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On generalized quasi Einstein manifolds

By M. C. Chaki (Calcutta)

Abstract. The notions of a generalized quasi Einstein manifold and a manifold
of generalized quasi constant curvature are introduced and some properties of such
manifolds are obtained.

Introduction

The notion of a quasi Einstein manifold (QE)n was introduced in a
recent paper [1] by the author and R. K. Maity. According to them
a non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called quasi Einstein
if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the
condition

(1) S(X, Y ) = ag(X, Y ) + bA(X)A(Y )

where a, b are scalars of which b 6= 0 and A is a non-zero 1-form such that

(2) g(X,U) = A(X) ∀X, and U is a unit vector field.

This paper deals with generalized quasi Einstein manifolds which are
defined as follows:

A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called a general-
ized quasi Einstein manifold G(QE)n if its Ricci tensor S of type (0, 2) is
not identically zero and satisfies the condition

(3) S(X, Y ) = ag(X,Y ) + bA(X)A(Y ) + c[A(X)B(Y ) + A(Y )B(X)]
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where a, b, c are scalars of which b 6= 0, A, B are non-zero 1-forms such
that

(4) g(X,U) = A(X), g(X,V ) = B(X) ∀X

and U , V are two unit vector fields perpendicular to each other.
In such a case a, b, c are called the associated scalars, A, B are called

the associated 1-forms and U , V are called generators of the manifold.
Such an n-dimensional manifold shall be denoted by the symbol G(QE)n.

If c = 0, then (3) takes the form (1) and the manifold becomes a quasi
Einstein manifold introduced by Chaki and Maity. This justifies the name
generalized quasi Einstein manifold for the manifold defined by (3) and
the use of the symbol G(QE)n for an n-dimensional manifold of this kind.

In 1972 Chen and Yano [2] introduced the notion of a manifold
of quasi-constant curvature. According to them a Riemannian manifold
(Mn, g) (n > 3) is said to be of quasi-constant curvature (QC)n (see
also [3]) if its curvature tensor ′R of type (0, 4) satisfies the condition

′R(X, Y, Z, W ) = a
[
g(Y,Z)g(X, W )− g(X, Z)g(Y, W )

]
(5)

+ b
[
g(Y, Z)A(X)A(W )− g(X, Z)A(Y )A(W )

+ g(X, W )A(Y )A(Z)− g(Y, W )A(X)A(Z)
]

where a, b are scalars of which b 6= 0 and A is a non-zero 1-form such that

(6) g(X,U) = A(X), ∀X,

U being a unit vector field. In such a case a and b are called the associated
scalars, A is called the associated 1-form and U is called the generator of
the manifold. Such an n-dimensional manifold was denoted by the symbol
(QC)n [3].

A generalization of a manifold of quasi-constant curvature, called a
manifold of generalized quasi-constant curvature is needed for the study of
a G(QE)n. Such a manifold is defined as follows: A non-flat Riemannian
manifold (Mn, g) (n ≥ 3) shall be called a manifold of generalized quasi-
constant curvature if its curvature tensor ′R of type (0, 4) satisfies the
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condition

′R(X, Y, Z, W ) = a
[
g(Y,Z)g(X, W )− g(X, Z)g(Y, W )

]
(7)

+ b
[
g(Y, Z)A(X)A(W )− g(X, Z)A(Y )A(W )

+ g(X, W )A(Y )A(Z)− g(Y, W )A(X)A(Z)
]

+ c
[
g(Y,Z){A(X)B(W ) + A(W )B(X)}

− g(X, Z){A(Y )B(W ) + A(W )B(Y )}
+ g(X, W ){A(Y )B(Z) + A(Z)B(Y )}
− g(Y,W ){A(X)B(Z) + A(Z)B(X)}]

where a, b, c are scalars of which b 6= 0, A, B are two non-zero 1-forms
such that

(8) g(X, U) = A(X), g(X, V ) = B(X) ∀X,

where U , V are two mutually perpendicular unit vector fields. Such an n-
dimensional manifold shall be denoted by the symbol G(QC)n. In such a
case a, b, c are called the associated scalars, A, B are called the associated
1-forms and U , V are called the generators of the manifold. If c = 0,
then (7) takes the form (5) and the manifold becomes a manifold of quasi
constant curvature. This justifies the name manifold of generalized quasi
constant curvature and the use of the symbol G(QC)n for an n-dimensional
manifold of this kind.

