On the set for which 1 is univoque

By I. KÁTAI (Budapest) and G. KALLÓS (Győr)

Abstract

For some integer $K \geq 2$ let \mathcal{E}_{K} be the set of those $\Theta \in\left(\frac{1}{K+1}, \frac{1}{K}\right)$, for which 1 has only one expansion $1=e_{1} \Theta+e_{2} \Theta^{2}+\ldots$ with digits $e_{j} \in\{0, \ldots, K\}$, $(j=1,2, \ldots)$. In this paper we prove, that the Lebesgue measure of the set \mathcal{E}_{K} is 0 .

1. Introduction

Let $K \in \mathbb{N}, q \in[K, K+1), \mathcal{A}_{K}=\{0,1, \ldots, K\}, \Theta=\frac{1}{q}, L=\frac{K \Theta}{1-\Theta}$ ($=\frac{K}{q-1}$). Since

$$
[0, L] \subseteq \bigcup_{j=0}^{K}(j \Theta+\Theta[0, L])
$$

therefore each $x \in[0, L]$ has at least one expansion of the form

$$
\begin{equation*}
x=a_{1} \Theta+a_{2} \Theta^{2}+\ldots, \quad a_{j} \in \mathcal{A}_{K} \quad(j=1,2, \ldots) . \tag{1}
\end{equation*}
$$

The structure of the so called univoque numbers, i.e. those for which no more than one expansion (1) exist was investigated in the case $K=1$ by Z. Daróczy and I. Kátai [1], [2], and for $K \geq 2$ by G. Kallós [3], [4]. In [2] it was demonstrated that this set is quite simple for $K=1$ if 1 has at least two representations of form (1), and that the set of those $\Theta \in\left(\frac{1}{2}, 1\right)$ for which 1 is univoque has Lebesgue measure 0 (and Hausdorff dimension 1).

Our purpose in this short paper is to prove
Theorem 1. For each $K \in \mathbb{N}$, the set of those $\Theta \in\left(\frac{1}{K+1}, \frac{1}{K}\right)$, for which 1 is univoque is of Lebesgue measure 0 .

2. Some remarks and definitions

The regular (or Rényi-Parry [5]) expansion of some $x \in[0,1$) is generated by the iteration of the rule:

$$
x=\varepsilon_{1}(x) \Theta+\Theta x_{1}, \quad \varepsilon_{1}(x)=[q x], \quad x_{1}=\{q x\} .
$$

The quasiregular expansion of some $x \in(0,1], x=\delta_{1}(x) \Theta+\Theta x_{1}=$ $\delta_{1}(x) \Theta+\delta_{2}(x) \Theta^{2}+\ldots$ is defined as follows: $\delta_{1}(x)$ is the largest integer s for which $x-s \Theta>0, x_{1}=q x-s$.

Let $\mathcal{A}_{K}^{\mathbb{N}}$ be the set of infinite sequences over \mathcal{A}_{K}, and for some $\alpha=$ $a_{1} a_{2} \ldots$ let $\bar{\alpha}=\bar{a}_{1} \bar{a}_{2} \ldots$, where $\bar{n}=K-n$ for $n \in \mathcal{A}_{K}$. For some integer $h>0$ let \mathcal{A}_{K}^{h} be the set of sequences of length h over \mathcal{A}_{K}. The shift operator $\sigma: \mathcal{A}_{K}^{\mathbb{N}} \rightarrow \mathcal{A}_{K}^{\mathbb{N}}$ is defined as usual by $\sigma\left(a_{1} a_{2} \ldots\right)=a_{2} a_{3} \ldots$. Let $<$ denote the lexicographic ordering in $\mathcal{A}_{K}^{\mathbb{N}}$. Furthermore let $\underline{\Theta}=$ $\left(\Theta, \Theta^{2}, \ldots\right)$, and for $\underline{\ell}=\left(\ell_{1}, \ell_{2}, \ldots\right) \in \mathcal{A}_{K}^{\mathbb{N}}$ let $\langle\underline{\ell}, \underline{\Theta}\rangle=\ell_{1} \Theta+\ell_{2} \Theta^{2}+\ldots$.

