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Some criteria for dynamical systems to be nonchaotic

By XIAO-SONG YANG (Chongqing)

Abstract. In this paper we address the important question that under what
conditions a dynamical system can be free of chaos. First we discuss some features
of chaotic dynamical systems described by autonomous ODE, then we establish some
criteria to determine the nonchaoticity of dynamical systems and apply them to some
specific systems.

1. Introduction

It is important to know under what conditions a dynamical system
can be chaotic and much has been done along this line [1]–[3]. On the
other hand, it also of significance to know when a dynamical system is
nonchaotic. The aim of this paper is to establish some criteria for dynam-
ical systems not being chaotic.

2. Some properties of chaotic dynamical systems

In this section we examine some elementary properties of chaotic dy-
namical systems, which are useful in establishing conditions for nonchaotic
behavior in a dynamical system.

Consider a dynamical system described by ODE:

(2.1) ẋ = f(x), x ∈ Rn, f ∈ c1[Rn,Rn].

Recall that a fundamental fact about a chaotic orbit is that it is a
compact set and cannot be contained in a two-dimensional manifold.

The first property is the following
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Theorem 2.1. If φ(t, t0, x0) = (x1(t), . . . , xn(t)) is a chaotic orbit to
(2.1) with the initial point x0, then there exist at least three components
of φ with the property that all of them possess an infinite number of zero
points. Here a zero point for xi(t) means a time value s ∈ R such that
ẋi(s) = 0.

Proof. Suppose that this is not the case. Then it can be assumed,
for simplicity, that the components x1, (t), . . . , xn−2(t) have just a finite
number of zero points. In this case it is easy to see that there exists a
T > 0 such that for t > T ,

ẋi(t) 6= 0, i = 1, 2, . . . , n− 2.

On the other hand, due to the boundedness of the orbit φ(t, t0, x0) =
(x1(t), . . . , xn(t)), the ω-limit set ω(x0) is a nonempty compact set in Rn.
For a point p ∈ ω(x0), there exists a sequence ti →∞ such that

lim
i→∞

φ(ti, t0, x0) = p = (p1, p2, . . . , pn).

Now ẋi(t) 6= 0 for t > T , 1 ≤ i ≤ n − 2, therefore xi(t) is increasing
or decreasing. In either of these cases, one has xi(t) → pi as t → ∞,
1 ≤ i ≤ n− 2. It follows that φ(ti, t0, x0) approaches the two-dimensional
pane x1 = p1, . . . , xn−2 = pn−2. Since chaotic behavior cannot occur on
a two-dimensional space in case when the system is described by ODE,
the above arguments show that φ(t, t0, x0) is not chaotic, leading to a
contradiction. ¤

More generally, one has the following

Theorem 2.2. Let φ(t) = φ(t, t0, x0) be a chaotic orbit to (2.1) con-
tained in a compact region B, then there are at most n − 3 functions
F1, . . . , Fm ∈ c2[B,R] which are functionally independent
(i.e., Rank ∂(F1, . . . , Fm) = m) such that every equation

dFj(φ(t))
dt

= 0, 1 ≤ j ≤ m

possesses only a finite number of zero points.

Proof. Suppose that there exist more than n − 3 functionally in-
dependent functions F1, . . . , Fm ∈ c2[B,R] defined on B such that every
equation

dFj(φ(t))
dt

= 0
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has a finite number of zero points, then there exists a number T > 0 such
that

dFj(φ(t))
dt

6= 0, j = 1, . . . , m

for t > T .
On the other hand, the chaotic behavior of φ(t) means that φ(t) is

bounded, so every Fj(φ(t)) has a finite limit value ci as t → ∞, due
to the monotonicity for t > T . Therefore φ(t) approaches the level set
F−1(c), where F = (F1, . . . , Fm), c = (c1, . . . , cm). Because of functional
independence of F = (F1, . . . , Fm) on B, c = (c1, . . . , cm) is a regular
value of the map F , and this means that the level set F−1(c) is a manifold
of less than three dimensions. Because chaotic behavior cannot occur on
a manifold of less than three dimensions, one gets a contradiction, thus
completing the proof. ¤

3. Nonchaotic conditions for three-dimensional dynamical systems

For three-dimensional dynamical systems described by ODE, we can
present more detailed results on nonchaoticity.

Consider the system

(3.1)





ẋ1 = f1(x1, x2, x3)

ẋ2 = f2(x1, x2, x3)

ẋ3 = f3(x1, x2, x3).

We first have the following

Theorem 3.1. Suppose that one of the fi’s is of the form

fi = xig(x1, x2, x3),
and

fj 6= 0 for xi 6= 0, j 6= i,

then the system (3.1) does not exhibit chaotic behavior.

Proof. It is easy to see that the plane xi = 0 is an invariant man-
ifold of (3.1), therefore it is enough to consider the case when the orbit
φ(t) is not contained in this plane; this implies that the orbit φ(t) has a
component xi(t) 6= 0 which consequently means that ẋj(t) 6= 0. In view of
Theorem 2.1, φ(t) is not chaotic. This completes the proof. ¤



4 Xiao-Song Yang

Theorem 3.2. If there exists a c1-function V (x) defined on R3 satis-

fying

(3.2) grad V (x) • (f1, f2, f3) ≤ 0 (≥ 0),

and the set of critical points of V consists of isolated points, curves or

surfaces, then (3.1) is not chaotic.

