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Hyers–Ulam stability of the Cauchy functional
equation on square-symmetric groupoids

By ZSOLT PÁLES (Debrecen)

Abstract. The stability of the functional equation f(x¦y)=f(x)∗f(y) (x, y ∈X)
is investigated, where f : X → Y and ¦, ∗ are square-symmetric operations on the sets X
and Y , respectively. The results presented include and generalize the classical theorem
of Hyers obtained on the stability of the Cauchy functional equation in 1941.

1. Introduction

The history of the stability theory of functional equations started with
the talk of S. M. Ulam held at the Wisconsin University in 1940. In this
talk the following problem was raised (see Ulam [Ula64]): Let (X, ¦) be a
group and (Y, ∗) be a metric group whose metric is denoted by d. Does, for
all positive ε, there exist δ > 0, such that if a function g : G → H satisfies
the inequality

d(g(x ¦ y), g(x) ∗ g(y)) < δ (x, y ∈ X),

then there exists a homomorphism f : X → Y satisfying

d(g(x), f(x)) < ε (x ∈ X)?

In other words, if g : X → Y is approximately a homomorphism (that is,
if g satisfies the Cauchy equation with small error), then g differs from
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a homomorphism with small error. In case of an affirmative answer, the
Cauchy equation is called stable. The most frequently quoted result of this
subject is the following theorem of D. H. Hyers ([Hye41]) from 1941:

Let X, Y be Banach-spaces, ε ≥ 0 and let g : X → Y satisfy

‖g(x + y)− g(x)− g(y)‖ ≤ ε (x, y ∈ X).

Then the limit

(1) f(x) := lim
n→∞

g(2nx)
2n

exists for all x ∈ X and the function f : X → Y is an additive mapping

such that

‖g(x)− f(x)‖ ≤ ε (x ∈ X).

Moreover, f is the only additive mapping such that f − g is bounded.

The sequence
(
g(2nx)/2n

)
on the right hand side of (1) and the above

result is often called Hyers–Ulam sequence, and the Hyers–Ulam stability
theorem, respectively.

It is interesting to note that the first stability theorem was discovered
in 1925 anticipating the question of Ulam. G. Pólya and G. Szegő in
their famous book [PS25, Chapter I, Problem 99] formulated a problem,
which, in fact, was equivalent to the stability problem of the Cauchy equa-
tion when X and Y are the additive groups of natural and real numbers,
respectively.

There are more than 300 research papers born in the investigation
of the stability of various functional equations. Excellent overviews and
surveys can be found for instance in the papers of Forti [For95], Ger

[Ger94b], Székelyhidi [Sze99] and also in the book of Hyers, Isac and
Rassias [HIR98].

In this paper, we deal with the stability of the functional equation

(2) f(x ¦ y) = f(x) ∗ f(y) (x, y ∈ X),

where f : X → Y and (X, ¦), (Y, ∗) are groupoids equipped with square-
symmetric operations.

A binary operation ¦ defined on X is called square-symmetric if

(3) (x ¦ y) ¦ (x ¦ y) = (x ¦ x) ¦ (y ¦ y) (x, y ∈ X).
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The groupoid (X, ¦) is called square-symmetric if the operation ¦ is square-
symmetric. It is obvious that a commutative semigroup is a square-
symmetric groupoid. The converse, however, is not true in general. The
role of square-symmetry, and also that of power-symmetry was discovered
by Rätz [Rat80], and also used by Borelli-Forti and Forti [BFF95].

There are three basically different methods in the stability theory of
functional equations. One method is based on an iteration process analo-
gous to using the Hyers–Ulam sequence. Another method is the invariant
mean technique developed by Székelyhidi in [Sze86]. The third method
(see e.g. Páles [Pal98]) uses sandwich theorems that are generalizations
of the Hahn–Banach separation theorem.

