On some properties of simplices in spaces of constant curvature

By JENŐ HORVÁTH (Sopron)

Abstract

Let $k \geq 2$ and $d \geq k+2$. Martini [MH93] proved for $k=2$ that a d-dimensional simplex S_{d} in spaces of constant curvature is regular if the 2-faces of S_{d} are congruent. We shall prove analogous theorems for $k=3$ and $k=4$ and show that a similar statement for $d=k+1$ is false.

1. Introduction

1.1. A tetrahedron S_{3} is called isosceles if all 2 -faces of S_{3} are congruent. Isosceles tetrahedra have interesting properties in Euclidean space R^{3}. The following analogous equivalent statements for a tetrahedron S_{3} in 3-dimensional spherical and hyperbolic space was proved by the author [HJ69, HJNL96].
1.1.1. The tetrahedron S_{3} is an isosceles tetrahedron.
1.1.2. The 2 -faces of S_{3} have equal areas.
1.1.3. The stereoangles at the vertices of S_{3} are congruent.
1.1.4. The measures of the above stereoangles are equal.
1.1.5. The circumcircles of the 2 -faces of S_{3} have the same radius.

Let O, K and L denote the midpoint of the circumscribed ball, the midpoint of the inscribed ball and the centroid of S_{3}.
1.1.6. At least two of the points O, K and L coincide.
1.1.7. The perimeters of the faces of S_{3} are equal.
1.1.8. The perimeters of the vertex figures of S_{3} are equal.

Mathematics Subject Classification: 51M09.
$K e y$ words and phrases: d-dimensional space of constants curvature, d-simplex, k-face of a d-simplex, isosceles tetrahedra.

Bui Van Dung [BVD84] proved the majority of the above properties for tetrahedra in hyperbolic 3 -space whose vertices are ideal.
1.2. H. Martini [MH93] proved that the following four properties of a d simplex in spaces of constant curvature $\left(R^{d}, S^{d}, H^{d}\right)$ for $d \geq 4$ are equivalent.
1.2.1. The simplex S_{d} is regular.
1.2.2. The 2 -faces of S_{d} have equal areas.
1.2.3. The 2 -faces of S_{d} are congruent.
1.2.4. The measures of the four stereoangles of each 3 -face of S_{d} are equal to each other.

As a consequence of the results in [HJ69] and [HJNL96] it is sufficient to show that the statements 1.2 .1 and 1.2 .3 are equivalent. These results imply the equivalences of the statements according to 1.1.5-1.1.8.

Analogous results were derived in [FPMH90] for Euclidean simplices.
Let us consider a d-simplex S_{d} in R^{d}, S^{d}, H^{d}. An edge of length a is called an a-edge. Let $(0,1,2, \ldots, n)$ denote the simplex with vertices $0,1,2, \ldots, n$.

2. Results

The 3 -faces of S_{d} are congruent isosceles tetrahedra in cases 1.2.21.2.4. The result of Martini can be formulated as follows. If the 3 -faces of S_{d} are congruent isosceles tetrahedra for $d \geq 4$, then S_{d} is regular.

Theorem 1. If the 3 -faces of a d-simplex S_{d} in d-dimensional spaces of constant curvature for $d \geq 5$ are congruent, then S_{d} is regular.

Proof. It is sufficent to prove the statement for $d=5$. The number of the edges of S_{5} is 15 .

Let $01=a$. There exists an a-edge in (2345) too. Let $23=a$. Then (0123) has two skew a-edges. Hence (1245) has also two skew a-edges. There are two possibilities.
a) $12=45=a$. It follows from this that the simplex (0123) has 3 joining a-edges and the number of the a-edges of S_{5} is at least 4 . The simplex (0345) contains also at least 3 a-edges. Hence S_{5} has at least 6 a-edges.

乃) $25=14=a(15=24=a)$. The simplex S_{5} contains at least 4 a-edges. There are at least $2 a$-edges in (0345), thus that S_{5} has at least $6 a$-edges.

If S_{5} is not regular, then there exists a b-edge with $a \neq b$. By similar arguments the number of the b-edges is at least 6 .

The role of a and b can be interchanged hence the number of the a edges and the b-edges is equal. Keeping in mind that the number of the edges of S_{5} is 15 , the number of the a-edges is at most 5 . But this is a contradiction to α) and β) and the theorem is proved.

Theorem 2. If the 4 -faces of a d-simplex S_{d} in d-dimensional spaces of constant curvature for $d \geq 6$ are congruent, then S_{d} is regular.

Proof. It is sufficent to prove the statement for $d=6$. The number of the edges of S_{6} is 21 . We prove that the number of the a-edges is at least 8 .

Let $01=a$. The simplex (23456) has also an a-edge. Let $23=a$. Then (01234) has two skew a-edges. Hence (03456) has also two skew a-edges. In this case there is an a-edge among the edges with endpoints 4 or 5 or 6 and 0 or 3 . Let $04=a$. Then (01234) has at least $3 a$-edges, two of them intersect (01 and 04) and the third (23) is in a screw position in regard to the intersecting a-edges. It follows that the simplex (12456) has also at least $3 a$-edges of preceding types. Then there is an a-edge among the edges with endpoints 1,2 or 4 . The simplex (01234) has also a fourth a-edge and these a-edges joint to one another. For example let $12=a$. The simplex (12456) contains also at least $4 a$-edges, 12 and at least three other a-edges (e.g. $16=65=54=a$). It follows that S_{6} has at least $7 a$-edges. But in this case there are at least $5 a$-edges in (01456), and the same holds in (01234), too. The fifth a-edge is different from the preceding a-edges. Hence the number of the a-edges of S_{6} is at least 8 .

It can be proved analogously to the proof of Theorem 1 that S_{6} contains at most $7 a$-edges. But this is a contradiction to the number 8 and the theorem is proved.

Conjecture. Let $k \geq 5$ and $d \geq k+2$. If the k-faces of a d-simplex S_{d} in d-dimensional spaces of constant curvature are congruent, then S_{d} is regular.

Remark. The conjecture is false for $d=k+1$. Let the graph of the simplex S_{k+1} be a regular ($k+2$)-gon. The edges of S_{k+1} which correspond to the equal sides or diagonals of the $(d+1)$-gon, are equal. If we omit a vertex, then we get the graph of a k-face. It is clear that the k-faces of S_{k+1} are congruent but the simplex S_{k+1} is not regular.

There exists such a simplex S_{k+1} of the above type in R^{k+1} whose congruent examples are the faces of a tesselation in R^{k+1}.

References

[BVD84] Bui Van Dung, Some properties of equilateral tetrahedra with ideal vertices in the hyperbolic space, Mat. Lapok 32 (1-3) (1984), 127-135. (in Hungarian)
[FPMH90] P. Frank and H. Machara, Simplices with given 2-face areas, European J. Combin. 11 (1990), 241-247.
[HJ69] J. Horváth, A property of equilateral tetrahedra in spaces of constant curvature, Mat. Lapok 20 (1-3) (1969), 357-364. (in Hungarian)
[HJNL96] J. HorvÁth and L. Németh, Ultraideal simplices in the hyperbolic space, BDTF Tud. Közl. X. Természettud. 5 (1996), 3-25. (in Hungarian)
[MH93] H. Martini, Regular simplices in spaces of constant curvature, Amer. Math. Monthly 100 (1993), 169-171.

JENŐ HORVÁTH
UNIVERSITY OF WEST HUNGARY
institute of mathematics
SOPRON
HUNGARY
(Received February 14, 2000; revised December 21, 2000)

