Publ. Math. Debrecen 58 / 4 (2001), 743–750

On the set for which 1 is univoque

By I. KÁTAI (Budapest) and G. KALLÓS (Győr)

Abstract. For some integer $K \ge 2$ let \mathcal{E}_K be the set of those $\Theta \in \left(\frac{1}{K+1}, \frac{1}{K}\right)$, for which 1 has only one expansion $1 = e_1 \Theta + e_2 \Theta^2 + \ldots$ with digits $e_j \in \{0, \ldots, K\}$, $(j = 1, 2, \ldots)$. In this paper we prove, that the Lebesgue measure of the set \mathcal{E}_K is 0.

1. Introduction

Let $K \in \mathbb{N}$, $q \in [K, K+1)$, $\mathcal{A}_K = \{0, 1, \dots, K\}$, $\Theta = \frac{1}{q}$, $L = \frac{K\Theta}{1-\Theta}$ $\left(=\frac{K}{q-1}\right)$. Since $[0, L] \subseteq \bigcup_{j=0}^{K} (j\Theta + \Theta[0, L]),$

therefore each $x \in [0, L]$ has at least one expansion of the form

(1)
$$x = a_1 \Theta + a_2 \Theta^2 + \dots, \qquad a_j \in \mathcal{A}_K \quad (j = 1, 2, \dots).$$

The structure of the so called univoque numbers, i.e. those for which no more than one expansion (1) exist was investigated in the case K = 1 by Z. DARÓCZY and I. KÁTAI [1], [2], and for $K \ge 2$ by G. KALLÓS [3], [4]. In [2] it was demonstrated that this set is quite simple for K = 1 if 1 has at least two representations of form (1), and that the set of those $\Theta \in (\frac{1}{2}, 1)$ for which 1 is univoque has Lebesgue measure 0 (and Hausdorff dimension 1).

Mathematics Subject Classification: 11A67.

Key words and phrases: Rényi-Parry expansions, univoque numbers.

Our purpose in this short paper is to prove

Theorem 1. For each $K \in \mathbb{N}$, the set of those $\Theta \in \left(\frac{1}{K+1}, \frac{1}{K}\right)$, for which 1 is univolue is of Lebesgue measure 0.

2. Some remarks and definitions

The regular (or Rényi–Parry [5]) expansion of some $x \in [0, 1)$ is generated by the iteration of the rule:

$$x = \varepsilon_1(x)\Theta + \Theta x_1, \quad \varepsilon_1(x) = [qx], \quad x_1 = \{qx\}.$$

The quasiregular expansion of some $x \in (0,1]$, $x = \delta_1(x)\Theta + \Theta x_1 = \delta_1(x)\Theta + \delta_2(x)\Theta^2 + \ldots$ is defined as follows: $\delta_1(x)$ is the largest integer s for which $x - s\Theta > 0$, $x_1 = qx - s$.

Let $\mathcal{A}_{K}^{\mathbb{N}}$ be the set of infinite sequences over \mathcal{A}_{K} , and for some $\alpha = a_{1}a_{2}\ldots$ let $\overline{\alpha} = \overline{a}_{1}\overline{a}_{2}\ldots$, where $\overline{n} = K - n$ for $n \in \mathcal{A}_{K}$. For some integer h > 0 let \mathcal{A}_{K}^{h} be the set of sequences of length h over \mathcal{A}_{K} . The shift operator $\sigma : \mathcal{A}_{K}^{\mathbb{N}} \to \mathcal{A}_{K}^{\mathbb{N}}$ is defined as usual by $\sigma(a_{1}a_{2}\ldots) = a_{2}a_{3}\ldots$. Let < denote the lexicographic ordering in $\mathcal{A}_{K}^{\mathbb{N}}$. Furthermore let $\underline{\Theta} = (\Theta, \Theta^{2}, \ldots)$, and for $\underline{\ell} = (\ell_{1}, \ell_{2}, \ldots) \in \mathcal{A}_{K}^{\mathbb{N}}$ let $\langle \underline{\ell}, \underline{\Theta} \rangle = \ell_{1}\Theta + \ell_{2}\Theta^{2} + \ldots$.

