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Homeomorphisms and monotone vector fields

By S. Z. NÉMETH (Budapest)

Abstract. A classical result of Minty [8] states that for a Hilbert space H and
a continuous monotone map A : H → H the map A + I is a homeomorphism of H. We
extend this result to Hadamard manifolds.

1. Introduction

Let B be a Banach space and G a subset of B. The map A : G → B∗ is
called monotone with respect to duality (or in the sense of Minty–Browder)
if 〈Ay − Ax, y − x〉 ≥ 0 for any x and y in G, where B∗ is the dual of B

and 〈 . , . 〉 is the natural pairing. If the strict inequality holds whenever
x 6= y, then A is called strictly monotone. If B is a Hilbert space, then the
pairing 〈 . , . 〉 can be identified with the scalar product of B. We extended
the notion of monotonicity for vector fields of a Riemannian manifold. A
classical result of Minty [8] states that for a Hilbert space H and a con-
tinuous monotone map A : H → H the map A + I : H → H, where I is
the identical map of H, is a homeomorphism. This result (and different
variations of it) is widely used to prove existence and uniqueness theorems
for operator equations, partial differential equations and variational in-
equalities (see [19]). Surprisingly, in the finite dimensional case this result
boils down just to the continuity and expansivity of A+I, beeing a partic-
ular case (it is not trivial to show) of a classical homeomorphism theorem
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of Browder [4, Theorem 4.10] (connected to this subject see also [1]–[3],
[6], [13]–[15].) We shall generalize this result for a complete connected Rie-
mannian manifold M . We shall prove that a continuous expansive map
A : M → M is a homeomorphism. By an expansive map on a Riemannian
manifold we mean a map which increases the distance between any two
points. The distance function on a Riemannian manifold is given by [5,
p. 146, Definition 2.4]. The expansivity of A can be greatly weakened. It
is enough to suppose that A is reverse uniform continuous, which means
that for any ε > 0 there is a δ = δ(ε) > 0 such that d(Ax, Ay) < δ implies
d(x, y) < ε, where d denotes the distance function on M . Particularly
if M is an Hadamard manifold (complete, simply connected Riemannian
manifold, of nonpositive sectional curvature) and X is a monotone vector
field on M we shall prove that exp X is expansive. Hence if X is contin-
uous exp X is a homeomorphism of M , extending Minty’s classical result.
(We note that for a Hilbert space H we have exp X = X + I, where X is
identified with a map of H.)

The author expresses his gratitude to professor Tamás Rapcsák,
professor János Szenthe and dr. Balázs Csikós to many helpful con-
versations.

2. Preliminary results

First we prove the following lemma:

Lemma 2.1. Consider R2 endowed with the canonical scalar product

〈 . , . 〉. Denote by ‖ . ‖ the norm induced by 〈 . , . 〉. Let abcd be a quadri-

lateral in R2 such that ‖c − d‖ > ‖a − b‖. Denote by α, β, γ and δ the

angles ∠dab, ∠abc, ∠bcd and ∠cda, respectively. Then

(2.1) ‖a− d‖ cos δ + ‖b− c‖ cos γ > 0.

(This holds even if abcd degenerates to a triangle.)

Proof. If a = b the inequality follows from the relation

‖a− d‖ cos δ + ‖a− c‖ cos γ = ‖c− d‖,
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which can be easily obtained by projecting a to the straight line joining c

and d. Suppose that a 6= b. From ‖c − d‖ > ‖a − b‖ and the Schwarz
inequality we have that

〈d− c, a− b〉 < ‖d− c‖2,

which is equivalent to

(2.2) 〈c− d, a− d〉+ 〈d− c, b− c〉 > 0.

It is easy to see that (2.2) implies (2.1). ¤

In the following definition indices i = 1, . . . , n are considered mod-
ulo n. A geodesic n-sided poligon in a Riemannian manifold M is a set
formed by n segments of minimizing unit speed geodesics (called sides of
the poligon)

γi : [0, li] → M ; i = 1, . . . , n,

in such a way that γi(li) = γi+1(0); i = l, . . . , n. The endpoints of the
geodesic segments are called vertices of the poligon. The angle

∠(−γ̇i(li), γ̇i+1(0)); i = 1, . . . , n

is called the (interior) angle of the corresponding vertex.
Recall that on Hadamard manifolds every two points can be uniquely

joined by a geodesic arc [11]. Hence the distance between two points of an
Hadamard manifold is the length of the geodesic joining these points.

