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On the set for which 1 is univoque

By I. KÁTAI (Budapest) and G. KALLÓS (Győr)

Abstract. For some integer K ≥ 2 let EK be the set of those Θ ∈
�

1
K+1

, 1
K

�
,

for which 1 has only one expansion 1 = e1Θ + e2Θ2 + . . . with digits ej ∈ {0, . . . , K},
(j = 1, 2, . . . ). In this paper we prove, that the Lebesgue measure of the set EK is 0.

1. Introduction

Let K ∈ N, q ∈ [K, K + 1), AK = {0, 1, . . . , K}, Θ = 1
q , L = KΘ

1−Θ(
= K

q−1

)
. Since

[0, L] ⊆
K⋃

j=0

(jΘ + Θ[0, L]),

therefore each x ∈ [0, L] has at least one expansion of the form

(1) x = a1Θ + a2Θ2 + . . . , aj ∈ AK (j = 1, 2, . . . ).

The structure of the so called univoque numbers, i.e. those for which no
more than one expansion (1) exist was investigated in the case K = 1 by
Z. Daróczy and I. Kátai [1], [2], and for K ≥ 2 by G. Kallós [3],
[4]. In [2] it was demonstrated that this set is quite simple for K = 1 if
1 has at least two representations of form (1), and that the set of those
Θ ∈ (

1
2 , 1

)
for which 1 is univoque has Lebesgue measure 0 (and Hausdorff

dimension 1).
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Our purpose in this short paper is to prove

Theorem 1. For each K ∈ N, the set of those Θ ∈
(

1
K+1 , 1

K

)
, for

which 1 is univoque is of Lebesgue measure 0.

2. Some remarks and definitions

The regular (or Rényi–Parry [5]) expansion of some x ∈ [0, 1) is gen-
erated by the iteration of the rule:

x = ε1(x)Θ + Θx1, ε1(x) = [qx], x1 = {qx}.
The quasiregular expansion of some x ∈ (0, 1], x = δ1(x)Θ + Θx1 =
δ1(x)Θ + δ2(x)Θ2 + . . . is defined as follows: δ1(x) is the largest integer s
for which x− sΘ > 0, x1 = qx− s.

Let ANK be the set of infinite sequences over AK , and for some α =
a1a2 . . . let α = a1a2 . . . , where n = K − n for n ∈ AK . For some integer
h > 0 let Ah

K be the set of sequences of length h over AK . The shift
operator σ : ANK → ANK is defined as usual by σ(a1a2 . . . ) = a2a3 . . . .
Let < denote the lexicographic ordering in ANK . Furthermore let Θ =
(Θ, Θ2, . . . ), and for ` = (`1, `2, . . . ) ∈ ANK let 〈`,Θ〉 = `1Θ + `2Θ2 + . . . .

For some Θ ∈
(

1
K+1 , 1

K

)
let t = t(Θ) = t1t2 . . . be the sequence of

the digits in the quasiregular expansion of 1. Let

FK =
{

t(Θ)
∣∣∣ Θ ∈

(
1

K + 1
,

1
K

)}
.

According to a theorem due to W. Parry [5], t ∈ FK if and only if

σj(t) < t (j = 1, 2, . . . ), t1 = K

holds. Furthermore, for a fixed Θ the sequence e ∈ ANK is the regular
expansion of some x ∈ [0, 1), if and only if

σj(e) < t (j = 0, 1, 2, . . . ).

Let F (u)
K ⊆ FK be the set of those sequences t, for which 1 is univoque with

respect to Θ, 1 = 〈t, Θ〉, and let EK be the set of those Θ ∈
(

1
K+1 , 1

K

)
,

for which 1 is univoque, i.e.

EK =
{

Θ
∣∣∣ 〈t, Θ〉 = 1, t ∈ F (u)

K

}
.
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We should prove that λ(EK) = 0 (λ is the Lebesgue measure). Since the
case K = 1 was treated in [2], from now on we assume that K ≥ 2.

