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Approximately multiplicative functions

By GREGOR DOLINAR (Ljubljana)

Abstract. We consider the inequality |f(ts)−g1(t)g2(s)| ≤ δ, where f , g1, g2 are
real-valued functions defined for nonzero reals. In the special case g1 = g2 our result is
reduced to Šemrl’s generalization of Baker’s result on the superstability of multiplicative
functions.

1. Introduction and statement of the result

The stability of functional equations was first studied by Ulam who
posed the stability problem in 1940 (see [4, p. 63]). For Banach spaces
and approximately additive mappings this problem was solved by Hyers

in 1941 [2]. He showed that if δ > 0 and f : X → Y is a mapping between
real Banach spaces such that

‖f(x + y)− f(x)− f(y)‖ ≤ δ, x, y ∈ X,

then there exists a unique additive mapping g : X → Y with ‖f(x) −
g(x)‖ ≤ δ for all x ∈ X. One can consider approximately multiplicative
mappings instead of approximately additive ones. Baker [1] proved that
the so called superstability phenomenon occurs in this case. More precisely,
if δ > 0 and f : R \ {0} → R satisfies

(1) |f(ts)− f(t)f(s)| ≤ δ, t, s ∈ R \ {0},

then f is either multiplicative or bounded by |f(t)| ≤ (1 +
√

1 + 4δ )/2 for
every nonzero real t.
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Recently, Šemrl [3] proved that a bounded solution of (1) must be
either close to the function sign t or to one of the constant functions h(t)≡ 0
or h(t) ≡ 1. Moreover, Šemrl also considered inequality (1) with two
functions involved instead of one and obtained the following result [3,
Theorem 3].

Proposition. Let δ > 0 and let f, g : R \ {0} → R satisfy

|f(ts)− g(t)g(s)| ≤ δ, t, s ∈ R \ {0}.

Then either there exist a real constant c and a multiplicative function

k : R \ {0} → R such that

|f(t)− c2k(t)| ≤ δ, g(t) = ck(t), t ∈ R \ {0},

or f and g are bounded. More precisely:

|f(t)| ≤ 3δ, |g(t)| ≤ 2
√

δ, t ∈ R \ {0},

or there exist η > 0 and c ∈ R satisfying η(|c|+ η) ≤ δ such that either

|f(t)− c2 + η2| ≤ δ, |g(t)− c| ≤ η, t ∈ R \ {0},
or

|f(t)− (c2 − η2) sign t| ≤ δ, |g(t)− c sign t| ≤ η, t ∈ R \ {0}.

It seems natural to go even one step further by considering Pexiderised
version of (1).

Theorem. Let δ > 0 and let f, g1, g2 : R \ {0} → R, where g1 and g2

are nonzero, satisfy

(2) |f(ts)− g1(t)g2(s)| ≤ δ, t, s ∈ R \ {0}.

Then there are two possibilities: either there exist real constants c1, c2

and a multiplicative function k : R \ {0} → R such that

|f(t)− c1c2k(t)| ≤ δ, gi(t) = cik(t), t ∈ R \ {0}, i = 1, 2,

or f , g1 and g2 are bounded functions. In the second case there exist

constants η1, η2 > 0 satisfying η1η2 ≤ 4δ and

(3) |f(t)| ≤ 3δ, |gi(t)| ≤ ηi, t ∈ R \ {0}, i = 1, 2,
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or there exist constants c1, c2 ∈ R, η1, η2 > 0 satisfying

(4) 2η1η2 + |c1|η2 + |c2|η1 ≤ 2δ,

such that either

(5) |f(t)− c1c2 + η1η2 sign(g1(1)g2(1))| ≤ δ, |gi(t)− ci| ≤ ηi,

or

(6)
|f(t)− (c1c2 − η1η2 sign(g1(1)g2(1))) sign t| ≤ δ,

|gi(t)− ci sign t| ≤ ηi

for every t ∈ R \ {0}, i = 1, 2. If g1 = g2, then we can choose constants in
such a way that η1 = η2 and c1 = c2.