For some $\Theta \in \left(\frac{1}{K+1}, \frac{1}{K}\right)$ let $\underline{t} = \underline{t}(\Theta) = t_1 t_2 \dots$ be the sequence of the digits in the quasiregular expansion of 1. Let

$$\mathcal{F}_{K} = \left\{ \underline{t}(\Theta) \mid \Theta \in \left(\frac{1}{K+1}, \frac{1}{K}\right) \right\}$$

According to a theorem due to W. PARRY [5], $\underline{t} \in \mathcal{F}_K$ if and only if

$$\sigma^j(\underline{t}) < \underline{t} \qquad (j = 1, 2, \dots), \quad t_1 = K$$

holds. Furthermore, for a fixed Θ the sequence $\underline{e} \in \mathcal{A}_K^{\mathbb{N}}$ is the regular expansion of some $x \in [0, 1)$, if and only if

$$\sigma^j(\underline{e}) < \underline{t} \qquad (j = 0, 1, 2, \dots).$$

Let $\mathcal{F}_{K}^{(u)} \subseteq \mathcal{F}_{K}$ be the set of those sequences \underline{t} , for which 1 is univolue with respect to Θ , $1 = \langle \underline{t}, \underline{\Theta} \rangle$, and let \mathcal{E}_{K} be the set of those $\Theta \in \left(\frac{1}{K+1}, \frac{1}{K}\right)$, for which 1 is univolue, i.e.

$$\mathcal{E}_K = \left\{ \Theta \mid \langle \underline{t}, \underline{\Theta} \rangle = 1, \ \underline{t} \in \mathcal{F}_K^{(u)} \right\}.$$

We should prove that $\lambda(\mathcal{E}_K) = 0$ (λ is the Lebesgue measure). Since the case K = 1 was treated in [2], from now on we assume that $K \ge 2$.

A trivial but important observation is that for some fixed Θ the number x is univoque, if and only if L - x is univoque. Since L < 2, therefore 0 < L - 1 < 1. If $1 = t_1\Theta + t_2\Theta^2 + \ldots$, then $L - 1 = \overline{t}_1\Theta + \overline{t}_2\Theta^2 + \ldots$. 1 is univoque with respect to Θ if the expansion $\overline{t}_1\overline{t}_2\ldots$ of L - 1 is the quasiregular expansion of it. Thus $\underline{t} \in \mathcal{F}_K^{(u)}$ if and only if

$$\underline{\overline{t}} < \sigma^j(\underline{t}) < \underline{t} \quad (j = 1, 2, \dots), \ t_1 = K$$

holds (clearly $\overline{t} < \underline{t}$).

W. PARRY proved that, if $\underline{t}^1, \underline{t}^2 \in \mathcal{F}_K$, $\langle \underline{t}^1, \underline{\Theta_1} \rangle = 1$, $\langle \underline{t}^2, \underline{\Theta_2} \rangle = 1$, then $\underline{t}^1 < \underline{t}^2$ implies that $\Theta_1 > \Theta_2$.

3. A useful lemma

Lemma 1. Let $u \geq 1, t_1, t_2, \ldots, t_u \in \mathcal{A}_K$, and $B_K(t_1, t_2, \ldots, t_u)$ be the set of those Θ -s, for which 1 is univolue with respect to Θ , with first u digits t_1, t_2, \ldots, t_u . Then $B_K(t_1, t_2, \ldots, t_u) \subseteq [\alpha_u, \beta_u]$, where α_u is the positive solution of

$$1 = (t_1 y + \dots + t_u y^u) \frac{1}{1 - y^u}$$

and β_u is the positive solution of the polynomial $1 = t_1 x + \cdots + t_u x^u$. Consequently, $\beta_u - \alpha_u \leq \frac{\alpha_u^u}{K}$.

PROOF of Lemma 1. Let $\Theta \in B_K(t_1, t_2, \dots, t_u), 1 = t_1 \Theta + \dots + t_u \Theta^u + \dots$ Then

$$t_1 \dots t_u 0^\infty \le \underline{t} \le (t_1 \dots t_u)^\infty,$$

and for α_u we get

$$1 = (t_1y + \dots + t_uy^u)(1 + y^u + y^{2u} + \dots) = (t_1y + \dots + t_uy^u)\frac{1}{1 - y^u}$$

thus the first assertion holds. Let

$$\phi_1(x) = t_1 x + \dots + t_u x^u - 1$$

$$\phi_2(x) = t_1 x + \dots + t_{u-1} x^{u-1} + (t_u + 1) x^u - 1,$$

 $\Delta = \beta_u - \alpha_u$. We have $0 = \phi_1(\beta_u) = \phi_2(\alpha_u)$. From the Taylor expansion

$$0 = \phi_1(\alpha_u + \Delta) = \phi_1(\alpha_u) + \Delta \phi_1'(\alpha_u) + \frac{\Delta^2}{2} \phi_1''(\alpha_u) + \dots$$

with $\phi_1(\alpha_u) = -\alpha_u^u$ we obtain that

$$\alpha_u^u = \Delta \phi_1'(\alpha_u) + \frac{\Delta^2}{2} \phi_1''(\alpha_u) + \dots$$

Since the derivates $\phi_1^{(\mu)}(\alpha_u)$ are nonnegative $(\mu = 1, 2, ...)$, we get

$$\Delta \leq \frac{\alpha_u^u}{t_u u \alpha_u^{u-1} + \dots + t_1} \leq \frac{\alpha_u^u}{K}.$$

The proof is completed.