For some $\Theta \in\left(\frac{1}{K+1}, \frac{1}{K}\right)$ let $\underline{t}=\underline{t}(\Theta)=t_{1} t_{2} \ldots$ be the sequence of the digits in the quasiregular expansion of 1 . Let

$$
\mathcal{F}_{K}=\left\{\underline{t}(\Theta) \left\lvert\, \Theta \in\left(\frac{1}{K+1}, \frac{1}{K}\right)\right.\right\} .
$$

According to a theorem due to W. Parry [5], $\underline{t} \in \mathcal{F}_{K}$ if and only if

$$
\sigma^{j}(\underline{t})<\underline{t} \quad(j=1,2, \ldots), \quad t_{1}=K
$$

holds. Furthermore, for a fixed Θ the sequence $\underline{e} \in \mathcal{A}_{K}^{\mathbb{N}}$ is the regular expansion of some $x \in[0,1)$, if and only if

$$
\sigma^{j}(\underline{e})<\underline{t} \quad(j=0,1,2, \ldots) .
$$

Let $\mathcal{F}_{K}^{(u)} \subseteq \mathcal{F}_{K}$ be the set of those sequences \underline{t}, for which 1 is univoque with respect to $\Theta, 1=\langle\underline{t}, \underline{\Theta}\rangle$, and let \mathcal{E}_{K} be the set of those $\Theta \in\left(\frac{1}{K+1}, \frac{1}{K}\right)$, for which 1 is univoque, i.e.

$$
\mathcal{E}_{K}=\left\{\Theta \mid\langle\underline{t}, \underline{\Theta}\rangle=1, \underline{t} \in \mathcal{F}_{K}^{(u)}\right\} .
$$

We should prove that $\lambda\left(\mathcal{E}_{K}\right)=0$ (λ is the Lebesgue measure). Since the case $K=1$ was treated in [2], from now on we assume that $K \geq 2$.

A trivial but important observation is that for some fixed Θ the number x is univoque, if and only if $L-x$ is univoque. Since $L<2$, therefore $0<L-1<1$. If $1=t_{1} \Theta+t_{2} \Theta^{2}+\ldots$, then $L-1=\bar{t}_{1} \Theta+\bar{t}_{2} \Theta^{2}+\ldots$. 1 is univoque with respect to Θ if the expansion $\bar{t}_{1} \bar{t}_{2} \ldots$ of $L-1$ is the quasiregular expansion of it. Thus $\underline{t} \in \mathcal{F}_{K}^{(u)}$ if and only if

$$
\underline{\bar{t}}<\sigma^{j}(\underline{t})<\underline{t} \quad(j=1,2, \ldots), t_{1}=K
$$

holds (clearly $\underline{\underline{t}}<\underline{t}$).
W. Parry proved that, if $\underline{t}^{1}, \underline{t}^{2} \in \mathcal{F}_{K},\left\langle\underline{t}^{1}, \underline{\Theta_{1}}\right\rangle=1,\left\langle\underline{t}^{2}, \underline{\Theta_{2}}\right\rangle=1$, then $\underline{t}^{1}<\underline{t}^{2}$ implies that $\Theta_{1}>\Theta_{2}$.

3. A useful lemma

Lemma 1. Let $u \geq 1, t_{1}, t_{2}, \ldots, t_{u} \in \mathcal{A}_{K}$, and $B_{K}\left(t_{1}, t_{2}, \ldots, t_{u}\right)$ be the set of those Θ-s, for which 1 is univoque with respect to Θ, with first u digits $t_{1}, t_{2}, \ldots, t_{u}$. Then $B_{K}\left(t_{1}, t_{2}, \ldots, t_{u}\right) \subseteq\left[\alpha_{u}, \beta_{u}\right]$, where α_{u} is the positive solution of

$$
1=\left(t_{1} y+\cdots+t_{u} y^{u}\right) \frac{1}{1-y^{u}}
$$

and β_{u} is the positive solution of the polynomial $1=t_{1} x+\cdots+t_{u} x^{u}$. Consequently, $\beta_{u}-\alpha_{u} \leq \frac{\alpha_{u}^{u}}{K}$.

