Approximately multiplicative functions

By GREGOR DOLINAR (Ljubljana)

Abstract

We consider the inequality $\left|f(t s)-g_{1}(t) g_{2}(s)\right| \leq \delta$, where f, g_{1}, g_{2} are real-valued functions defined for nonzero reals. In the special case $g_{1}=g_{2}$ our result is reduced to Šemrl's generalization of Baker's result on the superstability of multiplicative functions.

1. Introduction and statement of the result

The stability of functional equations was first studied by Ulam who posed the stability problem in 1940 (see [4, p. 63]). For Banach spaces and approximately additive mappings this problem was solved by Hyers in 1941 [2]. He showed that if $\delta>0$ and $f: X \rightarrow Y$ is a mapping between real Banach spaces such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta, \quad x, y \in X
$$

then there exists a unique additive mapping $g: X \rightarrow Y$ with $\| f(x)-$ $g(x) \| \leq \delta$ for all $x \in X$. One can consider approximately multiplicative mappings instead of approximately additive ones. BAKER [1] proved that the so called superstability phenomenon occurs in this case. More precisely, if $\delta>0$ and $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
|f(t s)-f(t) f(s)| \leq \delta, \quad t, s \in \mathbb{R} \backslash\{0\} \tag{1}
\end{equation*}
$$

then f is either multiplicative or bounded by $|f(t)| \leq(1+\sqrt{1+4 \delta}) / 2$ for every nonzero real t.

Recently, Šemrl [3] proved that a bounded solution of (1) must be either close to the function $\operatorname{sign} t$ or to one of the constant functions $h(t) \equiv 0$ or $h(t) \equiv 1$. Moreover, Šemrl also considered inequality (1) with two functions involved instead of one and obtained the following result [3, Theorem 3].

Proposition. Let $\delta>0$ and let $f, g: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ satisfy

$$
|f(t s)-g(t) g(s)| \leq \delta, \quad t, s \in \mathbb{R} \backslash\{0\} .
$$

Then either there exist a real constant c and a multiplicative function $k: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ such that

$$
\left|f(t)-c^{2} k(t)\right| \leq \delta, \quad g(t)=c k(t), \quad t \in \mathbb{R} \backslash\{0\},
$$

or f and g are bounded. More precisely:

$$
|f(t)| \leq 3 \delta, \quad|g(t)| \leq 2 \sqrt{\delta}, \quad t \in \mathbb{R} \backslash\{0\},
$$

or there exist $\eta>0$ and $c \in \mathbb{R}$ satisfying $\eta(|c|+\eta) \leq \delta$ such that either

$$
\left|f(t)-c^{2}+\eta^{2}\right| \leq \delta, \quad|g(t)-c| \leq \eta, \quad t \in \mathbb{R} \backslash\{0\},
$$

or

$$
\left|f(t)-\left(c^{2}-\eta^{2}\right) \operatorname{sign} t\right| \leq \delta, \quad|g(t)-c \operatorname{sign} t| \leq \eta, \quad t \in \mathbb{R} \backslash\{0\} .
$$

It seems natural to go even one step further by considering Pexiderised version of (1).

Theorem. Let $\delta>0$ and let $f, g_{1}, g_{2}: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$, where g_{1} and g_{2} are nonzero, satisfy

$$
\begin{equation*}
\left|f(t s)-g_{1}(t) g_{2}(s)\right| \leq \delta, \quad t, s \in \mathbb{R} \backslash\{0\} \tag{2}
\end{equation*}
$$

Then there are two possibilities: either there exist real constants c_{1}, c_{2} and a multiplicative function $k: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ such that

$$
\left|f(t)-c_{1} c_{2} k(t)\right| \leq \delta, \quad g_{i}(t)=c_{i} k(t), \quad t \in \mathbb{R} \backslash\{0\}, \quad i=1,2,
$$

or f, g_{1} and g_{2} are bounded functions. In the second case there exist constants $\eta_{1}, \eta_{2}>0$ satisfying $\eta_{1} \eta_{2} \leq 4 \delta$ and