Remarks. By (4) it follows that η1η2 ≤ δ, so (5) implies that f(t)
is near c1c2 and (6) implies that f(t) is near c1c2 sign t. Our theorem is
formulated in such a way to draw the analogy with Šemrl’s Proposition,
which is obtained as a special case of our theorem when g1 = g2.

Also note that η1 and η2 are not both necessarily small. For example,
functions

g1(t) =
{

c1 − η1 if t < 0

c1 + η1 if t > 0
, g2(t) =

δ

η1
and f(t) =

δc1

η1

satisfy the equation (2) for arbitrary c1 > η1 > 0 and we obtain (5) for
c2 = δ/η1 and η2 = 0.

2. Proof of the theorem

We begin by showing that if any of the functions f , g1, g2 is bounded
then all of them must be bounded. Since g1 and g2 are nonzero, there exist
u1, u2 ∈ R \ {0} such that gi(ui) 6= 0, i = 1, 2. Suppose f is bounded by a
constant M . Then

|gi(t)| ≤ |f(tuj)|+ δ

|gj(uj)| ≤ M + δ

|gj(uj)| , t ∈ R \ {0}, i = 1, 2, j = 3− i,

meaning that all three functions are bounded. If any of gi, i ∈ {1, 2}, is
bounded, then so is f , since

|f(t)| ≤ |gi(t)gj(1)|+ δ, t ∈ R \ {0}, i ∈ {1, 2}, j = 3− i,
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and consequently also gj is bounded.
To prove the theorem we must therefore consider two cases: f , g1, g2

unbounded and f , g1, g2 bounded.
Let f , g1 and g2 be unbounded. Assume that there exists u0 ∈ R\{0}

with gi(u0) = 0. Then

|f(t)| =
∣∣∣∣f(t)− gi(u0)gj

(
t

u0

)∣∣∣∣ ≤ δ, t ∈ R\{0}, i ∈ {1, 2}, j = 3−i,

which contradicts the fact that f is unbounded, so gi(t) 6= 0 for all t ∈
R \ {0}, i = 1, 2. We define three auxiliary functions and a constant

f1(t) =
f(t)

g1(1)g2(1)
, hi(t) =

gi(t)
gi(1)

, i = 1, 2, δ1 =
δ

|g1(1)g2(1)| .

Then
|f1(ts)− h1(t)h2(s)| ≤ δ1, t, s ∈ R \ {0}

and it follows from hi(1) = 1, i = 1, 2, that

(7) |f1(t)− hi(t)| ≤ δ1, i = 1, 2, and |h1(t)− h2(t)| ≤ 2δ1, t ∈ R \ {0}.

So,

(8) |h1(ts)−h1(t)h2(s)| ≤ |h1(ts)− f1(ts)|+ |f1(ts)−h1(t)h2(s)| ≤ 2δ1

for all t, s ∈ R \ {0}. Let us show that h1(t) = h2(t) for all t ∈ R \ {0}.
Suppose, on the contrary, that there exists s0 ∈ R\{0} such that h2(s0) =
h1(s0) + ε, ε 6= 0. Then by (8)

|h1(ts0)− h1(t)(h1(s0) + ε)| ≤ 2δ1, t ∈ R \ {0},
hence

|h1(ts0)− h1(t)h1(s0)| ≥ |h1(t)ε| − 2δ1, t ∈ R \ {0}.

Since h1 is unbounded, there exists t0 ∈ R \ {0} satisfying

|h1(t0)| > |h1(s0)|2δ1

|ε| +
4δ1

|ε| .