Proof of Lemma 1. Let $\Theta \in B_{K}\left(t_{1}, t_{2}, \ldots, t_{u}\right), 1=t_{1} \Theta+\cdots+$ $t_{u} \Theta^{u}+\ldots$. Then

$$
t_{1} \ldots t_{u} 0^{\infty} \leq \underline{t} \leq\left(t_{1} \ldots t_{u}\right)^{\infty}
$$

and for α_{u} we get

$$
1=\left(t_{1} y+\cdots+t_{u} y^{u}\right)\left(1+y^{u}+y^{2 u}+\ldots\right)=\left(t_{1} y+\cdots+t_{u} y^{u}\right) \frac{1}{1-y^{u}}
$$

thus the first assertion holds. Let

$$
\begin{aligned}
& \phi_{1}(x)=t_{1} x+\cdots+t_{u} x^{u}-1 \\
& \phi_{2}(x)=t_{1} x+\cdots+t_{u-1} x^{u-1}+\left(t_{u}+1\right) x^{u}-1,
\end{aligned}
$$

$\Delta=\beta_{u}-\alpha_{u}$. We have $0=\phi_{1}\left(\beta_{u}\right)=\phi_{2}\left(\alpha_{u}\right)$. From the Taylor expansion

$$
0=\phi_{1}\left(\alpha_{u}+\Delta\right)=\phi_{1}\left(\alpha_{u}\right)+\Delta \phi_{1}^{\prime}\left(\alpha_{u}\right)+\frac{\Delta^{2}}{2} \phi_{1}^{\prime \prime}\left(\alpha_{u}\right)+\ldots
$$

with $\phi_{1}\left(\alpha_{u}\right)=-\alpha_{u}^{u}$ we obtain that

$$
\alpha_{u}^{u}=\Delta \phi_{1}^{\prime}\left(\alpha_{u}\right)+\frac{\Delta^{2}}{2} \phi_{1}^{\prime \prime}\left(\alpha_{u}\right)+\ldots
$$

Since the derivates $\phi_{1}^{(\mu)}\left(\alpha_{u}\right)$ are nonnegative $(\mu=1,2, \ldots)$, we get

$$
\Delta \leq \frac{\alpha_{u}^{u}}{t_{u} u \alpha_{u}^{u-1}+\cdots+t_{1}} \leq \frac{\alpha_{u}^{u}}{K} .
$$

The proof is completed.

4. Proof of Theorem 1

Let $r \geq 1,0 \leq s<K, T=K^{r} s\left(\in \mathcal{A}_{K}^{r+1}\right)$. Let $\mathcal{B}_{N}(T)$ be the set of those sequences $s_{1} s_{2} \ldots s_{N} \in \mathcal{A}_{K}^{N}$, for which

$$
\begin{align*}
& \bar{T} \leq s_{i+1} \ldots s_{i+(r+1)} \leq T \quad(i=0,1, \ldots, N-r-1) \tag{2}\\
& 0^{p+1} \leq s_{N-p} \ldots s_{N} \leq K^{p+1} \quad(p=0,1, \ldots, r) \tag{3}
\end{align*}
$$

holds. For some α of length $M<N$ let $\mathcal{B}_{N}(T \mid \alpha)$ be the subset of those elements of $\mathcal{B}_{N}(T)$ for which additionally $s_{1} s_{2} \ldots s_{M}=\alpha$ holds. Let $\mathcal{D}_{N}=$ $\mathcal{D}_{N}(T), M_{N}(\alpha)$ be the size of $\mathcal{B}_{N}(T), \mathcal{B}_{N}(T \mid \alpha)$, respectively.

We shall give an upper estimate for \mathcal{D}_{N}.
Assume that $N \geq r+2$. Then

$$
\mathcal{D}_{N}=M_{N}(0)+M_{N}(K)+\sum_{j=1}^{K-1} M_{N}(j)
$$

It is clear that $M_{N}(j)=\mathcal{D}_{N-1},(j=1, \ldots, K-1)$. If the conditions (2), (3) hold then they remain valid for $\overline{s_{1} s_{2}} \ldots \overline{s_{N}}$ as well. Thus $M_{N}(0)=M_{N}(K)$, and so

$$
\begin{equation*}
\mathcal{D}_{N}-(K-1) \mathcal{D}_{N-1}=2 M_{N}(K) . \tag{4}
\end{equation*}
$$