$$
\begin{equation*}
|f(t)| \leq 3 \delta, \quad\left|g_{i}(t)\right| \leq \eta_{i}, \quad t \in \mathbb{R} \backslash\{0\}, \quad i=1,2, \tag{3}
\end{equation*}
$$

or there exist constants $c_{1}, c_{2} \in \mathbb{R}, \eta_{1}, \eta_{2}>0$ satisfying

$$
\begin{equation*}
2 \eta_{1} \eta_{2}+\left|c_{1}\right| \eta_{2}+\left|c_{2}\right| \eta_{1} \leq 2 \delta \tag{4}
\end{equation*}
$$

such that either

$$
\begin{equation*}
\left|f(t)-c_{1} c_{2}+\eta_{1} \eta_{2} \operatorname{sign}\left(g_{1}(1) g_{2}(1)\right)\right| \leq \delta, \quad\left|g_{i}(t)-c_{i}\right| \leq \eta_{i} \tag{5}
\end{equation*}
$$

or

$$
\begin{gather*}
\left|f(t)-\left(c_{1} c_{2}-\eta_{1} \eta_{2} \operatorname{sign}\left(g_{1}(1) g_{2}(1)\right)\right) \operatorname{sign} t\right| \leq \delta, \tag{6}\\
\left|g_{i}(t)-c_{i} \operatorname{sign} t\right| \leq \eta_{i}
\end{gather*}
$$

for every $t \in \mathbb{R} \backslash\{0\}, i=1,2$. If $g_{1}=g_{2}$, then we can choose constants in such a way that $\eta_{1}=\eta_{2}$ and $c_{1}=c_{2}$.

Remarks. By (4) it follows that $\eta_{1} \eta_{2} \leq \delta$, so (5) implies that $f(t)$ is near $c_{1} c_{2}$ and (6) implies that $f(t)$ is near $c_{1} c_{2} \operatorname{sign} t$. Our theorem is formulated in such a way to draw the analogy with Semrl's Proposition, which is obtained as a special case of our theorem when $g_{1}=g_{2}$.

Also note that η_{1} and η_{2} are not both necessarily small. For example, functions

$$
g_{1}(t)=\left\{\begin{array}{ll}
c_{1}-\eta_{1} & \text { if } t<0 \\
c_{1}+\eta_{1} & \text { if } t>0
\end{array}, \quad g_{2}(t)=\frac{\delta}{\eta_{1}} \quad \text { and } \quad f(t)=\frac{\delta c_{1}}{\eta_{1}}\right.
$$

satisfy the equation (2) for arbitrary $c_{1}>\eta_{1}>0$ and we obtain (5) for $c_{2}=\delta / \eta_{1}$ and $\eta_{2}=0$.

2. Proof of the theorem

We begin by showing that if any of the functions f, g_{1}, g_{2} is bounded then all of them must be bounded. Since g_{1} and g_{2} are nonzero, there exist $u_{1}, u_{2} \in \mathbb{R} \backslash\{0\}$ such that $g_{i}\left(u_{i}\right) \neq 0, i=1,2$. Suppose f is bounded by a constant M. Then

$$
\left|g_{i}(t)\right| \leq \frac{\left|f\left(t u_{j}\right)\right|+\delta}{\left|g_{j}\left(u_{j}\right)\right|} \leq \frac{M+\delta}{\left|g_{j}\left(u_{j}\right)\right|}, \quad t \in \mathbb{R} \backslash\{0\}, \quad i=1,2, \quad j=3-i,
$$

meaning that all three functions are bounded. If any of $g_{i}, i \in\{1,2\}$, is bounded, then so is f, since

$$
|f(t)| \leq\left|g_{i}(t) g_{j}(1)\right|+\delta, \quad t \in \mathbb{R} \backslash\{0\}, \quad i \in\{1,2\}, \quad j=3-i,
$$

and consequently also g_{j} is bounded.
To prove the theorem we must therefore consider two cases: f, g_{1}, g_{2} unbounded and f, g_{1}, g_{2} bounded.