A trivial but important observation is that for some fixed Θ the num-
ber x is univoque, if and only if L− x is univoque. Since L < 2, therefore
0 < L − 1 < 1. If 1 = t1Θ + t2Θ2 + . . . , then L − 1 = t1Θ + t2Θ2 + . . . .
1 is univoque with respect to Θ if the expansion t1t2 . . . of L − 1 is the
quasiregular expansion of it. Thus t ∈ F (u)

K if and only if

t < σj(t) < t (j = 1, 2, . . . ), t1 = K

holds (clearly t < t).
W. Parry proved that, if t1, t2 ∈ FK , 〈t1, Θ1〉 = 1, 〈t2, Θ2〉 = 1, then

t1 < t2 implies that Θ1 > Θ2.

3. A useful lemma

Lemma 1. Let u ≥ 1, t1, t2, . . . , tu ∈ AK , and BK(t1, t2, . . . , tu) be
the set of those Θ-s, for which 1 is univoque with respect to Θ, with first
u digits t1, t2, . . . , tu. Then BK(t1, t2, . . . , tu) ⊆ [αu, βu], where αu is the
positive solution of

1 = (t1y + · · ·+ tuyu)
1

1− yu

and βu is the positive solution of the polynomial 1 = t1x + · · · + tuxu.

Consequently, βu − αu ≤ αu
u

K .

Proof of Lemma 1. Let Θ ∈ BK(t1, t2, . . . , tu), 1 = t1Θ + · · · +
tuΘu + . . . . Then

t1 . . . tu0∞ ≤ t ≤ (t1 . . . tu)∞,

and for αu we get

1 = (t1y + · · ·+ tuyu)(1 + yu + y2u + . . . ) = (t1y + · · ·+ tuyu)
1

1− yu
,

thus the first assertion holds. Let

φ1(x) = t1x + · · ·+ tuxu − 1

φ2(x) = t1x + · · ·+ tu−1x
u−1 + (tu + 1)xu − 1,
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∆ = βu − αu. We have 0 = φ1(βu) = φ2(αu). From the Taylor expansion

0 = φ1(αu + ∆) = φ1(αu) + ∆φ′1(αu) +
∆2

2
φ′′1(αu) + . . . ,

with φ1(αu) = −αu
u we obtain that

αu
u = ∆φ′1(αu) +

∆2

2
φ′′1(αu) + . . . .

Since the derivates φ
(µ)
1 (αu) are nonnegative (µ = 1, 2, . . . ), we get

∆ ≤ αu
u

tuuαu−1
u + · · ·+ t1

≤ αu
u

K
.

The proof is completed. ¤

4. Proof of Theorem 1

Let r ≥ 1, 0 ≤ s < K, T = Krs (∈ Ar+1
K ). Let BN (T ) be the set of

those sequences s1s2 . . . sN ∈ AN
K , for which

T ≤ si+1 . . . si+(r+1) ≤ T (i = 0, 1, . . . , N − r − 1),(2)

0p+1 ≤ sN−p . . . sN ≤ Kp+1 (p = 0, 1, . . . , r)(3)

holds. For some α of length M < N let BN (T | α) be the subset of those
elements of BN (T ) for which additionally s1s2 . . . sM = α holds. Let DN =
DN (T ), MN (α) be the size of BN (T ), BN (T | α), respectively.

We shall give an upper estimate for DN .
Assume that N ≥ r + 2. Then

DN = MN (0) + MN (K) +
K−1∑

j=1

MN (j).

It is clear that MN (j) = DN−1, (j = 1, . . . ,K−1). If the conditions (2), (3)
hold then they remain valid for s1s2 . . . sN as well. Thus MN (0) = MN (K),
and so

(4) DN − (K − 1)DN−1 = 2MN (K).
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Similarly, if 1 ≤ h ≤ r, then

MN (Kh) = MN (Kh0) + MN (Kh+1) +
K−1∑

j=1

MN (Khj)

= MN−h(K) + MN (Kh+1) + (K − 1)DN−(h+1),

and so

r−1∑

h=1

(
MN (Kh)−MN (Kh+1)

)
=

r−1∑

h=1

MN−h(K) + (K − 1)
r∑

ν=2

DN−ν .