Let M be an Hadamard manifold. If a, b, c are three arbitrary points
of M then ab will denote the distance of a from b and abc4 the geodesic
triangle of vertices a, b, c (which is uniquely defined). In general a geodesic
poligon in M , of consecutive vertices a1, . . . , an will be denoted by a1 . . . an.

Lemma 2.2. Let abcd be a quadrilateral in a Hadamard manifold M

and α, β, γ, δ the angles of the vertices a, b, c, d, respectively. Then

α + β + γ + δ ≤ 2π.

Proof. Let α1, α2 be the angles of the vertex a in adc4 and abc4,
respectively. Similarly, let γ1 and γ2 be the angles of the vertex c in adc4
and abc4, respectively. It is known that an angle formed by two edges of
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a trieder is bounded by the sum of the other two angles formed by edges.
Hence

α1 + α2 ≥ α(2.3)

and

γ1 + γ2 ≥ γ.(2.4)

On the other hand by [5, p. 259, Lemma 3.1 (ii)] we have that

α1 + γ1 + δ ≤ π,(2.5)

α2 + γ2 + β ≤ π.(2.6)

Summing inequalities (2.5), (2.6) and using (2.3), (2.4) we obtain

α + β + γ + δ ≤ 2π. ¤

The next lemma follows from [18, Lemma 1].

Lemma 2.3. Let (M, 〈 . , . 〉) be an Hadamard manifold and abcd be

a quadrilateral in M such that α is nonacute and β is obtuse (nonacute),

where α, β, γ, δ are the angles of the vertices a, b, c, d, respectively. Then

cd > ab (cd ≥ ab).

The following lemma is a generalization of Lemma 2.1.

Lemma 2.4. Let (M, 〈 . , . 〉) be an Hadamard manifold and abcd be

a quadrilateral in M such that cd > ab. Denote by α, β, γ, δ the angles

of the vertices a, b, c, d, respectively. Then

ad cos δ + bc cos γ > 0.

(This holds even if abcd degenerates to a triangle.)

Proof. We identify TaM with Rn, where n = dim M . Denote by
‖ . ‖ the norm generated by the canonical scalar product of Rn.

If δ, γ ≥ π/2 then Lemma 2.3 implies ab ≥ cd which contradicts
cd > ab. Hence we have either δ < π/2 or γ < π/2. We can suppose
without loss of generality that

(2.7) γ < π/2.
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The lengths of the sides of a geodesic triangle satisfy the triangle inequali-
ties. Hence there exist the points b′, c′, d′ of Ta(M) such that ‖a−d′‖ = ad,
‖a − c′‖ = ac, ‖d′ − c′‖ = dc, ‖a − b′‖ = ab, ‖b′ − c′‖ = bc and b′ is con-
tained in the plane of ad′c′4, such that b′ and d′ are contained in different
half planes defined by the straight line in Ta(M) joining a and c′. Let
α′ = ∠d′ab′, β′ = ∠ab′c′, γ′ = ∠b′c′d′, δ′ = ∠c′d′a, γ′1 = ∠ac′d′ and
γ′2 = ∠ac′b′. Using Lemma 2.1 to the quadrilateral ab′c′d′ we obtain

(2.8) ‖a− d′‖ cos δ′ + ‖b′ − c′‖ cos γ′ > 0.

Denote by γ1, γ2 the angles of the vertex c in the triangles adc4, abc4,
respectively. Then we have, by [5, p. 259, Lemma 3.1 (i)] that

δ′ ≥ δ.(2.9)
and

γ′1 + γ′2 ≥ γ1 + γ2 ≥ γ.(2.10)

We consider two cases:

1) γ′1 + γ′2 ≤ π.
We have

(2.11) γ′ = γ′1 + γ′2.

Relations (2.10) and (2.11) implies

(2.12) γ′ ≥ γ.

Since ‖a − d′‖ = ad, ‖b′ − c′‖ = bc and the cosine function is strictly
decreasing on ]0, π] (2.8), (2.9) and (2.12) imply

ad cos δ + bc cos γ > 0.

2) γ′1 + γ′2 > π.
If δ < π/2 then ad cos δ + bc cos γ > 0 holds trivially, since γ < π/2.

We suppose that δ ≥ π/2. By (2.9) we have that δ′ ≥ π/2. [5, p. 259,
Lemma 3.1 (ii)] implies that

γ′1 ≤ π/2.(2.13)

We also have

γ′2 ≤ π.(2.14)
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Hence (2.13) and (2.14) implies

(2.15) 2π − γ′ = γ′1 + γ′2 ≤
3π

2
.