Let f, g_{1} and g_{2} be unbounded. Assume that there exists $u_{0} \in \mathbb{R} \backslash\{0\}$ with $g_{i}\left(u_{0}\right)=0$. Then
$|f(t)|=\left|f(t)-g_{i}\left(u_{0}\right) g_{j}\left(\frac{t}{u_{0}}\right)\right| \leq \delta, \quad t \in \mathbb{R} \backslash\{0\}, \quad i \in\{1,2\}, \quad j=3-i$,
which contradicts the fact that f is unbounded, so $g_{i}(t) \neq 0$ for all $t \in$ $\mathbb{R} \backslash\{0\}, i=1,2$. We define three auxiliary functions and a constant

$$
f_{1}(t)=\frac{f(t)}{g_{1}(1) g_{2}(1)}, \quad h_{i}(t)=\frac{g_{i}(t)}{g_{i}(1)}, \quad i=1,2, \quad \delta_{1}=\frac{\delta}{\left|g_{1}(1) g_{2}(1)\right|} .
$$

Then

$$
\left|f_{1}(t s)-h_{1}(t) h_{2}(s)\right| \leq \delta_{1}, \quad t, s \in \mathbb{R} \backslash\{0\}
$$

and it follows from $h_{i}(1)=1, i=1,2$, that
(7) $\left|f_{1}(t)-h_{i}(t)\right| \leq \delta_{1}, i=1,2$, and $\left|h_{1}(t)-h_{2}(t)\right| \leq 2 \delta_{1}, t \in \mathbb{R} \backslash\{0\}$.

So,
(8) $\left|h_{1}(t s)-h_{1}(t) h_{2}(s)\right| \leq\left|h_{1}(t s)-f_{1}(t s)\right|+\left|f_{1}(t s)-h_{1}(t) h_{2}(s)\right| \leq 2 \delta_{1}$
for all $t, s \in \mathbb{R} \backslash\{0\}$. Let us show that $h_{1}(t)=h_{2}(t)$ for all $t \in \mathbb{R} \backslash\{0\}$. Suppose, on the contrary, that there exists $s_{0} \in \mathbb{R} \backslash\{0\}$ such that $h_{2}\left(s_{0}\right)=$ $h_{1}\left(s_{0}\right)+\varepsilon, \varepsilon \neq 0$. Then by (8)

$$
\left|h_{1}\left(t s_{0}\right)-h_{1}(t)\left(h_{1}\left(s_{0}\right)+\varepsilon\right)\right| \leq 2 \delta_{1}, \quad t \in \mathbb{R} \backslash\{0\},
$$

hence

$$
\left|h_{1}\left(t s_{0}\right)-h_{1}(t) h_{1}\left(s_{0}\right)\right| \geq\left|h_{1}(t) \varepsilon\right|-2 \delta_{1}, \quad t \in \mathbb{R} \backslash\{0\} .
$$

Since h_{1} is unbounded, there exists $t_{0} \in \mathbb{R} \backslash\{0\}$ satisfying

$$
\left|h_{1}\left(t_{0}\right)\right|>\frac{\left|h_{1}\left(s_{0}\right)\right| 2 \delta_{1}}{|\varepsilon|}+\frac{4 \delta_{1}}{|\varepsilon|} .
$$

If we write $h_{2}\left(t_{0}\right)=h_{1}\left(t_{0}\right)+\omega$, then, by (7), $|\omega| \leq 2 \delta_{1}$. Since by (8)

$$
\left|h_{1}\left(s_{0} t_{0}\right)-h_{1}\left(s_{0}\right)\left(h_{1}\left(t_{0}\right)+\omega\right)\right| \leq 2 \delta_{1},
$$

it follows that

$$
\begin{aligned}
2 \delta_{1}+\left|h_{1}\left(s_{0}\right) \omega\right| & \geq\left|h_{1}\left(t_{0} s_{0}\right)-h_{1}\left(t_{0}\right) h_{1}\left(s_{0}\right)\right| \\
& \geq\left|h_{1}\left(t_{0}\right) \varepsilon\right|-2 \delta_{1}>\left|h_{1}\left(s_{0}\right)\right| 2 \delta_{1}+2 \delta_{1},
\end{aligned}
$$

