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Strong convergence theorems for Hp(T × · · · × T)

By FERENC WEISZ (Budapest)

Abstract. Multiplier operators on the Hardy space Hp(T× · · · × T) are investi-
gated and Bernstein’s inequality for multi-parameter trigonometric polynomials is ver-
ified. We prove that certain means of the partial sums of the multi-parameter trigono-
metric Fourier series are uniformly bounded operators from Hp(T × · · · × T) to Lp

(1/2 < p ≤ 1). As a consequence we obtain strong convergence theorems concerning
the partial sums. The dual inequalities are also verified and a Marcinkiewicz–Zygmund
type inequalities is obtained for the BMO(T× · · · × T) spaces.

1. Introduction

We introduce the d-dimensional Hardy space Hp(T× · · · × T) by the
Lp(Td) norm of the non-tangential maximal function of a distribution on
Td. It is known that the trigonometric system is not a basis in L1(T).
Moreover, there exist functions in H1(T), the partial sums of which are
not bounded in L1(T). Smith [10] and recently Belinskii [1] proved
the following strong convergence result for one-parameter trigonometric
Fourier series:

lim
n→∞

1
log n

n∑

k=1

‖skf − f‖1
k

= 0

where f ∈ H1(T) and skf denotes the k-th partial sum of the Fourier
series. This result for one-parameter Walsh–Fourier series can be found in
Simon [9].
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Recently the author [12] generalized this result for two-parameter
trigonometric Fourier series by taking the sum over a cone. More ex-
actly, we verified that there exists a constant C depending only on α > 0
such that

1
log n log m

∑

2−α≤k/l≤2α

(k,l)≤(n,m)

‖sk,lf‖1
kl

≤ C‖f‖H1(T2).

Note that the space H1(T2) defined in [12] is different from H1(T×T) used
here. With the help of Riesz and conjugate transforms one can show that
‖ · ‖H1(T2) ≤ ‖ · ‖H1(T×T). We obtained also the convergence result

1
log n log m

∑

2−α≤k/l≤2α

(k,l)≤(n,m)

‖sk,lf − f‖1
kl

→ 0 as n, m →∞

where f ∈ H1(T2). The analogous results for two-parameter Walsh–
Fourier series can also be found in [12].

In this paper we extend these theorems to the d-dimensional case and
prove an even stronger inequality for f ∈ H1(T× · · · × T):

1∏d
i=1 log ni

d∑

i=1

ni∑

ki=1

‖skf‖H1(T×···×T)∏d
i=1 ki

≤ C‖f‖H1(T×···×T)

where C is an absolute constant. From this it follows easily that

lim
n→0

1∏d
i=1 log ni

d∑

i=1

ni∑

ki=1

‖skf − f‖H1(T×···×T)∏d
i=1 ki

= 0

whenever f ∈ H1(T × · · · × T). We extend these results also to p < 1,
which was unknown even in the one-parameter case.

In the proof we have to use a different method than in [12], we
use the multi-parameter Hardy–Littlewood inequality (see Jawerth and
Torchinsky [8]) and the fact that the maximal operator of the Cesàro
means of a distribution is bounded from Hp(T × · · · × T) to Lp(Td) (see
Weisz [13]).

Moreover, we extend Bernstein’s inequality to multi-parameter trigo-
nometric polynomials. We investigate also multiplier operators and give



Strong convergence theorems for Hp(T× · · · × T) 669

a sufficient condition for the multiplier such that the operator is bounded
on the Hardy space.

I would like to thank the referee for reading the paper carefully and
for his useful comments.

2. Hardy spaces and conjugate functions

For a set X 6= ∅ let Xd be its Cartesian product taken with itself
d-times, moreover, let T := [−π, π) and λ be the Lebesgue measure. We
briefly write Lp instead of the Lp(Td, λ) space while the norm (or quasi-
norm) of this space is defined by ‖f‖p := (

∫
Td |f |p dλ)1/p (0 < p ≤ ∞).