Proof. Let φ(t) be a nontrivial orbit to (3.1). The inequality (3.2)
guarantees that the function V (φ(t)) is monotonously decreasing or in-
creasing, therefore V (φ(t)) has a limit −∞ < c < ∞ or c = ±∞. In the
first case, φ(t) is contained in the level set V −1(c) and consequently cannot
be chaotic. In the later case, φ(t) is an unbounded orbit. Therefore no
chaotic behavior occurs in (3.1). ¤

Similarly, it is easy to prove the following

Theorem 3.3. Suppose that there exists an invariant manifold M to

(3.1) and a c1-function V (x) defined on R3 such that

gradV (x) • (f1, f2, f3) 6= 0, x /∈ M,

then (3.1) is not chaotic.

Consider the third order dynamical system

(3.3)
...
x = f(x, ẋ, ẍ).

We have the following

Corollary 3.4. If f is of the form

(3.4) f = ẍg(x, ẋ, ẍ)

then (3.3) is not chaotic.

Proof. Rewrite (3.3) as

(3.5)





ẋ = y

ẏ = z

ż = f(x, y, z).

By (3.4) one has f = zg(x, y, z). In view of Theorem 3.1, one gets the
conclusion. ¤
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4. Examples

In this section we discuss by means of the above results a few quadratic
dynamical systems which [4] failed to cope with.

Example 4.1. Consider the following system:

(4.1) ẋ = xy + y2, ẏ = z, ż = x.

Statement 4.1. The system (4.1) does not exhibit chaotic behavior.

This assertion is not as easy to prove as may be expected, and it needs
delicate analysis as seen in the following

Proof. It is easy to see that the trivial orbit to (4.1) is just the
equilibrium point O = (0, 0, 0). The proof consists of three steps.

Step 1. Let φ(t) = (x(t), y(t), z(t)) be a nontrivial orbit of (4.1).
Suppose that x(t∗) = 0 and y(t∗) = 0, then t∗ is the simple zero point of
y(t). If this is not the case, then there exists a sequence ti → t∗ as i →∞
such that y(ti) = y(t∗) = 0. It follows that

ẏ(t∗) = lim
i→∞

y(ti)− y(t∗)
ti − t∗

= 0.

This means by virtue of the third equation of (4.1) that z(t∗) = 0. Keeping
in mind that x(t∗) = 0 and y(t∗) = 0, we see that φ(t) = (x(t), y(t), z(t))
should be the trivial orbit, leading to a contradiction.

Step 2. Suppose that x(t∗) = 0 and y(t∗) = 0, then

(4.2) x(t) = o(y(t)), as t → t∗.

In fact, from

lim
t→t∗

x(t)
y(t)

= lim
t→t∗

ẋ(t)
ẏ(t)

= lim
t→t∗

x(t)y(t) + y2(t)
z(t)

and the nontriviality of φ(t) = (x(t), y(t), z(t)) that means z(t∗) 6= 0, we
can see that

lim
t→t∗

x(t)
y(t)

= 0,

thus obtaining the statement.
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Step 3. Now we show that if x(t∗) = 0 for some t∗ > 0, then x(t) > 0
for t > t∗.

There are two cases to be discussed.
Case i: y(t∗) 6= 0. In this case, ẋ(t∗) = y2(t∗) > 0. Now suppose

that there exists another t# > t∗ such that x(t#) = 0 and x(t) > 0
for t ∈ (t∗, t#), then an elementary analysis shows that there exists a
neighborhood (s, t#] such that

(4.3) ẋ(t) ≤ 0, t ∈ (s, t#).

If y(t#) 6= 0, then ẋ(t#) = y2(t#) > 0, contradicting (4.3). If y(t#) = 0,
then by (4.2) and Step 1, there exists a neighborhood of t#, A, such that

ẋ(t) = x(t)y(t) + y2(t) > 0, t ∈ A− {t#}.

In particular, we have

ẋ(t) > 0, t ∈ A ∩ (s, t#),

which again is leading to a contradiction with (4.3). Therefore no such t#

exists.
Case ii: y(t∗) = 0. In this case, again by (4.2) and Step 1, there exists

a neighborhood of t∗, B, such that

ẋ(t) = x(t)y(t) + y2(t) > 0, t ∈ B − {t#}.

It follows from this inequality that there exists an s ∈ B such that x(s) > 0.
Now suppose that there exists s# > s, such that x(t) 6= 0 for t ∈ [s, s#)
and x(s#) = 0, then there exists a s∗ ∈ [s, s#) such that

ẋ(t) ≤ 0, t ∈ (s∗, s#].

Now, by the same arguments as in Case i, we come to the conclusion that
no such s# exists.

In view of all the above arguments, it is easy to see that x(t) > 0 for
t large enough. By Theorem 2.1, we see that φ(t) is not chaotic. Thus,
because φ(t) can be arbitrary, the systems considered are not chaotic. ¤
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Example 4.2. Consider the following system:

(4.2) ẋ = x2 + xy, ẏ = yz, ż = x.

Statement 4.2. The system (4.2) is not chaotic.

Proof. Noting that the plane x = 0 is an invariant manifold of (4.2),
one gets the conclusion by virtue of Theorem 3.1. ¤

Example 4.3. Consider the following system:

(4.3) ẋ = xy + xz, ẏ = xy, ż = y.

Because the plane y = 0 is an invariant manifold of (4.3), it is easy to
get the following statement in view of Theorem 3.1:

Statement 4.3. System (4.3) does not exhibit chaotic behavior.

5. Conclusion

To develop some methods for detecting whether a dynamical system
is chaotic or nonchaotic is a significant and very interesting topic which
deserves much investigation. In this paper we present some criteria that
are not difficult but efficient in coping with a class of dynamical systems
described by ODE, and this is verified by successful application to the
problem of nonchaoticity of quadratic systems posed in [4]. It is expected
that more efficient methods and techniques will be developed in the near
future.
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