If we write h2(t0) = h1(t0) + ω, then, by (7), |ω| ≤ 2δ1. Since by (8)

|h1(s0t0)− h1(s0)(h1(t0) + ω)| ≤ 2δ1,
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it follows that

2δ1 + |h1(s0)ω| ≥ |h1(t0s0)− h1(t0)h1(s0)|
≥ |h1(t0)ε| − 2δ1 > |h1(s0)|2δ1 + 2δ1,

which contradicts the fact that |ω| ≤ 2δ1. So, h1(t) = h2(t) for all t ∈
R \ {0} and

|f1(ts)− h1(t)h1(s)| ≤ δ1.

By [3, Theorem 3] there exist a constant c and a multiplicative function
k : R\{0} → R satisfying h1(t) = ck(t) and |f1(t)−c2k(t)| ≤ δ1. Therefore

gi(t) = hi(t)gi(1) = cgi(1)k(t) = cik(t), i = 1, 2,

and
|f(t)− c1c2k(t)| ≤ δ.

It remains to examine the case when all three functions g1, g2 and f

are bounded. Following the notation used in [3] we denote by

(9)
ai = inf{|gi(t)| : t ∈ R \ {0}}, bi = sup{|gi(t)| : t ∈ R \ {0}},

ei =
ai + bi

2
, µi =

bi − ai

2
, i = 1, 2.

Let t ∈ R \ {0}, ε > 0 and let s ∈ R \ {0} be such that |g2(s)| < a2 + ε,
so |f(t)| ≤ |g1(t/s)g2(s)| + δ < b1(a2 + ε) + δ. Therefore |f(t)| ≤ b1a2 + δ

and similarly we show that |f(t)| ≤ a1b2 + δ, |f(t)| ≥ a1b2− δ and |f(t)| ≥
b1a2 − δ. Hence |f(t)| ≤ (a1b2 + b1a2)/2 + δ = e1e2 − µ1µ2 + δ, |f(t)| ≥
(a1b2 + b1a2)/2− δ = e1e2 − µ1µ2 − δ, and consequently

(10)
∣∣ |f(t)| − e1e2 + µ1µ2

∣∣ ≤ δ, t ∈ R \ {0}.

If we choose 0 < ε < max{b1, b2}, then there exist t, s ∈ R \ {0} with
|g1(t)| > b1 − ε and |g2(s)| > b2 − ε, so e1e2 − µ1µ2 + δ ≥ |f(ts)| ≥
|g1(t)g2(s)| − δ > (b1 − ε)(b2 − ε) − δ. We obtain e1e2 − µ1µ2 + δ ≥
b1b2 − δ = (e1 + µ1)(e2 + µ2)− δ, which gives

2µ1µ2 + e1µ2 + e2µ1 ≤ 2δ.
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We will distinguish two cases. First, let e1e2 − µ1µ2 ≤ 2δ. From (10)
we obtain |f(t)| ≤ 3δ. Thus |g1(t)g2(s)| ≤ 4δ for all t, s ∈ R \ {0} and if
we denote ηi = bi, i = 1, 2, we see that η1η2 ≤ 4δ. So, in this case we
have (3).

Second, suppose e1e2 − µ1µ2 > 2δ. Then, by (10), |f(t)| ≥ e1e2 −
µ1µ2−δ > δ for all t ∈ R\{0}. If f(ts) > δ, then g1(t)g2(s) ≥ f(ts)−δ > 0.
And if g1(t)g2(s) > 0, then f(ts) ≥ g1(t)g2(s) − δ > −δ, so f(ts) > δ. In
the same way we see that f(ts) < −δ if and only if g1(t)g2(s) < 0. These
two equivalences are used repeatedly in what follows. Let

P1 = {t ∈ R \ {0} : g1(t) > 0} and P2 = {t ∈ R \ {0} : g2(t) > 0}

and let us denote for an arbitrary set P the set {−t : t ∈ P} with −P and
the complement of P with PC . We claim that either

P1 = −P1 and P2 = −P2 or P1 = −PC
1 and P2 = −PC

2 .

