1,n`+1 , . . . , λk,mk
∈ Z

such that

(3.6)
∑

h∈Jκ

dκ,hβκ,jα
λκ,h

κ,j 6= 0

holds for all Jκ ⊆ {1, . . . , mκ}, κ = ` + 1, . . . , k and

(3.7)
∑

h∈Jκ

dκ,hβ
λκ,h

κ,1 α
λκ,h

κ,1 +
∑

h∈J′κ

dκ,hβκ,2α
λκ,h

κ,2 6= 0

holds for all Jκ, J ′κ ⊆ {1, . . . , mκ}, κ = 1, . . . , `.
Assume that there exists an ` < κ ≤ k, 1 ≤ j ≤ nκ and Jκ ⊆

{1, . . . ,mκ} such that (3.6) does not hold, i.e.

(3.8)
∑

h∈Jκ

dκ,hβκ,jα
λκ,h

κ,j = 0.

Taking conjugates in (3.8) and using that dκ,h are rational and βκ,j ∈
Q(ακ,j) and βκ,j is a conjugate of βκ,1, we conclude that (3.8) holds for
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all j = 1, . . . , nκ. Thus
∑

h∈Jκ

dκ,hGκ
λκ,h

= 0.

But this equation cannot hold because dκ,h and Gκ
λκ,h

are all positive.
Hence (3.6) always is true.

Similarly one can see that (3.7) always is true and the proof of Theo-
rem 2 is complete.

Proof of Theorem 3. This is analogous, even more easy than the
proof of Theorem 2. Hence it is left to the reader.
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