In this paper it is shown that in a G(QE)n the scalars a and a + b

are the Ricci curvatures in the directions of the vector fileds V and U

respectively and the scalar c is < 1√
2
`, where ` is the length of the Ricci

tensor S. Other results established in this paper are as follows:

i) Every G(QE)3 is a G(QC)3, but a G(QE)n (n > 3) is not, in general
a G(QC)n.

ii) A G(QE)n (n > 3) is a G(QC)n if it is conformally flat.

iii) A G(QC)n (n > 3) is a conformally flat G(QE)n.

iv) If U⊥ denotes the (n − 1)-dimensional distribution of a G(QE)n

(n > 3) orthogonal to the generator U , then the sectional curvature
of the plane determinated by the vectors X, Y is (3n−2)a+b

(n−1)(n−2) when
X, Y ∈ U⊥, while the sectional curvature of the plane determined by
the vectors X, U is (3n−2)a+nb

(n−1)(n−2) when X ∈ U⊥.
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1. Scalar curvature and
the associated scalars of a G(QE)n (n ≥ 3)

In this section we consider a G(QE)n with associated scalars a, b, c

associated 1-forms A, B and generators U and V corresponding to A and
B, respectively. Then (3) and (4) will hold. Since U and V are mutually
perpendicular unit vector fields, we have

(1.1) g(U,U) = 1, g(V, V ) = 1 and g(U, V ) = 0.

In virtue of (8) g(U, V ) = 0 can be expressed as

(1.2) A(V ) = B(U) = 0.

Now contracting (3) over X and Y we get

(1.3) r = na + b

where r is the scalar curvature. Again from (3) we get

S(U,U) = a + b(1.4)

S(V, V ) = a(1.5)

S(U, V ) = c.(1.6)

If X is a unit vector filed, then S(X, X) is the Ricci curvature in the
direction of X. Hence, from (1.4) and (1.5), we can state that a + b and a

are the Ricci curvatures in the directions of U and V , respectively.
Let

(1.7) g(LX, Y ) = S(X, Y )

and `2 denote the square of the length of the Ricci tensor S. Then

(1.8) `2 = S(Lei, ei),

where {ei}, i = 1, 2, . . . n is an orthonormal basis of the tangent space
(TpM) of G(QE)n. Now from (3) we get

S(Lei, ei) = (n− 1)a2 + (a + b)2 + 2c2.
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Hence
`2 − 2c2 = (n− 1)a2 + (a + b)2.

Therefore

(1.9) `2 > 2c2
[

∵ `2 − 2c2 6= 0
]
.

From (1.9) we get (1.10) c < 1√
2
`.

Summing up, we can state the following theorem:

Theorem 1. In a G(QE)n (n ≥ 3) the scalars a + b and a are the
Ricci curvatures in the directions of the generators U and V , respectively
and the associated scalar c is less than 1√

2
`, where ` is the length of the

Ricci tensor S.

2. Three-dimensional generalized quasi Einstein manifold

In this section we consider a G(QE)3. In this case (2.1) r = 3a + b.
It is known [5] that in a 3-dimensional Riemannian manifold (M3, g)

the curvature tensor ′R of type (0, 4) has the following form:

′R(X,Y, Z,W ) =
[
g(Y, Z)S(X,W )− g(X, Z)S(Y, W )(2.1)

+ g(X,W )S(Y, Z)− g(Y, W )S(X, Z)
]

+
r

2
[
g(Y, Z)g(X,W )− g(X, Z)g(Y, W ).

Using (3), we can express (2.1) as follows:

′R(X,Y, Z,W ) =
(
2a+

r

2

)[
g(Y, Z)g(X, W )− g(X,Z)g(Y,W )

]
(2.2)

+b
[
g(Y,Z)A(X)A(W )−g(X, Z)A(Y )A(W )

+ g(X,W )A(Y )A(Z)− g(Y,W )A(X)A(Z)
]

+ c
[
g(Y, Z){A(X)B(W ) + A(W )B(X)}

− g(X,Z){A(Y )B(W ) + A(W )B(Y )}
+ g(X,W ){A(Y )B(Z) + A(Z)B(Y )}
− g(Y, W ){A(X)B(Z) + A(Z)B(X)}].

In virtue of (7), it follows from (2.2) that a G(QE)3 is a G(QC)3. This
leads to the following result:

Theorem 2. Every G(QE)3 is a G(QC)3.



688 M. C. Chaki

3. Conformally flat G(QE)n (n > 3)

A G(QE)n (n > 3) is not, in general, a G(QC)n. In this section we
consider a conformally flat G(QE)n (n > 3) and show that such a G(QE)n

is a G(QC)n.

It is known [6] that in a conformally flat Riemannian manifold (Mn, g)
(n > 3) the curvature tensor ′R of type (0, 4) has the following form:

′R(X,Y, Z,W ) =
1

n− 2
[
g(Y, Z)S(X, W )− g(X, Z)S(Y, W )(3.1)

+ g(X, W )S(Y, Z)− g(Y, W )S(X, Z)
]

+
r

(n− 1)(n− 2)
[
g(Y, Z)g(X, W )

− g(X, Z)g(Y,W )
]
.

