
Publ. Math. Debrecen

58 / 4 (2001), 791–796

A new application of quasi power increasing sequences

By L. LEINDLER (Szeged)

Dedicated to Professor Mátyás Arató on his 70th birthday

Abstract. The aim of this note is to extend a theorem of H. Bor [2], which uti-
lizes the concept of almost increasing sequences, to the class of quasi β-power increasing
sequences 0 < β < 1, which is a wider class of sequences, and no additional assumption
will be taken on that used by Bor.

1. Introduction

Let
∑∞

n=1 an be a given series with partial sums {sn}. Let {pn} be a
sequence of positive numbers such that

Pn :=
n∑

ν=0

pν →∞.

The sequence-to-sequence transformation

tn :=
1

Pn

n∑
ν=0

pνsν

defines the sequence {tn} of the (N, pn) mean of the sequence {sn}, gen-
erated by the sequence {pn} (see [4]). The series

∑∞
n=1 an is said to be
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summable |N, pn|k, k ≥ 1, if (see [1])

∞∑
n=1

(Pn

pn

)k−1

|tn − tn−1|k < ∞.

In the special case pn = 1 the |N, pn|k summability reduces to the |C, 1|k
summability (see [3]).

Concerning the |C, 1|k summability factors Mishra and Srivasta-
va [5] had proved a theorem for nondecreasing sequences, and Bor [2]
extended it to |N, pn|k summability under a weaker condition, namely he
considers the so-called “almost increasing sequences”. A positive sequence
{bn} is said to be almost increasing if there exists a positive increasing
sequence {cn} and two positive constants A and B such that A cn ≤ bn ≤
Bcn.

The theorem of Bor reads as follows:

Theorem A. Let {Xn} be an almost increasing sequence and let the
condition

(1.1)
m∑

n=1

1
n
|sn|k = O(Xm)

satisfied. If the sequences {βn} and {λn} satisfy the conditions

|∆λn| ≤ βn,(1.2)

βn → 0,(1.3)
∞∑

n=1

n|∆βn|Xn < ∞,(1.4)

|λn|Xn = O(1),(1.5)

furthermore if {pn} is a positive sequence such that

(1.6)
m∑

n=1

pn

Pn
|sn|k = O(Xm),

then the series
∑∞

n=1 anλn is summable |N, pn|k, k ≥ 1.

We observe that if {Xn} is a positive nondecreasing sequence and
pn=1 for all n, then Theorem A reduces to that of Mishra and Srivas-
tava [5].
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In order to release our first result we need the definition of the quasi
β-power increasing sequence. A positive sequence {γn} is said to be quasi
β-power increasing sequence if there exists a constant K = K(γ) ≥ 1 such
that

(1.7) Knβγn ≥ mβγm

holds for all n ≥ m ≥ 1.

2. Results

Theorem. Let {Xn} be a quasi β-power increasing sequence for some

0 < β < 1. If all of the conditions from (1.1) to (1.6) are satisfied, then

the series
∑∞

n=1 anλn is summable |N, pn|k, k ≥ 1.

Our next proposition affirms that the class of almost increasing se-
quences is a strict subclass of the quasi β-power increasing sequences if
β > 0.

Proposition. (i) Every almost increasing sequence is quasi β-power

increasing for any nonnegative β, but the converse is not true if β > 0.

(ii) Moreover for any positive β there exists a quasi β-power increasing

sequence tending to infinity, but it is not almost increasing.

3. Proofs

Proof of Theorem. The proof given by Bor has the following ar-
rangement. First it is proved that under the conditions on {Xn}, {βn}
and {λn} given in Theorem A, the following inequalities

(3.1) nβnXn = O(1),

and

(3.2)
∞∑

n=1

βnXn < ∞

hold (see Lemma 3 in [2]).
The assumption that {Xn} is an almost increasing sequence is utilized

only in the proof of the inequalities (3.1) and (3.2).
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The rest of the proof uses only the conditions (1.1), (1.2), (1.3), (1.4),
(1.5) and (1.6), furthermore the inequalities (3.1) and (3.2). Consequently
we can declare that in [2] it is proved implicitly that the assumptions from
(1.1) to (1.6) and the inequalities (3.1) and (3.2) imply that the series∑

anλn is summable |N, pn|k, k ≥ 1. So we have only to verify that the
inequalities (3.1) and (3.2) also hold under the conditions (1.3), (1.4) and
our assumption, that is, if it is assumed only that the sequence {Xn} is
quasi β-power increasing sequence with some 0 < β < 1, instead of being
almost increasing one.

Since 0 < β < 1 thus, by (1.7), for any ν ≥ n

nXn ≤ KνXν

also holds, whence, by (1.3) and (1.4), it follows that

nXnβn ≤ nXn

∞∑
ν=n

|∆βν | ≤ K

∞∑
ν=n

νXν |∆βν | < ∞.

This clearly verifies (3.1).
To prove (3.2) we make the following consideration:

∞∑
n=1

Xnβn ≤
∞∑

n=1

Xn

∞∑
ν=n

|∆βν | =
∞∑

ν=1

|∆βν |
ν∑

n=1

Xn

≤
∞∑

ν=1

|∆βν |
ν∑

n=1

nβXnn−β

≤
∞∑

ν=1

|∆βν |KνβXν

ν∑
n=1

n−β

≤ K

∞∑
ν=1

|∆βν |K(β)νXν ,

where K(β) is a constant depending only on β. Hence, by (1.4), we get
(3.2).

Herewith, as above we have discussed, our Theorem is proved. ¤
Proof of Proposition. First we prove the statement (i). If the se-

quence {γn} is almost increasing, that is, if

A cn ≤ γn ≤ B cn,
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holds for all n with an increasing sequence {cn}, then for any n ≥ m ≥ 1

(3.3) γm ≤ B cm ≤ B cn ≤ B

A
γn

also upholds, whence (1.7) follows obviously for any β ≥ 0 with K := B
A .

This shows that any almost increasing sequence is quasi β-power increasing
for any β ≥ 0.

The converse is clearly not true, see e.g. the sequence γn := n−β , β > 0.
Then γn → 0, thus it is obviously not an almost increasing sequence.

Herewith the statement (i) is verified.
In order to prove assertion (ii) we define the following sequence {γn}.

Let us assume that β > 0 and µm := 22m

. Then let

(3.4) γn :=





µm, if n = µm,

µ1+β
m n−β , if µm < n ≤ mµm,

µmm−β , if mµm < n < µm+1.

It is evident that γn tends to infinity, and

(3.5)
γµm

γmµm

= mβ .

As we have seen above, every almost increasing sequence satisfies the
inequality (3.3), thus (3.5) demonstrates that the sequence {γn} given in
(3.4) is not an almost increasing one, namely mβ →∞ if m →∞.

Next we show that our sequence is quasi β-power increasing. This
follows from that the sequence {nβγn} between µm and mµm is constant,
and from mµm to µm+1 it is increasing. Consequently the whole sequence
{γn} is quasi β-power increasing.

The proof is complete. ¤
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