The left hand side is MN (K)−MN (Kr).
Other hand, if s > 0 then

MN (Kr) = MN (Kr0) +
s∑

j=1

MN (Krj) = MN−r(K) + sDN−(r+1),

and so

MN (K)−MN−r(K)− sDN−(r+1) =
r−1∑

h=1

MN−h(K) + (K − 1)
r∑

ν=2

DN−ν .

Hence, by (4), substituting 2MN (K) and 2MN−h(K)

DN − (K − 1)DN−1 −
r∑

h=1

(
DN−h − (K − 1)DN−(h+1)

)

= 2(K − 1)
r∑

ν=2

DN−ν + 2sDN−(r+1),

Consequently

DN −
( r∑

µ=1

KDN−µ + sDN−(r+1)

)
+ (K − 1− s)DN−(r+1) = 0,

and so

DN ≤
r∑

µ=1

KDN−µ + sDN−(r+1).
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Let the sequence Xj be defined by the equation Xj = Dj , (j = 1, . . . , r+1),
and let

(5) Xn =
r∑

µ=1

KXn−µ + sXn−(r+1), (n = r + 2, . . . , N).

Then Dj ≤ Xj , (j = r + 2, . . . , N). Let

φ(x) = xr+1 −K(xr + · · ·+ x)− s

be the characteristic polynomial of the difference equation (5), and

(6) λ(x) := xr+1φ

(
1
x

)
= 1−K(x + · · ·+ xr)− sxr+1.

Let η be the positive root of λ(x). This is a simple root, and no other
roots do exist in the disc |x| ≤ η. Thus

(7) DN ≤ XN < c

(
1
η

)N

,

with a suitable positive constant c, which may depend only on r and s.
In the case s = 0, similarly as above, we deduce the recursion

DN −K

r∑
ν=1

DN−ν + (K − 1)DN−(r+1) = 0,

whence

DN ≤ K

r∑
ν=1

DN−ν

follows. Let Xj = Dj (j = 1, . . . , r), and

(8) Xn := K

r∑
ν=1

Xn−ν , (n = r + 1, . . . , N).

As earlier, we have Dj ≤ Xj , (j = r + 1, . . . , N). Let

ψ(x) = xr −K(xr−1 + · · ·+ 1)
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be the characteristic polynomial of (8), and

β(x) := xrψ

(
1
x

)
= 1−K(x + · · ·+ xr).

Let η∗ be its positive root. Then, as above, we obtain that

DN ≤ XN ≤ c

(
1
η∗

)N

,

with some positive constant c = c(r).
To finish the proof we shall prove that for every r ≥ 1 and 0 ≤ s < K,

λ(BK(Krs)) = 0. Here

BK(Krs) = BK(K . . . K︸ ︷︷ ︸
r

s)

is defined in Lemma 1. If Krss1s2 · · · ∈ F (u)
K then (2) and (3) hold.

Assume that s ≥ 1. We have

BK(Krs) =
∑

s1,...,sN

BK(Krss1s2 . . . sN ),

where on the right hand sum we sum only over those s1, . . . , sN , for which
(2), (3) hold. From Lemma 1 it follows that each summand on the right
hand side can be covered by an interval [αN+(r+1), βN+(r+1)], the length
of which is βN+(r+1) − αN+(r+1) ≤ α

N+(r+1)
N+(r+1). If (2) holds, then among

s1 . . . sr+1 there exists a nonzero element, consequently αN+(r+1) is smaller
than ω, where ω is the positive root of the equation

(9) 1 = K(x + · · ·+ xr) + sxr+1 + 1 · x2r+1.

It is obvious that ω < η (see (6)). Thus, from (7),

λ(BK(Krs)) ≤ c

(
1
η

)N

ωN+r+1,

which by N →∞ implies that λ(BK(Krs)) = 0.
In the case s = 0 the argument is similar. We can observe only that

the positive root ω of the equation (9) with s = 0 is less than η∗. Hence
we obtain that λ(BK(Krs)) = 0. Since EK =

∑∞
r=1

∑K−1
s=0 BK(Krs),

therefore λ(EK) = 0.
The proof of the theorem is completed. ¤
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