Using (3) we can express (3.1) as follows:

′R(X,Y, Z,W ) =
2a(n− 1) + r

(n− 1)(n− 2)
(3.2)

× [
g(Y, Z)g(X, W )− g(X,Z)g(Y,W )

]

+
b

n− 2
[
g(Y, Z)A(X)A(W )− g(X, Z)A(Y )A(W )

+ g(X,W )A(Y )A(Z)− g(Y,W )A(X)A(Z)
]

+
c

n− 2
[
g(Y, Z){A(X)B(W ) + A(W )B(X)}

− g(X,Z){A(Y )B(W ) + A(W )B(Y )}

+ g(X,W ){A(Y )B(Z) + A(Z)B(Y )}

− g(Y, W ){A(X)B(Z) + A(Z)B(X)}].

In virtue of (7) it follows from (3.2) that the manifold under consideration
is a G(QC)n (∵ b 6= 0). Therefore we can state as follows:

Theorem 3. Every conformally flat G(QE)n (n > 3) is a G(QC)n.
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We now enquire whether every G(QC)n (n ≥ 3) is a G(QE)n. Con-
tracting (7) over Y and Z we get

S(X, W ) =
[
a(n− 1) + b

]
g(X, W ) + b(n− 2)A(X)A(W )(3.3)

+ c(n− 2)
[
A(X)B(W ) + A(W )B(X)

]
.

In virtue of (3) it follows from (3.3) that a G(QC)n (n ≥ 3) is a G(QE)n

(∵ b 6= 0).
In a Riemannian manifold (Mn, g) (n > 3) the conformal curvature

tensor ′C of type (0, 4) has the following form:

′C(X, Y, Z, W ) = ′R(X,Y, Z, W )− 1
n− 2

[
g(Y, Z)S(X, W )(3.4)

− g(X, Z)S(Y, W )+ g(X, W )S(Y, Z)− g(Y,W )S(X, Z)
]

+
r

(n− 1)(n− 2)
[
g(Y, Z)g(X, W )− g(X,Z)g(Y,W )

]
.

Using (7) and (3.3) it follows from (3.4) that

(3.5) ′C(X, Y, Z,W ) = 0

i.e. the manifold under consideration is conformally flat. Thus we can state
the following theorem:

Theorem 4. Every G(QC)n (n ≥ 3) is a G(QE)n while every G(QC)n

(n > 3) is a conformally flat G(QE)n.

4. Sectional curvatures
at a point of a conformally flat G(QE)n (n > 3)

Let U⊥ denote the (n− 1)-dimensional distribution in a conformally
flat G(QE)n (n > 3) orthogonal to U . Then for any X ∈ U⊥, g(X,U) = 0
or, A(X) = 0. In this section we shall determine sectional curvature K

at the plane determined by the vectors X, Y ∈ U⊥ or by X, U . Putting
Z = Y and W = X in (3.1) we get

(4.1) ′R(X, Y, Y,X) =
2a(n− 1) + r

(n− 1)(n− 2)
[
g(X, X)g(Y, Y )− {g(X, Y )}2].
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Then

K(X,Y ) =
′R(X, Y, Y, X)

g(X, X)g(Y, Y )− {g(X,Y )}2(4.2)

=
2a(n− 1) + r

(n− 1)(n− 2)
[by (4.1)]

=
2a(n− 1) + na + b

(n− 1)(n− 2)
=

(3n− 2)a + b

(n− 1)(n− 2)
,

and

(4.3) K(X, U) =
′R(X, U,U,X)

g(X,X)g(U,U)− {g(X, U)}2 .

But

(4.4) ′R(X, U,U,X) =
[

2a(n− 1) + r

(n− 1)(n− 2)
+

b

n− 2

]
g(X, X).

Hence, from (4.3), we get

K(X, U) =
2a(n− 1) + r

(n− 1)(n− 2)
+

b

n− 2
(4.5)

=
2a(n− 1) + na + b

(n− 1)(n− 2)
+

b

n− 2

=
(3n− 2)a + nb

(n− 1)(n− 2)
.

Summing up we can state the following theorem.

Theorem 5. In a conformally flat G(QE)n (n > 3) the sectional

curvature of the plane determined by two vectors X, Y ∈ U⊥ is (3n−2)a+b
(n−1)(n−2) ,

while the sectional curvature of the plane determined by two vectors X,

U is (3n−2)a+nb
(n−1)(n−2) .

I conclude by stating as follows:
The importance of a G(QE)n lies in the fact that such a four-dimen-

sional semi-Riemannian manifold is relevant to the study of a general rel-
ativistic fluid space-time admitting heat flux [7], where U is taken as the
velocity vector field of the fluid and V is taken as the heat flux vector field.
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