In a recent paper of Páles, Volkmann and Luce [PVL98], a large
class of square-symmetric operations was described and lots of former re-
sults that can be obtained via the iterative technique have been unified.
In this paper, the investigations of [PVL98] will be extended and general-
ized for mappings whose domain and codomain is also a square-symmetric
groupoid. For generalizations with variable right hand side of the results
of [PVL98], we refer to a paper of G. H. Kim [Kim01].

2. Main results

The square symmetry of the operation ¦ : X ×X → X is equivalent
to the fact that the function σ¦ : X → X defined by

(4) σ¦(x) := x ¦ x (x ∈ X)

is an endomorphism of the groupoid (X, ¦), since, with this notation, (3)
can be rewritten as

σ¦(x ¦ y) = σ¦(x) ¦ σ¦(y).

It is an important situation when the mapping σ¦ is an automorphism
of (X, ¦), that is when σ¦ is bijective. Then, for each fixed x ∈ X, the
equation u¦u = x can be solved uniquely with respect to u ∈ X. A binary
operation ¦ such that σ¦ is an automorphism of (X, ¦) is called divisible,
the corresponding groupoid is said to be a divisible groupoid.

In order to formulate the results of the paper, we introduce the notion
of Lipschitz modulus of a function ϕ : Y → Y if (Y, d) is a metric space.
The Lipschitz modulus Lip ϕ of ϕ is defined by

Lipϕ := sup
{

d(ϕ(x), ϕ(y))
d(x, y)

∣∣∣ x, y ∈ Y, x 6= y

}
.
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In other words, L = Lip ϕ is the smallest extended real number such that

d(ϕ(x), ϕ(y)) ≤ Ld(x, y) (x, y ∈ Y ).

If (Y, ∗) is also a groupoid and the operation ∗ is continuous with respect
to the topology of the metric space (Y, d), then the triple (Y, ∗, d) is called
a metric groupoid.

Now we can formulate the first main result of this paper.

Theorem 1. Let (X, ¦) be a square-symmetric groupoid and (Y, ∗, d)
be a complete metric divisible square-symmetric groupoid. Assume that

(5) L :=
∞∑

n=1

Lip
(
σ−n
∗

)
< ∞.

Let ε ≥ 0 and assume that g : X → Y satisfies

(6) d(g(x ¦ y), g(x) ∗ g(y)) ≤ ε (x, y ∈ X).

Then, for all x ∈ X, the limit

(7) f(x) := lim
n→∞

σ−n
∗ ◦ g ◦ σn

¦ (x)

exists and f : X → Y is the solution of (2) such that

(8) d(g(x), f(x)) ≤ Lε (x ∈ X).

Moreover, f is the only solution of (2) such that the mapping x 7→
d(g(x), f(x)) is bounded on X.

Proof. Define gn : X → Y by

(9) g0 := g, gn := σ−n
∗ ◦ g ◦ σn

¦ (n ∈ N).

First we show that, for each fixed x ∈ X, the sequence
(
gn(x)

)
is con-

vergent. The metric space being complete, it suffices to show that it is a
Cauchy sequence.

Let x ∈ X be fixed arbitrarily. Replacing x and y by σn
¦ (x) in the

inequality (6), we get

d
(
g ◦ σn+1

¦ (x), σ∗ ◦ g ◦ σn
¦ (x)

) ≤ ε.
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Thus,

d
(
gn+1(x), gn(x)

)
= d

(
σ
−(n+1)
∗ ◦ g ◦ σn+1

¦ (x), σ−(n+1)
∗ ◦ σ∗ ◦ g ◦ σn

¦ (x)
)

≤ Lip(σ−(n+1)
∗ ) · d(

g ◦ σn+1
¦ (x), σ∗ ◦ g ◦ σn

¦ (x)
)

≤ Lip(σ−(n+1)
∗ ) · ε.

Therefore,

∞∑
n=0

d
(
gn+1(x), gn(x)

) ≤
∞∑

n=0

Lip(σ−(n+1)
∗ ) · ε < ∞.