By (2.7) and (2.15) we have 0 ≤ γ < γ′ ≤ π. Since the cosine function is
strictly decreasing on [0, π] we have

(2.16) cos γ > cos γ′.

Similarly (2.9) implies

(2.17) cos δ ≥ cos δ′.

By ‖a− d′‖ = ad, ‖b′ − c′‖ = bc, (2.8), (2.16) and (2.17) we have

ad cos δ + bc cos γ > 0. ¤

3. Monotone vector fields on Riemannian manifolds

Let M be a Riemannian manifold. We recall that a subset K of M is
called (geodesic) convex [12] if for every two points of M there is a geodesic
arc joining these points contained in K.

If N is an arbitrary manifold, we shall denote by Sec(TN) the family
of sections of the tangent bundle TN of N . Using this notation, we have
the following definition:

Definition 3.1. Let (M, 〈 , 〉) be a Riemannian manifold, K ⊂ M

a convex open set and X ∈ Sec(TK) a vector field on K. X is called
monotone [9] if for every x, y ∈ K and every unit speed geodesic arc
γ : [0, l] → M joining x and y (γ(0) = x, γ(l) = y) contained in K, we
have that

〈Xx, γ̇(0)〉 ≤ 〈Xy, γ̇(l)〉,
where γ̇ denotes the tangent vector of γ with respect to the arclength.

Let X be monotone. With the previous notations X is called strictly
monotone [9] if for every distinct x and y

〈Xx, γ̇(0)〉 < 〈Xy, γ̇(l)〉.
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Since the length of the tangent vector of an arbitrary parametrized
geodesic is constant, the relations of Definition 3.1 can be given for any
parametrization of γ. It is also easy to see that X is monotone (strictly
monotone), if and only if for every geodesic γ (arbitrarily parametrized)
the υ : τ 7→ 〈Xγ(τ), γ′(τ)〉 is monotone (strictly monotone), where γ′(τ) is
the tangent vector of γ with respect to its parameter τ .

The following example makes connection between monotone vector
fields and monotone operators of a Euclidean space, showing that with
few modifications the formers are generalizations of the latters:

Example 3.2. Let E be a Euclidean space, G ⊂ E an open and convex
set and h : G → E a monotone (strictly monotone) operator. Then, the
vector field X ∈ Sec(TG); x 7→ h(x)x, where h(x)x is the tangent vector
in 0 of the curve t 7→ x + th(x), is monotone (strictly monotone).

The next remark follows easily from Definition 3.1.

Remark 3.3. If M is an Hadamard manifold, K ⊂ M a convex open
set and X ∈ Sec(TK) is a vector field on K then X is monotone if and
only if for every x, y ∈ K

(3.1) 〈Xx, exp−1
x y〉+ 〈Xy, exp−1

y x〉 ≤ 0,

where exp : TM → M is the exponential map of M .

Examples for monotone vector fields on Riemannian manifolds can be
found in [9], [10]. We also remark that the gradient of every (geodesic)
convex function [12] on a Riemannian manifold is monotone (see [16], [17]).

4. Homeomorphisms of Hadamard manifolds

The following proposition is a consequence of Lemma 2.4.

Proposition 4.1. Let M be an Hadamard manifold and X ∈ Sec(TM)
a monotone vector field on M . Then the map A = exp X : M → M defined

by Ax = expx Xx is expansive.

Proof. Suppose that A is not expansive. Hence there exist x and y

in M such that x′y′ < xy, where x′ = Ax and y′ = Ay. Consider the
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quadrilateral xyy′x′. Denote by the same letters the angles corresponding
to the vertices x and y, respectively. Then by Lemma 2.4 we have

(4.1) xx′ cos x + yy′ cos y > 0.

It is easy to see that (4.1) is equivalent to

(4.2) 〈Xx, exp−1
x y〉+ 〈Xy, exp−1

y x〉 > 0.

But by (3.1) inequality (4.2) contradicts the monotonicity of X. Hence
A is expansive. ¤

Definition 4.2. Let M be a Riemannian manifold and d its distance
function, which is a metric on M (see [5, p. 146, Proposition 2.5]). A :
M → M is called reverse uniform continuous if for any ε > 0 there is a
δ = δ(ε) > 0 such that d(Ax,Ay) < δ implies d(x, y) < ε.

Let α ≥ 1 and L > 0 be two arbitrary positive constants and A :
M → M such that for any x and y in M to have d(Ax, Ay) ≥ Ld(x, y)α.
Then A is reverse uniform continuous. If α = L = 1 we obtain the set of
expansive maps.