For n = (n1, . . . , nd) ∈ Zd and x = (x1, . . . , xd) ∈ Td set n · x :=∑d
i=1 nixi. Let f be a distribution on C∞(Td). The nth Fourier coefficient

is defined by f̂(n) := f(e−ın·x) where ı =
√−1 and n ∈ Zd. In the special

case when f is an integrable function then

f̂(n) =
1

(2π)d

∫

Td

f(x)e−ın·x dx.

For a distribution f and zi := rie
ıxi (0 < ri < 1) let

u(z) = u(r1e
ıx1 , . . . , rde

ıxd) := (f ∗ Pr1 × · · · × Prd
)(x) (x ∈ Td)

where ∗ denotes the convolution and

Pr(y) :=
∞∑

k=−∞
r|k|eıky =

1− r2

1 + r2 − 2r cos y
(y ∈ T)

is the Poisson kernel. It is easy to show that u(z) is a multi-harmonic
function.

Let 0 < α < 1 be an arbitrary number. We denote by Ωα(x) (x ∈ T)
the region bounded by two tangents to the circle |z| = α from eıx and
the longer arc of the circle included between the points of tangency. The
non-tangential maximal function is defined by

u∗α(x) := sup
zi∈Ωαi

(xi)

|u(z)| (0 < αi < 1; i = 1, . . . , d).

The Hardy space Hp(T × · · · × T) = Hp (0 < p ≤ ∞) consists of all
distributions f for which u∗α ∈ Lp and set

‖f‖Hp := ‖u∗1/2,...,1/2‖p .
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The equivalence ‖u∗α‖p ∼ ‖f‖Hp (0 < p ≤ ∞, 0 < αi < 1) was proved in
Fefferman, Stein [4] and Gundy, Stein [7].

For a distribution
f ∼

∑

n∈Zd

f̂(n)eın·x

the conjugate distributions are defined by

f̃ (j1,...,jd) ∼
∑

n∈Zd

(
d∏

i=1

(−ı sign ni)ji

)
f̂(n)eın·x (ji = 0, 1).

Note that f̃ (0,...,0) := f . Gundy and Stein [6], [7] verified that if f ∈ Hp

(0 < p < ∞) then all conjugate distributions are also in Hp and

(1) ‖f‖Hp
= ‖f̃ (j1,...,jd)‖Hp

(ji = 0, 1).

Furthermore (see also Chang and Fefferman [2], Frazier [5], Du-

ren [3]),

(2) ‖f‖Hp ∼
d∑

i=1

1∑

ji=0

‖f̃ (j1,...,jd)‖p,

where ∼ denotes the equivalences of the spaces and norms.
For a distribution f with Fourier series

f ∼
∑

n∈Zd

f̂(n)eın·x let Pf ∼
∑

n∈Nd

f̂(n)eın·x

be the Riesz projection. Then f ∈ Hp if and only if Pf ∈ Lp and

(3) ‖f‖Hp ∼ ‖Pf‖p (0 < p < ∞)

(see Gundy and Stein [6], [7]). Moreover, it is known that Hp ∼ Lp

(1 < p < ∞).
In this paper the constants C are absolute constants and the constants

Cp are depending only on p and may denote different constants in different
contexts.

Jawerth and Torchinsky [8] proved the following theorem.
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Theorem A. For every distribution f ∈ Hp

(
d∑

i=1

∞∑

|ni|=0

|f̂(n)|p∏d
i=1 |ni ∨ 1|2−p

)1/p

≤ Cp‖f‖Hp (0 < p ≤ 2).

Denote by snf the nth partial sum of the Fourier series of a distribu-
tion f , namely,

snf(x) :=
d∑

i=1

ni∑

ki=−ni

f̂(k)eık·x.

For n ∈ Nd and a distribution f the Cesàro mean of order n of the Fourier
series of f is given by

σnf :=
1∏d

i=1(ni + 1)

d∑

i=1

ni∑

ki=0

skf = f ∗ (Kn1 × · · · ×Knd
)

where

Km(t) :=
m∑

|j|=0

(
1− |j|

m + 1

)
eıjt (m ∈ N)

is the one-dimensional Fejér kernel of order m. It is shown in Zyg-
mund [14] that Km ≥ 0 and

(4)
∫

T
Km(t) dt = π (m ∈ N).