The series on the right hand side being convergent, we can see that
(
gn(x)

)
is a Cauchy sequence. For k ∈ N, we have

d
(
gk+1(x), g(x)

) ≤
k∑

n=0

d
(
gn+1(x), gn(x)

) ≤
k∑

n=0

Lip(σ−(n+1)
∗ ) · ε ≤ Lε.

Therefore, by passing the limit k →∞, we obtain (8) for the limit function
f of the sequence (gn).

It remains to prove that f satisfies (2). Replacing x and y by σn
¦ (x)

and σn
¦ (y), respectively, and using that σ¦ is an endomorphism of (X, ¦),

we get

d
(
g ◦ σn

¦ (x ¦ y), (g ◦ σn
¦ (x)) ∗ (g ◦ σn

¦ (y))
) ≤ ε (x, y ∈ X, n ∈ N).

Since σ∗ is an automorphism of (Y, ∗), hence its inverse σ−1
∗ is also an

automorphism. Therefore

d
(
gn(x ¦ y), gn(x) ∗ gn(y)

)

= d
(
σ−n
∗

(
g ◦ σn

¦ (x ¦ y)
)
, σ−n
∗

(
g ◦ σn

¦ (x)
) ∗ σ−n

∗
(
g ◦ σn

¦ (y)
))

= d
(
σ−n
∗

(
g ◦ σn

¦ (x ¦ y)
)
, σ−n
∗

(
(g ◦ σn

¦ (x)) ∗ (g ◦ σn
¦ (y))

))

≤ Lip(σ−n
∗ ) · d(

g ◦ σn
¦ (x ¦ y), (g ◦ σn

¦ (x)) ∗ (g ◦ σn
¦ (y))

)

≤ Lip(σ−n
∗ ) · ε.

The right hand side of this inequality is a null sequence (since it is a the
general term of a convergent series), hence

d
(
f(x¦y), f(x)∗f(y)

)
= lim

n→∞
d
(
gn(x¦y), gn(x)∗gn(y)

)
= 0 (x, y ∈ X).
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Thus, indeed, f : X → Y satisfies (2).
To complete the proof of the theorem, assume that f is an arbitrary

solution of (2) such that the mapping x 7→ d(g(x), f(x)) is bounded with
bound K on X.

Putting x = y in (2), we obtain that f ◦ σ¦ = σ∗ ◦ f , whence by
induction, it follows that

f = σ−n
∗ ◦ f ◦ σn

¦ (n ∈ N).

Thus, for x ∈ X, we get

d(gn(x), f(x)) = d(σ−n
∗ ◦ g ◦ σn

¦ (x), σ−n
∗ ◦ f ◦ σn

¦ (x))

≤ Lip(σ−n
∗ ) · d(g ◦ σn

¦ (x), f ◦ σn
¦ (x))

≤ Lip(σ−n
∗ ) ·K.

The right hand side of this inequality tends to zero, hence

f(x) = lim
n→∞

gn(x) (x ∈ X),

i.e., f equals the limit of the sequence (gn). ¤

The following result is a simple consequence of Theorem 1.

Corollary 1. Let (X, ¦) be a square-symmetric and (Y, ∗, d) be com-

plete metric divisible square-symmetric groupoid. Assume that there exists

a number 0 ≤ q < 1 such that

(10) d(u, v) ≤ q · d(u ∗ u, v ∗ v) (u, v ∈ Y ).

Let ε ≥ 0 and let g : X → Y satisfy (6). Then, for all x ∈ X, the limit (7)
exists and the function f : X → Y is the unique solution of (2) such that

(11) d(g(x), f(x)) ≤ q

1− q
· ε (x ∈ X).