Theorem 4.3. Let M be a complete connected Riemannian manifold

and A : M → M a continuous and reverse uniform continuous map. Then

A is a homeomorphism. Particularly this is true for A continuous and

expansive.

Proof. Let n = dimM . It is easy to see that the reverse uniform
continuity of A implies that it is injective and A−1 : AM → M is contin-
uous, where AM = {Ax : x ∈ M}. Hence A : M → AM is a homeomor-
phism. It remains to show that AM = M . Suppose that we have already
proved that AM is closed. Since A : M → AM is a homeomorphism, by
Brouwer’s domain invariance theorem, [7, p. 65] AM is open. Since M is
connected and AM is an open and closed subset of M we have AM = M .
Hence if we prove that AM is closed we are done. For this let us consider
a sequence x′n = Axn in M convergent to x′ ∈ M and prove that x′ ∈ AM

i.e. there is an x ∈ M such that x′ = Ax. Since x′n is convergent it is a
Cauchy sequence. It is easy to see that the reverse continuity of A implies
that xn is also a Cauchy sequence. Since M is complete, by Hopf–Rinow
theorem for Riemannian manifolds it is complete as a metric space (see
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[5, p. 146]). Hence xn is convergent. Denote by x its limit. Since A is
continuous taking the limit in the relation x′n = Axn as n →∞ we obtain
x′ = Ax. ¤

By Proposition 4.1 we have the following extension to Hadamard man-
ifolds of Minty’s classical homeomorphism theorem for monotone maps [8,
Corollary of Theorem 4].

Corollary 4.4. Let M be an Hadamard manifold and X be a contin-

uous monotone vector field. Then expX : M → M is a homeomorphism.

In [10] we proved that if p1, p2, . . . , pn are projection maps onto closed
convex sets of an Hadamard manifold [18] then the vector field

X = − exp−1(p1 ◦ . . . ◦ pn)

defined by

Xx = − exp−1
x [(p1 ◦ . . . ◦ pn)(x)]

is continuous and monotone. Hence we have the following corollary:

Corollary 4.5. Let M be an Hadamard manifold and p1, p2, . . . , pn

projection maps onto closed convex sets of M . Then

exp[− exp−1(p1 ◦ . . . ◦ pn)] is a homeomorphism of M onto M .
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[6] W. A. Kirk and R. Sch�oneberg, Mapping theorems for local expansions in metric
and Banach spaces, Journal of Mathematical Analysis and Applications 72 (1979),
114–121.

[7] W. S. Massey, Homology and cohomology theory, An approach based on Alexan-
der–Spanier cochains, Monographs and Textbooks in Pure and Applied Mathemat-
ics, Vol. 46, Marcel Dekker, Inc., New York – Basel, 1978.

[8] G. Minty, Monotone operators in Hilbert spaces, DukeMath. J. 29 (1962), 341–346.



716 S. Z. Németh : Homeomorphisms and monotone vector fields

[9] S. Z. N�emeth, Monotone vector fields, Publ. Math. Debrecen 54/3–4 (1999),
437–449.

[10] S. Z. N�emeth, Monotonicity of the complementary vector field of a nonexpansive
map, Acta Mathematica Hungarica 84 (3) (1999), 189–197.

[11] B. O'Neil, Semi-Riemannian Geometry, With Applications to Relativity, [B] Pure
and Applied Mathematics, 106, XIII, Academic Press, New York, London, 1983.

[12] T. Rapcs�ak, Smooth Nonlinear Optimization in Rn, Kluwer Academic Publishers,
1997.

[13] W. O. Ray and A. M. Walker, Mapping theorems for Gateaux differentiable
and accretive operators, Nonlinear Analysis, Theory, Methods & Applications 6
(5) (1982), 423–433.

[14] W. O. Ray and A. M. Walker, Perturbations of normally solvable nonlinear
operators, Internat. J. Math. Math. Sci. 8 (1985), 241–246.

[15] R. Torrejon, A note on locally expansive and locally accretive operators, Canad.
Math. Bull. 26 (2) (1983).

[16] C. Udris�te, Convex functions on Riemannian manifolds, St. Cerc. Mat. 28 (6)
(1976), 735–745.

[17] C. Udris�te, Continuity of convex functions on Riemannian manifolds, Bulletine
Mathematique de Roumanie 21 (1977), 215–218.

[18] R. Walter, On the Metric Projections onto Convex Sets in Riemanian Spaces,
Arch. Math. XXV (1974), 91–98.

[19] E. Zeidler, Nonlinear Functional Analysis and its Applications, II/B: Nonlinear
Monotone Operators, Springer Verlag, 1990.

S. Z. NÉMETH
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