The following result is due to the author [13].

Theorem B. If f ∈ Hp, then

‖ sup
n∈Nd

|σnf | ‖p ≤ Cp‖f‖Hp (1/2 < p < ∞).

3. Strong convergence results

A sequence (λk; k ∈ Zd) is said to be a multiplier and the multiplier
operator is defined by

Mλf(x) :=
∑

k∈Zd

λkf̂(k)eık·x.
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Let (λk; k∈Zd) be an even sequence of real numbers, i.e. λε1k1,...,εdkd
=

λk for all εi = −1, 1 and k ∈ Zd. Suppose that there exists K ∈ Nd such
that λk = 0 if kj ≥ Kj for some j = 1, . . . , d. Let

∆1λk :=
∑

ε1,...,εd∈{0,1}
(−1)ε1+···+εkλk1+ε1,...,kd+εd

be the first and

∆2λk :=
∑

ε1,...,εd∈{0,1}
(−1)ε1+···+εk∆1λk1+ε1,...,kd+εd

be the second difference of (λk).

Lemma 1. Suppose that (λk) is an even multiplier and there exists

K ∈ Nd such that λk = 0 if kj ≥ Kj for some j = 1, . . . , d. If Λ :=∑
k∈Nd

( ∏d
i=1(ki + 1)

)
|∆2λk| < ∞ then

‖Mλf‖Hp ≤ CpΛ‖f‖Hp (f ∈ Hp)

for every 1/2 < p < ∞.

Proof. Applying Abel rearrangement twice and Theorem B we get
that

‖Mλf‖p =

∥∥∥∥∥∥
∑

k∈Nd

(
d∏

i=1

(ki +1)

)
∆2λkσkf

∥∥∥∥∥∥
p

≤CpΛ‖f‖Hp (1/2 < p < ∞).

This together with (1) implies that

‖(Mλf)∼(j1,...,jd)‖p = ‖Mλf̃ (j1,...,jd)‖p ≤ CpΛ‖f̃ (j1,...,jd)‖Hp = CpΛ‖f‖Hp

for ji = 0, 1 and 1/2 < p < ∞. The equivalence (2) proves now the lemma.
¤

Let us consider the function

v(t) :=





1 if |t| < 1

2− |t| if 1 ≤ |t| ≤ 2

0 if |t| > 2
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and the multiplier operator V2N defined by

V2Nf(x) :=
∑

k∈Nd

(
d∏

i=1

v

(
ki

Ni

) )
f̂(k)eık·x.

Lemma 2. If 1/2 < p < ∞ then

‖V2Nf‖Hp ≤ Cp‖f‖Hp (f ∈ Hp).

Proof. Let λk :=
∏d

i=1 v( ki

Ni
). It is easy to see that ∆2λk =

∏d
i=1×

∆2v( ki

Ni
) and so we have

∑

k∈Nd

(
d∏

i=1

(ki + 1)

)
|∆2λk| = 3d

which proves the result. ¤
Now we extend the well known Bernstein’s inequality from one- to

multi-parameter trigonometric polynomials.

Lemma 3. Let f be a trigonometric polynomial in the i-th variable
of order Ni. If I ⊂ {1, . . . , d}, then for every 1 ≤ p < ∞

∥∥∥∥
( ∏

i∈I

∂i

)
f

∥∥∥∥
p

≤ C

( ∏

i∈I

Ni

)
‖f‖p .

Proof. Let us define

φNi,i∈I(y) :=
∏

i∈I

(
KNi−1(yi)(eıNiyi + e−ıNiyi)

)
(y = (yi, i ∈ I)).

Then by (4), ‖φNi,i∈I‖1 = C and

φNi,i∈I(y) =
∑

i∈I

Ni−1∑

|ki|=0

(∏

i∈I

(
1− |ki|

Ni

) (
eı(ki+Ni)yi + eı(ki−Ni)yi

))
.