Proof. The inequality (10) yields that Lip(σ−1
∗ ) ≤ q, whence by

induction, we get Lip(σ−n
∗ ) ≤ qn. Thus the number L defined in Theorem 1

does not exceed q/(1− q). ¤

The following result is another version of Theorem 1. Here the divis-
ibility of the operation ¦ is assumed.
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Theorem 2. Let (X, ¦) be a divisible square-symmetric and (Y, ∗, d)
be a complete metric square-symmetric groupoid. Assume that

(12) L :=
∞∑

n=0

Lip
(
σn
∗
)

< ∞.

Let ε ≥ 0 and suppose that g : X → Y satisfies (6). Then, for all x ∈ X,

the limit

(13) f(x) := lim
n→∞

σn
∗ ◦ g ◦ σ−n

¦ (x)

exists and f : X → Y is a solution of (2) such that (8) holds. Moreover,

f is the only solution of (2) such that the map x 7→ d(g(x), f(x)) is

bounded on X.

Proof. Define the sequence gn : X → Y by

(14) g0 := g, gn := σn
∗ ◦ g ◦ σ−n

¦ (n ∈ N).

Arguing as in the proof of Theorem 1, we first prove that
(
gn(x)

)
is a

convergent sequence for all x ∈ X. Let x ∈ X be fixed. Replacing x and
y by σ−n

¦ (x) in (6), we get

d
(
g ◦ σ−n+1

¦ (x), σ∗ ◦ g ◦ σ−n
¦ (x)

) ≤ ε.

Hence

d
(
gn−1(x), gn(x)

)
= d

(
σn−1
∗ ◦ g ◦ σ−n+1

¦ (x), σn−1
∗ ◦ σ∗ ◦ g ◦ σ−n

¦ (x)
)

≤ Lip(σn−1
∗ ) · d(

g ◦ σ−n+1
¦ (x), σ∗ ◦ g ◦ σ−n

¦ (x)
)

≤ Lip(σn−1
∗ ) · ε.

Using this estimate and repeating the argument followed in the proof of
Theorem 1, we get that

(
gn(x)

)
is a Cauchy sequence and that its limit

function f satisfies (8).
Putting σ−n

¦ (x) and σ−n
¦ (y) into x and y in (6), respectively, we obtain

d
(
gn(x ¦ y), gn(x) ∗ gn(y)

) ≤ Lip(σn
∗ ) · ε (x, y ∈ X),

whence, taking the limit n →∞, we get that f : X → Y is a homomorfism,
that is, it satisfies (2).
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The proof of the uniqueness of f is now based on the identity

f = σn
∗ ◦ f ◦ σ−n

¦ (n ∈ N)

and can be obtained exactly as for Theorem 1. ¤

As an application of Theorem 2, the following result can be derived.

Corollery 2. Let (X, ¦) be a divisible square-symmetric and (Y, ∗, d)
be a complete metric square-symmetric groupoid. Assume that there exists

a number 0 ≤ q < 1 such that

(15) d(u ∗ u, v ∗ v) ≤ q · d(u, v) (u, v ∈ Y ).

Let ε ≥ 0 and let g : X → Y satisfy (6). Then, for all x ∈ X, the limit

(13) exists and the function f : X → Y so defined is the unique solution

of (2) such that

(16) d(g(x), f(x)) ≤ 1
1− q

· ε (x ∈ X).

Proof. It follows from (15) that Lip(σn
∗ ) ≤ qn for all n ∈ N. Thus

the number L defined in Theorem 2 cannot be greater than 1/(1−q). ¤

Remark 1. The crucial step of the proofs of Theorem 1 and Theorem 2
was to obtain the convergence of the iterating sequences (7) and (13),
respectively. These sequences generalize the Hyers–Ulam sequence defined
in (1). This will also be transparent when formulating further special cases
of these theorems.