Similarly, if $1 \leq h \leq r$, then

$$
\begin{aligned}
M_{N}\left(K^{h}\right) & =M_{N}\left(K^{h} 0\right)+M_{N}\left(K^{h+1}\right)+\sum_{j=1}^{K-1} M_{N}\left(K^{h} j\right) \\
& =M_{N-h}(K)+M_{N}\left(K^{h+1}\right)+(K-1) \mathcal{D}_{N-(h+1)}
\end{aligned}
$$

and so

$$
\sum_{h=1}^{r-1}\left(M_{N}\left(K^{h}\right)-M_{N}\left(K^{h+1}\right)\right)=\sum_{h=1}^{r-1} M_{N-h}(K)+(K-1) \sum_{\nu=2}^{r} \mathcal{D}_{N-\nu}
$$

The left hand side is $M_{N}(K)-M_{N}\left(K^{r}\right)$.
Other hand, if $s>0$ then

$$
M_{N}\left(K^{r}\right)=M_{N}\left(K^{r} 0\right)+\sum_{j=1}^{s} M_{N}\left(K^{r} j\right)=M_{N-r}(K)+s \mathcal{D}_{N-(r+1)},
$$

and so

$$
M_{N}(K)-M_{N-r}(K)-s \mathcal{D}_{N-(r+1)}=\sum_{h=1}^{r-1} M_{N-h}(K)+(K-1) \sum_{\nu=2}^{r} \mathcal{D}_{N-\nu} .
$$

Hence, by (4), substituting $2 M_{N}(K)$ and $2 M_{N-h}(K)$

$$
\begin{gathered}
\mathcal{D}_{N}-(K-1) \mathcal{D}_{N-1}-\sum_{h=1}^{r}\left(\mathcal{D}_{N-h}-(K-1) \mathcal{D}_{N-(h+1)}\right) \\
=2(K-1) \sum_{\nu=2}^{r} \mathcal{D}_{N-\nu}+2 s \mathcal{D}_{N-(r+1)},
\end{gathered}
$$

Consequently

$$
\mathcal{D}_{N}-\left(\sum_{\mu=1}^{r} K \mathcal{D}_{N-\mu}+s \mathcal{D}_{N-(r+1)}\right)+(K-1-s) \mathcal{D}_{N-(r+1)}=0,
$$

and so

$$
\mathcal{D}_{N} \leq \sum_{\mu=1}^{r} K \mathcal{D}_{N-\mu}+s \mathcal{D}_{N-(r+1)}
$$

Let the sequence X_{j} be defined by the equation $X_{j}=\mathcal{D}_{j},(j=1, \ldots, r+1)$, and let

$$
\begin{equation*}
X_{n}=\sum_{\mu=1}^{r} K X_{n-\mu}+s X_{n-(r+1)}, \quad(n=r+2, \ldots, N) . \tag{5}
\end{equation*}
$$

Then $\mathcal{D}_{j} \leq X_{j},(j=r+2, \ldots, N)$. Let

$$
\phi(x)=x^{r+1}-K\left(x^{r}+\cdots+x\right)-s
$$

be the characteristic polynomial of the difference equation (5), and

$$
\begin{equation*}
\lambda(x):=x^{r+1} \phi\left(\frac{1}{x}\right)=1-K\left(x+\cdots+x^{r}\right)-s x^{r+1} . \tag{6}
\end{equation*}
$$

Let η be the positive root of $\lambda(x)$. This is a simple root, and no other roots do exist in the disc $|x| \leq \eta$. Thus

$$
\begin{equation*}
\mathcal{D}_{N} \leq X_{N}<c\left(\frac{1}{\eta}\right)^{N} \tag{7}
\end{equation*}
$$

with a suitable positive constant c, which may depend only on r and s.
In the case $s=0$, similarly as above, we deduce the recursion

$$
\mathcal{D}_{N}-K \sum_{\nu=1}^{r} \mathcal{D}_{N-\nu}+(K-1) \mathcal{D}_{N-(r+1)}=0,
$$

whence

$$
\mathcal{D}_{N} \leq K \sum_{\nu=1}^{r} \mathcal{D}_{N-\nu}
$$

follows. Let $X_{j}=\mathcal{D}_{j}(j=1, \ldots, r)$, and

$$
\begin{equation*}
X_{n}:=K \sum_{\nu=1}^{r} X_{n-\nu}, \quad(n=r+1, \ldots, N) . \tag{8}
\end{equation*}
$$