It is easy to see that φ̂Ni,i∈I(k) =
∏

i∈I
ki

Ni
for −Ni ≤ ki ≤ Ni. Then

φNi,i∈I ∗ f = − (
∏

i∈I ∂i)f∏
i∈I Ni

proves the lemma. ¤
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Our main result is the following

Theorem 1. If f ∈ Hp and 1/2 < p ≤ 1 then

sup
Ni≥2

(
1∏d

i=1 log Ni

)[p] d∑

i=1

Ni∑

ki=1

‖skf‖p
Hp∏d

i=1 k2−p
i

≤ Cp‖f‖p
Hp

where [p] denotes the integer part of p.

Proof. To avoid some technical difficulties, we prove the theorem
for two parameters, only. By (3), it is enough to show that

sup
N,M≥2

(
1

log N log M

)[p] N∑

k=1

M∑

l=1

‖sk,l(Pf)‖p
p

(kl)2−p
≤ Cp‖Pf‖p

p

whenever f ∈ Hp and 1/2 < p ≤ 1.
It is easy to see that

N∑

k=1

M∑

l=1

‖sk,l(Pf)‖p
p

(kl)2−p
≤

2N∑

k=1

2M∑

l=1

‖sk,l(V2N,2M (Pf))‖p
p

(kl)2−p
.

For fixed x and y, the (k, l)-th Fourier coefficient of

2N∑

k=1

2M∑

l=1

sk,l

(
V2N,2M (Pf)

)
(x, y)eıkteılu

is sk,l(V2N,2M (Pf))(x, y). Then we can apply Theorem A and (3) to obtain

2N∑

k=1

2M∑

l=1

|sk,l(V2N,2M (Pf))(x, y)|p
(kl)2−p

≤ Cp

∫

T

∫

T

∣∣∣∣
2N∑

k=1

2M∑

l=1

sk,l

(
V2N,2M (Pf)

)
(x, y)eıkteılu

∣∣∣∣
p

dt du.

Using the notation

an,m := v
( n

N

)
v

( m

M

)
f̂(n,m)eınxeımy
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we have

2N∑

k=1

2M∑

l=1

sk,l

(
V2N,2M (Pf)

)
(x, y)eıkteılu =

2N∑

k=1

2M∑

l=1

k∑
n=1

l∑
m=1

an,meıkteılu

=
2N∑
n=1

2M∑
m=1

an,m
eı(2N+1)t − 1

eıt − 1
eı(2M+1)u − 1

eıu − 1

+
2N∑
n=1

2M∑
m=1

an,m
eı(2N+1)t − 1

eıt − 1
1− eımu

eıu − 1

+
2N∑
n=1

2M∑
m=1

an,m
1− eınt

eıt − 1
eı(2M+1)u − 1

eıu − 1

+
2N∑
n=1

2M∑
m=1

an,m
1− eınt

eıt − 1
1− eımu

eıu − 1

= (A) + (B) + (C) + (D).

Recall that for the Dirichlet kernel

DN (t) :=
1
2
e−ıNt e

ı(2N+1)t − 1
eıt − 1

we have

‖DN‖1 ∼ log N and |DN (t)| ≤ C

t
(N ∈ N)

(see e.g. Torchinsky [11]). Applying this, Lemma 2 and (3) we conclude
that

∫

T4
|(A)|p dt du dx dy =

∫

T2

∣∣∣∣
eı(2N+1)t − 1

eıt − 1

∣∣∣∣
p ∣∣∣∣

eı(2M+1)u − 1
eıu − 1

∣∣∣∣
p

dt du

× ‖V2N,2M (Pf)‖p
p ≤

{
C log N log M‖Pf‖1 if p = 1,

Cp‖Pf‖p
p if 1/2 < p < 1.
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For the second term we obtain

∫

T4
|(B)|p dt du dx dy =

∫

T

∣∣∣∣
eı(2N+1)t − 1

eıt − 1

∣∣∣∣
p

dt

×
∫

T

∣∣∣∣
1

eıu − 1

∣∣∣∣
p ∫

T2

∣∣V2N,2M (Pf)(x, y)− V2N,2M (Pf)(x, y + u)
∣∣p dx dy du,

which can be estimated by Cp‖Pf‖p
p if 1/2 < p < 1 and, moreover, if p = 1

then by

C log N

∫

|u|<1/M

1
|u|

∫

T2

∣∣∣
∫ u

0

∂2V2N,2M (Pf)(x, y + w) dw
∣∣∣ dx dy du

+ C log N

∫

|u|≥1/M

1
|u| ‖V2N,2M (Pf)‖1 du =: (B1) + (B2).