Now we consider the case when Y is a Banach space and the operation
∗ is defined via

(17) x ∗ y = Ax + By + c (x, y ∈ Y )

where A,B : Y → Y are linear operators and c ∈ Y is a constant vector.
In order to formulate the result, we recall the notion of the spectral

radius of a linear operator C : Y → Y which is defined by

ρ(C) := lim sup
n→∞

n
√
‖Cn‖.
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Theorem 3. Let (X, ¦) be a square-symmetric groupoid and Y be a
Banach space over K (where K denotes either R or C). In addition, let
A,B : Y → Y be commuting linear operators and c ∈ Y . Assume that
one of the following conditions is also valid:

(i) A + B is an invertible linear map and ρ
(
(A + B)−1

)
< 1, or

(ii) (X, ¦) is a divisible groupoid and ρ(A + B) < 1.

Let ε ≥ 0 and let g : X → Y satisfy the functional inequality

(18) ‖g(x ¦ y)−Ag(x)−Bg(y)− c‖ ≤ ε (x, y ∈ X).

Then there exists a uniquely determined function f : X → Y such that

f(x ¦ y) = Af(x) + Bf(y) + c (x, y ∈ X)(19)
and

‖g(x)− f(x)‖ ≤ Lε (x ∈ X),(20)

where

L :=





∞∑
n=1

‖(A + B)−n‖, if condition (i) holds,

∞∑
n=0

‖(A + B)n‖, if condition (ii) holds.

Proof. Define the operation ∗ by (17). Then, using AB = BA, we
can see that ∗ is square-symmetric and

σn
∗ (x) = (A + B)nx +

(n−1∑

k=0

(A + B)k

)
c (x ∈ Y, n ∈ N).

If condition (i) is valid, then ∗ is divisible and

σ−n
∗ (y) = (A + B)−ny −

(n−1∑

k=0

(A + B)k−n

)
c (y ∈ Y, n ∈ N).

Hence
Lip(σ−n

∗ ) = ‖(A + B)−n‖ (n ∈ N).

Therefore, the series in (5) is convergent (by ρ
(
(A + B)−1

)
< 1, all but

finitely many terms of this series can be majorized by terms of a conver-
gent geometric series). Thus, Theorem 1 can be applied and yields the
statement to be proved.
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If condition (ii) is satisfied then the assumptions of Theorem 2 are
valid since ¦ is divisible and using

Lip(σn
∗ ) = ‖(A + B)n‖ (n ∈ N),

the inequality ρ(A + B) < 1 yields that (12) is convergent. Now the
statement follows from that of Theorem 2. ¤

The most important particular case of the above theorem is when the
operators A, B can be obtained via multiplication by scalars from K.

Corollary 3. Let (X, ¦) be a square-symmetric groupoid and Y be a
Banach space over K. Let a, b ∈ K and c ∈ Y . Assume that one of the
following conditions is satisfied:

(i) |a + b| > 1 or

(ii) (X, ¦) is divisible and |a + b| < 1.

Let ε ≥ 0 and let g : X → Y satisfy

(21) ‖g(x ¦ y)− ag(x)− bg(y)− c‖ ≤ ε (x, y ∈ X).

Then there exists a uniquely determined function f : X → Y such that

f(x ¦ y) = af(x) + bf(y) + c (x, y ∈ X)(22)

and

‖g(x)− f(x)‖ ≤ ε

||a + b| − 1| (x ∈ X).(23)

Proof. Let Ax := ax, Bx := bx for x ∈ Y . Then the conditions
of Theorem 3 are trivially satisfied. In the case when (i) holds, A + B is
invertible, ρ

(
(A + B)−1

)
= |a + b|−1 < 1 and

L =
∞∑

n=1

|a + b|−n =
1

|a + b| − 1
.

If (ii) is valid, then ρ(A + B) = |a + b| < 1 and

L =
∞∑

n=0

|a + b|n =
1

1− |a + b| .

Thus (23) follows from (20). ¤
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Remark 2. (1) The special case a = b = 1, c = 0 of the above corol-
lary yields the Hyers stability theorem described in the introduction for
functions defined on square-symmetric groupoids. In this generality, this
result is due to Páles, Volkmann, and Luce [PVL98].