which contradicts the fact that $|\omega| \leq 2 \delta_{1}$. So, $h_{1}(t)=h_{2}(t)$ for all $t \in$ $\mathbb{R} \backslash\{0\}$ and

$$
\left|f_{1}(t s)-h_{1}(t) h_{1}(s)\right| \leq \delta_{1} .
$$

By [3, Theorem 3] there exist a constant c and a multiplicative function $k: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ satisfying $h_{1}(t)=c k(t)$ and $\left|f_{1}(t)-c^{2} k(t)\right| \leq \delta_{1}$. Therefore

$$
g_{i}(t)=h_{i}(t) g_{i}(1)=c g_{i}(1) k(t)=c_{i} k(t), \quad i=1,2,
$$

and

$$
\left|f(t)-c_{1} c_{2} k(t)\right| \leq \delta
$$

It remains to examine the case when all three functions g_{1}, g_{2} and f are bounded. Following the notation used in [3] we denote by

$$
\begin{gather*}
a_{i}=\inf \left\{\left|g_{i}(t)\right|: t \in \mathbb{R} \backslash\{0\}\right\}, \quad b_{i}=\sup \left\{\left|g_{i}(t)\right|: t \in \mathbb{R} \backslash\{0\}\right\}, \\
e_{i}=\frac{a_{i}+b_{i}}{2}, \quad \mu_{i}=\frac{b_{i}-a_{i}}{2}, \quad i=1,2 . \tag{9}
\end{gather*}
$$

Let $t \in \mathbb{R} \backslash\{0\}, \varepsilon>0$ and let $s \in \mathbb{R} \backslash\{0\}$ be such that $\left|g_{2}(s)\right|<a_{2}+\varepsilon$, so $|f(t)| \leq\left|g_{1}(t / s) g_{2}(s)\right|+\delta<b_{1}\left(a_{2}+\varepsilon\right)+\delta$. Therefore $|f(t)| \leq b_{1} a_{2}+\delta$ and similarly we show that $|f(t)| \leq a_{1} b_{2}+\delta,|f(t)| \geq a_{1} b_{2}-\delta$ and $|f(t)| \geq$ $b_{1} a_{2}-\delta$. Hence $|f(t)| \leq\left(a_{1} b_{2}+b_{1} a_{2}\right) / 2+\delta=e_{1} e_{2}-\mu_{1} \mu_{2}+\delta,|f(t)| \geq$ $\left(a_{1} b_{2}+b_{1} a_{2}\right) / 2-\delta=e_{1} e_{2}-\mu_{1} \mu_{2}-\delta$, and consequently

$$
\begin{equation*}
\left||f(t)|-e_{1} e_{2}+\mu_{1} \mu_{2}\right| \leq \delta, \quad t \in \mathbb{R} \backslash\{0\} . \tag{10}
\end{equation*}
$$

If we choose $0<\varepsilon<\max \left\{b_{1}, b_{2}\right\}$, then there exist $t, s \in \mathbb{R} \backslash\{0\}$ with $\left|g_{1}(t)\right|>b_{1}-\varepsilon$ and $\left|g_{2}(s)\right|>b_{2}-\varepsilon$, so $e_{1} e_{2}-\mu_{1} \mu_{2}+\delta \geq|f(t s)| \geq$ $\left|g_{1}(t) g_{2}(s)\right|-\delta>\left(b_{1}-\varepsilon\right)\left(b_{2}-\varepsilon\right)-\delta$. We obtain $e_{1} e_{2}-\mu_{1} \mu_{2}+\delta \geq$ $b_{1} b_{2}-\delta=\left(e_{1}+\mu_{1}\right)\left(e_{2}+\mu_{2}\right)-\delta$, which gives

$$
2 \mu_{1} \mu_{2}+e_{1} \mu_{2}+e_{2} \mu_{1} \leq 2 \delta .
$$

We will distinguish two cases. First, let $e_{1} e_{2}-\mu_{1} \mu_{2} \leq 2 \delta$. From (10) we obtain $|f(t)| \leq 3 \delta$. Thus $\left|g_{1}(t) g_{2}(s)\right| \leq 4 \delta$ for all $t, s \in \mathbb{R} \backslash\{0\}$ and if we denote $\eta_{i}=b_{i}, i=1,2$, we see that $\eta_{1} \eta_{2} \leq 4 \delta$. So, in this case we have (3).