4. Proof of Theorem 1

Let $r \ge 1, 0 \le s < K, T = K^r s \ (\in \mathcal{A}_K^{r+1})$. Let $\mathcal{B}_N(T)$ be the set of those sequences $s_1 s_2 \dots s_N \in \mathcal{A}_K^N$, for which

(2)
$$\overline{T} \leq s_{i+1} \dots s_{i+(r+1)} \leq T$$
 $(i = 0, 1, \dots, N - r - 1),$

(3)
$$0^{p+1} \le s_{N-p} \dots s_N \le K^{p+1} \quad (p = 0, 1, \dots, r)$$

holds. For some α of length M < N let $\mathcal{B}_N(T \mid \alpha)$ be the subset of those elements of $\mathcal{B}_N(T)$ for which additionally $s_1 s_2 \dots s_M = \alpha$ holds. Let $\mathcal{D}_N = \mathcal{D}_N(T)$, $M_N(\alpha)$ be the size of $\mathcal{B}_N(T)$, $\mathcal{B}_N(T \mid \alpha)$, respectively.

We shall give an upper estimate for \mathcal{D}_N .

Assume that $N \ge r+2$. Then

$$\mathcal{D}_N = M_N(0) + M_N(K) + \sum_{j=1}^{K-1} M_N(j).$$

It is clear that $M_N(j) = \mathcal{D}_{N-1}$, $(j = 1, \dots, K-1)$. If the conditions (2), (3) hold then they remain valid for $\overline{s_1 s_2} \dots \overline{s_N}$ as well. Thus $M_N(0) = M_N(K)$, and so

(4)
$$\mathcal{D}_N - (K-1)\mathcal{D}_{N-1} = 2M_N(K).$$

746

Similarly, if $1 \le h \le r$, then

$$M_N(K^h) = M_N(K^h0) + M_N(K^{h+1}) + \sum_{j=1}^{K-1} M_N(K^hj)$$

= $M_{N-h}(K) + M_N(K^{h+1}) + (K-1)\mathcal{D}_{N-(h+1)},$

and so

$$\sum_{h=1}^{r-1} \left(M_N(K^h) - M_N(K^{h+1}) \right) = \sum_{h=1}^{r-1} M_{N-h}(K) + (K-1) \sum_{\nu=2}^{r} \mathcal{D}_{N-\nu}.$$

The left hand side is $M_N(K) - M_N(K^r)$.

Other hand, if s > 0 then

$$M_N(K^r) = M_N(K^r0) + \sum_{j=1}^s M_N(K^rj) = M_{N-r}(K) + s\mathcal{D}_{N-(r+1)},$$

and so

$$M_N(K) - M_{N-r}(K) - s\mathcal{D}_{N-(r+1)} = \sum_{h=1}^{r-1} M_{N-h}(K) + (K-1)\sum_{\nu=2}^r \mathcal{D}_{N-\nu}.$$

Hence, by (4), substituting $2M_N(K)$ and $2M_{N-h}(K)$

$$\mathcal{D}_{N} - (K-1)\mathcal{D}_{N-1} - \sum_{h=1}^{r} \left(\mathcal{D}_{N-h} - (K-1)\mathcal{D}_{N-(h+1)} \right)$$
$$= 2(K-1)\sum_{\nu=2}^{r} \mathcal{D}_{N-\nu} + 2s\mathcal{D}_{N-(r+1)},$$

Consequently

$$\mathcal{D}_N - \left(\sum_{\mu=1}^r K \mathcal{D}_{N-\mu} + s \mathcal{D}_{N-(r+1)}\right) + (K-1-s)\mathcal{D}_{N-(r+1)} = 0,$$

and so

$$\mathcal{D}_N \le \sum_{\mu=1}^r K \mathcal{D}_{N-\mu} + s \mathcal{D}_{N-(r+1)}.$$

Let the sequence X_j be defined by the equation $X_j = \mathcal{D}_j$, (j = 1, ..., r+1), and let

(5)
$$X_n = \sum_{\mu=1}^r K X_{n-\mu} + s X_{n-(r+1)}, \quad (n = r+2, \dots, N).$$

Then $\mathcal{D}_j \leq X_j$, $(j = r + 2, \dots, N)$. Let

$$\phi(x) = x^{r+1} - K(x^r + \dots + x) - s$$

be the characteristic polynomial of the difference equation (5), and

(6)
$$\lambda(x) := x^{r+1}\phi\left(\frac{1}{x}\right) = 1 - K(x + \dots + x^r) - sx^{r+1}$$

Let η be the positive root of $\lambda(x)$. This is a simple root, and no other roots do exist in the disc $|x| \leq \eta$. Thus

(7)
$$\mathcal{D}_N \le X_N < c \left(\frac{1}{\eta}\right)^N,$$

with a suitable positive constant c, which may depend only on r and s.