(2) In the case 0 < a+b 6= 1, the estimate obtained in (23) is the best
possible. Indeed, define

g(x) =
c + εe

1− (a + b)
(x ∈ X),

where e ∈ Y is an arbitrary unit vector. Then g satisfies (21), furthermore,
the function f defined by

f(x) =
c

1− (a + b)
(x ∈ X)

solves (22) and

‖g(x)− f(x)‖ =
ε

|a + b− 1| (x ∈ X).

In order to obtain a further consequences of Theorem 1 and Theo-
rem 2, we now consider the case when (Y, ·) is a semigroup with neutral
element and the operation ∗ is defined via

(24) x ∗ y = H(x, y) (x, y ∈ Y ),

where H : Y × Y → Y is a first-order homogeneous function, that is,

H(u · x, u · y) = u ·H(x, y),

H(x · u, y · u) = H(x, y) · u (u, x, y ∈ Y ).

If (Y, ·) is also a metric space with the metric d then we define u ∈ Y its
d-norm by

‖u‖d := sup
{

d(u · x, u · y)
d(x, y)

∣∣∣ x, y ∈ Y, x 6= y

}
.

Clearly, ‖u‖d = Lip ϕu, where ϕu(x) = u · x (x ∈ Y ). It is easy to see that
the above norm is submultiplicative, i.e.,

‖u · v‖d ≤ ‖u‖d · ‖v‖d (u, v ∈ Y ).
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The d-spectral radius of an element u ∈ Y is defined by

ρd(u) := lim sup
n→∞

n
√
‖un‖d .

Theorem 4. Let (X, ¦) be a square-symmetric groupoid and let (Y, ·, d)
be a complete metric semigroup with neutral element e. Let H :Y ×Y →Y
be a continuous first-order homogeneous function. Assume that one of the
following conditions is satisfied:

(i) H(e, e) ∈ Y is invertible and ρd

(
H(e, e)−1

)
< 1, or

(ii) (X, ¦) is a divisible groupoid and ρd(H(e, e)) < 1.

Let ε ≥ 0 and let g : X → Y satisfy

(25) d
(
g(x ¦ y),H(g(x), g(y))

) ≤ ε (x, y ∈ X).

Then there exists a uniquely determined function f : X → Y such that

f(x ¦ y) = H(f(x), f(y)) (x, y ∈ X)(26)

and

d(g(x), f(x)) ≤ Lε (x ∈ X),(27)

where

L :=





∞∑
n=1

‖H(e, e)−n‖d, if condition (i) holds,

∞∑
n=0

‖H(e, e)n‖d, if condition (ii) holds.

Proof. Define ∗ by (24). Then, as it was proved in [PVL98], ∗ is
square-symmetric. For convenience and completeness we repeat the proof
of [PVL98]. Using the homogeneity of H repeatedly, we get, for x, y ∈ X,

(x ∗ x) ∗ (y ∗ y) = H(H(x, x),H(y, y)) = H(H(x · e, x · e),H(y · e, y · e))
= H(x ·H(e, e), y ·H(e, e)) = H(x, y) ·H(e, e)

= H(H(x, y) · e,H(x, y) · e) = H(H(x, y),H(x, y))

= (x ∗ y) ∗ (x ∗ y).

Therefore, ∗ is square-symmetric. Furthermore, σ∗(x) = H(x, x) =
H(e · x, e · x) = H(e, e) · x, thus,

σn
∗ (x) = H(e, e)n · x (x ∈ Y, n ∈ N).
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If condition (i) is satisfied, then

σ−n
∗ (x) = H(e, e)−n · x (x ∈ Y, n ∈ N),

whence
Lip(σ−n

∗ ) = ‖H(e, e)−n‖d (n ∈ N).

Using this equality, the statement of this theorem follows from that of
Theorem 1.

In the case when (ii) is valid the statement is the consequence of
Theorem 2. ¤

Finally, we consider the case when Y is a closed multiplicative sub-
semigroup of the real or complex field with unit element. The result ob-
tained in this case is due to Páles, Volkmann, and Luce [PVL98].