As earlier, we have $\mathcal{D}_{j} \leq X_{j},(j=r+1, \ldots, N)$. Let

$$
\psi(x)=x^{r}-K\left(x^{r-1}+\cdots+1\right)
$$

be the characteristic polynomial of (8), and

$$
\beta(x):=x^{r} \psi\left(\frac{1}{x}\right)=1-K\left(x+\cdots+x^{r}\right) .
$$

Let η^{*} be its positive root. Then, as above, we obtain that

$$
\mathcal{D}_{N} \leq X_{N} \leq c\left(\frac{1}{\eta^{*}}\right)^{N}
$$

with some positive constant $c=c(r)$.
To finish the proof we shall prove that for every $r \geq 1$ and $0 \leq s<K$, $\lambda\left(B_{K}\left(K^{r} s\right)\right)=0$. Here

$$
B_{K}\left(K^{r} s\right)=B_{K}(\underbrace{K \ldots K}_{r} s)
$$

is defined in Lemma 1. If $K^{r} s s_{1} s_{2} \cdots \in \mathcal{F}_{K}^{(u)}$ then (2) and (3) hold.
Assume that $s \geq 1$. We have

$$
B_{K}\left(K^{r} s\right)=\sum_{s_{1}, \ldots, s_{N}} B_{K}\left(K^{r} s s_{1} s_{2} \ldots s_{N}\right),
$$

where on the right hand sum we sum only over those s_{1}, \ldots, s_{N}, for which (2), (3) hold. From Lemma 1 it follows that each summand on the right hand side can be covered by an interval [$\alpha_{N+(r+1)}, \beta_{N+(r+1)}$], the length of which is $\beta_{N+(r+1)}-\alpha_{N+(r+1)} \leq \alpha_{N+(r+1)}^{N+(r+1)}$. If (2) holds, then among $s_{1} \ldots s_{r+1}$ there exists a nonzero element, consequently $\alpha_{N+(r+1)}$ is smaller than ω, where ω is the positive root of the equation

$$
\begin{equation*}
1=K\left(x+\cdots+x^{r}\right)+s x^{r+1}+1 \cdot x^{2 r+1} . \tag{9}
\end{equation*}
$$

It is obvious that $\omega<\eta$ (see (6)). Thus, from (7),

$$
\lambda\left(B_{K}\left(K^{r} s\right)\right) \leq c\left(\frac{1}{\eta}\right)^{N} \omega^{N+r+1},
$$

which by $N \rightarrow \infty$ implies that $\lambda\left(B_{K}\left(K^{r} s\right)\right)=0$.
In the case $s=0$ the argument is similar. We can observe only that the positive root ω of the equation (9) with $s=0$ is less than η^{*}. Hence we obtain that $\lambda\left(B_{K}\left(K^{r} s\right)\right)=0$. Since $\mathcal{E}_{K}=\sum_{r=1}^{\infty} \sum_{s=0}^{K-1} B_{K}\left(K^{r} s\right)$, therefore $\lambda\left(\mathcal{E}_{K}\right)=0$.

The proof of the theorem is completed.

References

[1] Z. Daróczy and I. Kátai, Univoque Sequences, Publ. Math. Debrecen 42 (1993), 397-407.
[2] Z. Daróczy and I. Kátai, On the Structure of Univoque Numbers, Publ. Math. Debrecen 46 (1995), 385-408.
[3] Gábor Kallós, The Structure of the Univoque Set in the Small Case, Publ. Math. Debrecen 54 (1999), 153-164.
[4] GÁbor Kallós, Hausdorff Dimension of Univoque Sets, Acta Cybernetica 14-2 (1999), 303-314.
[5] W. Parry, On the β Expansions of Real Numbers, Acta Math. Hung. 11 (1960), 401-406.
I. KÁTAI

EÖTVÖS L. UNIVERSITY
COMPUTER ALGEBRA DEPT.
H-1117 BUDAPEST,
PÁZMÁNY P. SÉTÁNY 1/D
HUNGARY
AND
JANUS PANNONIUS UNIVERSITY
DEPT. OF APPLIED MATH. AND INFORMATICS
PÉCS
HUNGARY
E-mail: katai@compalg.inf.elte.hu
G. KALLÓS

SZÉCHENYI I. COLLEGE
DEPT. OF COMPUTER SCIENCE
H-9026 GYŐR, HÉDERVÁRI ÚT 3 HUNGARY
E-mail: kallos@rs1.szif.hu
(Received May 2, 2000; revised October 27, 2000)