Second, suppose $e_{1} e_{2}-\mu_{1} \mu_{2}>2 \delta$. Then, by (10), $|f(t)| \geq e_{1} e_{2}-$ $\mu_{1} \mu_{2}-\delta>\delta$ for all $t \in \mathbb{R} \backslash\{0\}$. If $f(t s)>\delta$, then $g_{1}(t) g_{2}(s) \geq f(t s)-\delta>0$. And if $g_{1}(t) g_{2}(s)>0$, then $f(t s) \geq g_{1}(t) g_{2}(s)-\delta>-\delta$, so $f(t s)>\delta$. In the same way we see that $f(t s)<-\delta$ if and only if $g_{1}(t) g_{2}(s)<0$. These two equivalences are used repeatedly in what follows. Let

$$
P_{1}=\left\{t \in \mathbb{R} \backslash\{0\}: g_{1}(t)>0\right\} \text { and } P_{2}=\left\{t \in \mathbb{R} \backslash\{0\}: g_{2}(t)>0\right\}
$$

and let us denote for an arbitrary set P the set $\{-t: t \in P\}$ with $-P$ and the complement of P with P^{C}. We claim that either

$$
P_{1}=-P_{1} \text { and } P_{2}=-P_{2} \quad \text { or } \quad P_{1}=-P_{1}^{C} \text { and } P_{2}=-P_{2}^{C} .
$$

If $P_{1}=P_{2}=\emptyset$, then clearly $P_{1}=-P_{1}$ and $P_{2}=-P_{2}$. Suppose $P_{i}=\emptyset$ and $P_{3-i} \neq \emptyset, i \in\{1,2\}$. If $p \in \mathbb{R} \backslash\{0\}=P_{i}^{C}$, then $r \in P_{3-i}$ is equivalent to $g_{i}(p) g_{3-i}(r)<0$, to $f(p r)<-\delta$ and to $g_{i}(-p) g_{3-i}(-r)<0$, which is equivalent to $-r \in P_{3-i}$ because $-p \in P_{i}^{C}$. So, $P_{1}=-P_{1}$ and $P_{2}=-P_{2}$. We now turn to the case when $P_{1} \neq \emptyset$ and $P_{2} \neq \emptyset$. If, on one hand, there exists $p \in P_{1} \cap-P_{1}$, then $r \in P_{2}$ is equivalent to $g_{1}(-p) g_{2}(r)>0$, to $f(-p r)>\delta$, to $g_{1}(p) g_{2}(-r)>0$ and to $-r \in P_{2}$, so $P_{2}=-P_{2}$. We can apply the same arguments again to obtain $P_{1}=-P_{1}$ because $P_{2} \cap-P_{2}$ is not empty. If, on the other hand, $P_{1} \cap-P_{1}=\emptyset$, then for any $p \in P_{1}$ and $r \in P_{2}$ we have $g_{1}(p) g_{2}(r)>0$, hence $f(p r)>\delta$ and $g_{1}(-p) g_{2}(-r)>0$. Since $-p \in P_{1}^{C}$, it follows that $-r \in P_{2}^{C}$. Similarly, for $p \in P_{1}$ and $r \in P_{2}^{C}$ we see that $-r \in P_{2}$, so $P_{2}=-P_{2}^{C}$ and since $P_{2} \cap-P_{2}=\emptyset$, we obtain in the same way that $P_{1}=-P_{1}^{C}$.

Next, we show that

$$
\begin{equation*}
P_{1}=P_{2} \quad \text { or } \quad P_{1}=P_{2}^{C} . \tag{11}
\end{equation*}
$$

Suppose $1 \in P_{1} \cap P_{2}$. If $r \in P_{1}$, then $g_{1}(r) g_{2}(1)>0$ and $f(r)>\delta$. It follows that $g_{1}(1) g_{2}(r)>0$ and $r \in P_{2}$. So, $P_{1} \subset P_{2}$ and, by symmetry, $P_{2} \subset P_{1}$, which implies $P_{1}=P_{2}$. Similarly, if $1 \in P_{1}^{C} \cap P_{2}^{C}$, then $P_{1}=P_{2}$
and in the same way we prove also the remaining cases where as well as $1 \in P_{1} \cap P_{2}^{C}$ also $1 \in P_{1}^{C} \cap P_{2}$ implies $P_{1}=P_{2}^{C}$.