Corollary 4. Let (X, ¦) be a square-symmetric groupoid and Y be a

closed multiplicative subsemigroup of K such that 1∈K. Let H: Y×Y→Y

be a continuous first-order homogeneous function. Assume that one of the

following conditions is satisfied:

(i) 1
H(1,1) ∈ Y and |H(1, 1)| > 1, or

(ii) (X, ¦) is a divisible groupoid and |H(1, 1)| < 1.

Let ε ≥ 0 and let g : X → Y satisfy

(28) |g(x ¦ y)−H(g(x), g(y)| ≤ ε (x, y ∈ X).

Then there exists a uniquely determined function f : X → Y such that

(26) holds and

(29) |g(x)− f(x)| ≤ ε

||H(1, 1)| − 1| (x ∈ X).

Proof. Applying the previous theorem and the argument followed
when showing Corollary 3, the proof can be carried out easily. ¤

Remark 3. (1) We note that the main results – Theorem 1 and The-
orem 2 – of this paper were motivated by the above corollary observing
that operations of the form x ∗ y = H(x, y) (where H is a first-order
homogeneous function) are square-symmetric.
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(2) The above results does not yield the stability of (26) in the case
|H(1, 1)| = 1, thus e.g., the stability of the Jensen functional equation
obtained by Kominek [Kom89] does not follow from our results directly.

(3) The estimate obtained in (29) is the best possible if Y = K and
H(1, 1) is a positive number different from 1. Indeed, the function g given
by

g(x) =
ε

H(1, 1)− 1
(x ∈ X)

satisfies the stability inequality (28), the function f ≡ 0 solves (26) and

|g(x)− f(x)| = ε

|H(1, 1)− 1| (x ∈ X).

To illustrate Corollary 4, we consider the functional equations

f
(
x + y − 3

√
x3 + y3

)
= f(x) + f(y)− 3

√
f3(x) + f3(y)(30)

(x, y ∈ R)

and

f
(

3
√

x3 + x2y + xy2 + y3
)

(31)

= 3
√

f3(x) + f2(x)f(y) + f(x)f2(y) + f3(y) (x, y ∈ R).

The equation (30) is of the form (26) if we take x¦y = x∗y = H(x, y) =
x + y − 3

√
x3 + y3 (x, y ∈ R), X = Y = R. Since H is homogeneous, the

operations ∗ and ¦ are square-symmetric. Due to H(1, 1) = 2 − 3
√

2 < 1
and H(1, 1) 6= 0. we have that ¦ is divisible, therefore, condition (ii)
of Corollary 4 holds. Thus (30) is stable, more precisely, if ε ≥ 0 and
g : R→ R satisfies
∣∣g(x + y − 3

√
x3 + y3 )− g(x)− g(y) + 3

√
g3(x) + g3(y)

∣∣ ≤ ε (x, y ∈ R),

then there exists f : R→ R such that (30) holds and

|g(x)− f(x)| ≤ ε
3
√

2− 1
(x ∈ R).

The equation (31) also reduces to (26) if we take x ¦ y = x ∗ y = H(x, y) =
3
√

x3 + x2y + xy2 + y3 (x, y ∈ R), X = Y = R. The function H is
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homogeneous, too, therefore ∗ and ¦ are square-symmetric operations.
H(1, 1) = 3

√
4 > 1, thus condition (i) of Corollary 4 is satisfied. There-

fore (30) is stable, that is, if ε ≥ 0 and g : R→ R satisfies

∣∣g( 3
√

x3 + x2y + xy2 + y3 )− 3
√

g3(x)+ g2(x)g(y)+ g(x)g2(y)+ g3(y)
∣∣≤ ε

(x, y ∈ R),

then there exists a function f : R→ R that solves (31) and satisfies

|g(x)− f(x)| ≤ ε
3
√

4− 1
(x ∈ R).
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