If P1 = P2 = ∅, then clearly P1 = −P1 and P2 = −P2. Suppose Pi = ∅
and P3−i 6= ∅, i ∈ {1, 2}. If p ∈ R \ {0} = PC

i , then r ∈ P3−i is equivalent
to gi(p)g3−i(r) < 0, to f(pr) < −δ and to gi(−p)g3−i(−r) < 0, which is
equivalent to −r ∈ P3−i because −p ∈ PC

i . So, P1 = −P1 and P2 = −P2.
We now turn to the case when P1 6= ∅ and P2 6= ∅. If, on one hand, there
exists p ∈ P1 ∩ −P1, then r ∈ P2 is equivalent to g1(−p)g2(r) > 0, to
f(−pr) > δ, to g1(p)g2(−r) > 0 and to −r ∈ P2, so P2 = −P2. We can
apply the same arguments again to obtain P1 = −P1 because P2 ∩−P2 is
not empty. If, on the other hand, P1 ∩ −P1 = ∅, then for any p ∈ P1 and
r ∈ P2 we have g1(p)g2(r) > 0, hence f(pr) > δ and g1(−p)g2(−r) > 0.
Since −p ∈ PC

1 , it follows that −r ∈ PC
2 . Similarly, for p ∈ P1 and r ∈ PC

2

we see that −r ∈ P2, so P2 = −PC
2 and since P2 ∩ −P2 = ∅, we obtain in

the same way that P1 = −PC
1 .

Next, we show that

(11) P1 = P2 or P1 = PC
2 .

Suppose 1 ∈ P1 ∩ P2. If r ∈ P1, then g1(r)g2(1) > 0 and f(r) > δ. It
follows that g1(1)g2(r) > 0 and r ∈ P2. So, P1 ⊂ P2 and, by symmetry,
P2 ⊂ P1, which implies P1 = P2. Similarly, if 1 ∈ PC

1 ∩ PC
2 , then P1 = P2
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and in the same way we prove also the remaining cases where as well as

1 ∈ P1 ∩ PC
2 also 1 ∈ PC

1 ∩ P2 implies P1 = PC
2 .

Further, let us prove that

(12) P1 ∈ {R \ {0}, ∅, R+, R−}.

In order to see this, we examine eight possibilities.

1. P1 = −P1, 1 ∈ P1, P1 = P2. If t ∈ P1, then g1(t)g2(t) > 0, so

f(t2) > δ, again, g1(1)g2(t2) > 0 and therefore t2 ∈ P2 = P1 because

1 ∈ P1. And if t ∈ PC
1 , then f(t2) > δ and t2 ∈ P1. Every positive s is

then in P1 and since P1 = −P1, it follows that P1 = R \ {0}.
2. P1 = −P1, 1 ∈ P1, P1 = PC

2 . If t ∈ P1, then g1(t)g2(t) < 0, so

f(t2) < −δ and t2 ∈ PC
2 = P1. And if t ∈ PC

1 , then again f(t2) < −δ and

t2 ∈ P1. We conclude once more that P1 = R \ {0}.
3. and 4. P1 = −P1, 1 ∈ PC

1 and P1 = P2 or P1 = PC
2 . In both cases

we see as before that t ∈ R \ {0} implies t2 ∈ PC
1 . So, PC

1 = R \ {0} and

P1 = ∅.
5. P1 = −PC

1 , 1 ∈ P1, P1 = P2. Since t ∈ R \ {0} implies t2 ∈ P1,

every positive s is in P1 and since P1 = −PC
1 , every negative s is in PC

1 ,

so P1 = R+.

The remaining three cases can be treated in a similar way. Finally,

it remains to combine (10), (11), (12) and the facts that f(st) > δ if and

only if g1(s)g2(t) > 0 and that f(st) < −δ if and only if g1(s)g2(t) < 0 in

order to obtain (5) or (6) where ηi = µi, |ci| = ei and sign ci = sign gi(1),

i = 1, 2. It is also evident from (9) that η1 = η2 and c1 = c2 if g1 = g2.
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