It is easy to see that (B2) ≤ C log N log M‖Pf‖1. By Lemma 3,

(B1) ≤ C log N‖V2N,2M (Pf)‖1 ≤ C log N‖Pf‖1.

The estimation of (C) is similar. Let us consider (D).
∫

T4
|(D)|p dt du dx dy =

∫

T2

∣∣∣∣
1

eıt − 1

∣∣∣∣
p ∣∣∣∣

1
eıu − 1

∣∣∣∣
p ∫

T2

∣∣V2N,2M (Pf)(x, y)

− V2N,2M (Pf)(x, y + u)− V2N,2M (Pf)(x + t, y)

+ V2N,2M (Pf)(x + t, y + u)
∣∣p dx dy dt du.

This can be estimated by Cp‖Pf‖p
p if 1/2 < p < 1. In case p = 1 we

split the integral with respect to t and u into the integrals over the sets
{|t| < 1/N, |u| < 1/M}, {|t| < 1/N, |u| ≥ 1/M}, {|t| ≥ 1/N, |u| < 1/M}
and {|t| ≥ 1/N, |u| ≥ 1/M} and we denote these integrals by (D1), (D2),
(D3) and (D4), respectively. Applying Bernstein’s inequality we obtain

(D1) ≤ C

∫

|t|<1/N

∫

|u|<1/M

1
|tu|

×
∫

T2

∣∣∣
∫ t

0

∫ u

0

∂1∂2V2N,2M (Pf)(x+ v, y + w) dv dw
∣∣∣ dx dy dt du≤C‖Pf‖1.
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Similarly,

(D2) ≤ C

∫

|t|<1/N

∫

|u|≥1/M

1
|tu|

∫

T2

∣∣∣
∫ t

0

∂1V2N,2M (Pf)(x + v, y)

− ∂1V2N,2M (Pf)(x + v, y + u) dv
∣∣∣ dx dy dt du ≤ C log M‖Pf‖1.

(D3) can be estimated in the same way. For (D4) we have simply

(D4) ≤ C log N log M‖Pf‖1,

which finishes the proof of Theorem 1. ¤
The set of the trigonometric polynomials is dense in Hp, so by the

usual density argument we can easily verify the next consequence (cf.
Weisz [12]).

Corollary 1. If f ∈ Hp and 1/2 < p ≤ 1 then

lim
N→∞

(
1∏d

i=1 log Ni

)[p] d∑

i=1

Ni∑

ki=1

‖skf − f‖p
Hp∏d

i=1 k2−p
i

= 0.

Since ‖ · ‖p ≤ ‖ · ‖Hp , we get

lim
N→∞

1∏d
i=1 log Ni

d∑

i=1

Ni∑

ki=1

‖skf − f‖1∏d
i=1 ki

= 0

whenever f ∈ H1, which was proved by Smith [10] in the one-parameter
case.

We now give the dual inequality to Theorem 1, which is a Marcin-
kiewicz–Zygmund type inequality for the BMO space, where BMO is the
dual of H1. Since the proof is similar to that of Theorem 3 in Weisz [12],
we omit it.

Theorem 2. If gk (k ∈ Nd) are uniformly bounded in BMO then

sup
Ni≥2

∥∥∥∥∥
1∏d

i=1 log Ni

d∑

i=1

Ni∑

ki=1

skgk

∏d
i=1 ki

∥∥∥∥∥
BMO

≤ C sup
k∈Nd

‖gk‖BMO.

Note that the corresponding results for multi-parameter Walsh–Fou-
rier series are still unknown.
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