In the case s = 0, similarly as above, we deduce the recursion

$$\mathcal{D}_N - K \sum_{\nu=1}^r \mathcal{D}_{N-\nu} + (K-1)\mathcal{D}_{N-(r+1)} = 0,$$

whence

$$\mathcal{D}_N \le K \sum_{\nu=1}^r \mathcal{D}_{N-\nu}$$

follows. Let $X_j = \mathcal{D}_j$ $(j = 1, \ldots, r)$, and

(8)
$$X_n := K \sum_{\nu=1}^r X_{n-\nu}, \qquad (n = r+1, \dots, N).$$

As earlier, we have $\mathcal{D}_j \leq X_j$, $(j = r + 1, \dots, N)$. Let

$$\psi(x) = x^r - K(x^{r-1} + \dots + 1)$$

be the characteristic polynomial of (8), and

$$\beta(x) := x^r \psi\left(\frac{1}{x}\right) = 1 - K(x + \dots + x^r).$$

Let η^* be its positive root. Then, as above, we obtain that

$$\mathcal{D}_N \le X_N \le c \left(\frac{1}{\eta^*}\right)^N,$$

with some positive constant c = c(r).

To finish the proof we shall prove that for every $r \ge 1$ and $0 \le s < K$, $\lambda(B_K(K^r s)) = 0$. Here

$$B_K(K^r s) = B_K(\underbrace{K \dots K}_r s)$$

is defined in Lemma 1. If $K^r ss_1 s_2 \cdots \in \mathcal{F}_K^{(u)}$ then (2) and (3) hold. Assume that $s \geq 1$. We have

Assume that $s \ge 1$. We have

$$B_K(K^r s) = \sum_{s_1,\ldots,s_N} B_K(K^r s s_1 s_2 \ldots s_N),$$

where on the right hand sum we sum only over those s_1, \ldots, s_N , for which (2), (3) hold. From Lemma 1 it follows that each summand on the right hand side can be covered by an interval $[\alpha_{N+(r+1)}, \beta_{N+(r+1)}]$, the length of which is $\beta_{N+(r+1)} - \alpha_{N+(r+1)} \leq \alpha_{N+(r+1)}^{N+(r+1)}$. If (2) holds, then among $s_1 \ldots s_{r+1}$ there exists a nonzero element, consequently $\alpha_{N+(r+1)}$ is smaller than ω , where ω is the positive root of the equation

(9)
$$1 = K(x + \dots + x^{r}) + sx^{r+1} + 1 \cdot x^{2r+1}.$$

It is obvious that $\omega < \eta$ (see (6)). Thus, from (7),

$$\lambda(B_K(K^rs)) \le c\left(\frac{1}{\eta}\right)^N \omega^{N+r+1},$$

which by $N \to \infty$ implies that $\lambda(B_K(K^r s)) = 0$.

In the case s = 0 the argument is similar. We can observe only that the positive root ω of the equation (9) with s = 0 is less than η^* . Hence we obtain that $\lambda(B_K(K^rs)) = 0$. Since $\mathcal{E}_K = \sum_{r=1}^{\infty} \sum_{s=0}^{K-1} B_K(K^rs)$, therefore $\lambda(\mathcal{E}_K) = 0$.

The proof of the theorem is completed.

I. Kátai and G. Kallós : On the set for which 1 is univoque

References

- [1] Z. DARÓCZY and I. KÁTAI, Univoque Sequences, Publ. Math. Debrecen 42 (1993), 397–407.
- [2] Z. DARÓCZY and I. KÁTAI, On the Structure of Univoque Numbers, Publ. Math. Debrecen 46 (1995), 385-408.
- [3] GÁBOR KALLÓS, The Structure of the Univoque Set in the Small Case, Publ. Math. Debrecen 54 (1999), 153–164.
- [4] GÁBOR KALLÓS, Hausdorff Dimension of Univoque Sets, Acta Cybernetica 14–2 (1999), 303–314.
- [5] W. PARRY, On the β Expansions of Real Numbers, Acta Math. Hung. **11** (1960), 401–406.

I. KÁTAI EÖTVÖS L. UNIVERSITY COMPUTER ALGEBRA DEPT. H-1117 BUDAPEST PÁZMÁNY P. SÉTÁNY 1/D HUNGARY AND JANUS PANNONIUS UNIVERSITY DEPT. OF APPLIED MATH. AND INFORMATICS PÉCS HUNGARY *E-mail*: katai@compalg.inf.elte.hu

G. KALLÓS SZÉCHENYI I. COLLEGE DEPT. OF COMPUTER SCIENCE H-9026 GYŐR, HÉDERVÁRI ÚT 3 HUNGARY *E-mail*: kallos@rs1.szif.hu

(Received May 2, 2000; revised October 27, 2000)

750