Further, let us prove that

$$
\begin{equation*}
P_{1} \in\left\{\mathbb{R} \backslash\{0\}, \emptyset, \mathbb{R}^{+}, \mathbb{R}^{-}\right\} \tag{12}
\end{equation*}
$$

In order to see this, we examine eight possibilities.

1. $P_{1}=-P_{1}, 1 \in P_{1}, P_{1}=P_{2}$. If $t \in P_{1}$, then $g_{1}(t) g_{2}(t)>0$, so $f\left(t^{2}\right)>\delta$, again, $g_{1}(1) g_{2}\left(t^{2}\right)>0$ and therefore $t^{2} \in P_{2}=P_{1}$ because $1 \in P_{1}$. And if $t \in P_{1}^{C}$, then $f\left(t^{2}\right)>\delta$ and $t^{2} \in P_{1}$. Every positive s is then in P_{1} and since $P_{1}=-P_{1}$, it follows that $P_{1}=\mathbb{R} \backslash\{0\}$.
2. $P_{1}=-P_{1}, 1 \in P_{1}, P_{1}=P_{2}^{C}$. If $t \in P_{1}$, then $g_{1}(t) g_{2}(t)<0$, so $f\left(t^{2}\right)<-\delta$ and $t^{2} \in P_{2}^{C}=P_{1}$. And if $t \in P_{1}^{C}$, then again $f\left(t^{2}\right)<-\delta$ and $t^{2} \in P_{1}$. We conclude once more that $P_{1}=\mathbb{R} \backslash\{0\}$.
3. and 4. $P_{1}=-P_{1}, 1 \in P_{1}^{C}$ and $P_{1}=P_{2}$ or $P_{1}=P_{2}^{C}$. In both cases we see as before that $t \in \mathbb{R} \backslash\{0\}$ implies $t^{2} \in P_{1}^{C}$. So, $P_{1}^{C}=\mathbb{R} \backslash\{0\}$ and $P_{1}=\emptyset$.
4. $P_{1}=-P_{1}^{C}, 1 \in P_{1}, P_{1}=P_{2}$. Since $t \in \mathbb{R} \backslash\{0\}$ implies $t^{2} \in P_{1}$, every positive s is in P_{1} and since $P_{1}=-P_{1}^{C}$, every negative s is in P_{1}^{C}, so $P_{1}=\mathbb{R}^{+}$.

The remaining three cases can be treated in a similar way. Finally, it remains to combine (10), (11), (12) and the facts that $f(s t)>\delta$ if and only if $g_{1}(s) g_{2}(t)>0$ and that $f(s t)<-\delta$ if and only if $g_{1}(s) g_{2}(t)<0$ in order to obtain (5) or (6) where $\eta_{i}=\mu_{i},\left|c_{i}\right|=e_{i}$ and $\operatorname{sign} c_{i}=\operatorname{sign} g_{i}(1)$, $i=1,2$. It is also evident from (9) that $\eta_{1}=\eta_{2}$ and $c_{1}=c_{2}$ if $g_{1}=g_{2}$.

References

[1] J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411-416.
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[3] P. Šemrl, Almost multiplicative functions and almost linear multiplicative functionals, (preprint).
[4] S. M. Ulam, A collection of mathematical problems, Interscience Tract 8 (Problems in Modern Mathematics, Science Edition), Interscience, New York, 1960 (1964).

GREGOR DOLINAR
FACULTY OF ELECTRICAL ENGINEERING
UNIVERSITY OF LJUBLJANA
TRŽAŠKA 25
1000 LJUBLJANA
SLOVENIA
E-mail: gregor.dolinar@fe.uni-lj.si
(Received March 27, 2000; revised July 20, 2000)

