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A conjecture of Erdős concerning inequalities
for the Euler totient function

By A. GRYTCZUK (Zielona Góra),

F. LUCA (Morelia) and M. WÓJTOWICZ (Zielona Góra)

Abstract. We partially confirm a conjecture of Erdős concerning inequalities
between φ(n) and φ(n− φ(n)), where φ is the Euler totient function.

1. Introduction

For any positive integer n let φ(n) be the Euler φ function of n. Let
%(M) denote the density (if it exists) of a nonempty subset M of the set
of all positive integers N, i.e.,

%(M) = lim
n→∞

#{m ∈ M : m < n}
n

;

the lower density of M is defined as

%∗(M) = lim inf
n→∞

#{m ∈ M : m < n}
n

.

We say that a property (P ) defined on N holds for almost all n if ρ(MP )=1,
where MP = {n ∈ N : n satisfies (P )}.

In [1] (see also B42 in [3]), Erdős asks us to prove that φ(n) > φ(n−
φ(n)) for almost all n, but that φ(n) < φ(n− φ(n)) for infinitely many n.
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Let us partition the set of all positive integers N in three pairwise
disjoint classes, namely:

A = {n ∈ N∗ : φ(n) > φ(n− φ(n))};
B = {n ∈ N∗ : φ(n) = φ(n− φ(n))};
C = {n ∈ N∗ : φ(n) < φ(n− φ(n))}.

Then the Erdős conjecture takes the form
(EC1) we have %(A) = 1, and
(EC2) #(C) = ℵ0;

in particular, the sets A and C are infinite. It is easily seen that the set B
is infinite because it contains the numbers of the form n = 2k3 and that
the sets A and C are infinite follows from our theorems presented below.
In Theorem 1 we partially confirm (EC1) by proving that ρ∗(A) ≥ 0.54,
while in Theorem 3 we prove a stronger version of (EC2) by showing that
φ(nk)+2k ≤ φ(nk−φ(nk)) for some infinite sequences of positive integers
(nk)∞k=1. Theorem 2 completes Theorem 1 by indicating a “nice” infinite
subset of A. It seems likely that the claim that C is infinite to be already
known but we could not find any reference to this fact.

2. The results

Let A, B and C be the sets defined in previous section. We say that
a number n satisfies relation (A) (or (B), or (C)) if n ∈ A (or n ∈ B, or
n ∈ C).

While we are not able to confirm (EC1), we can at least show that
“more” integers satisfy inequality (A) than inequalities (B) and (C) to-
gether. That is, we have the following result.

Theorem 1. We have %∗(A) ≥ 0.54.

Proof. We begin with the following considerations:
(i) If n is odd and φ(n) ≥ n/2, then n satisfies (A);
(ii) If n > 2 is even and φ(n) > n/3, then n satisfies (A).
To see why (i) holds, notice that if n is odd and φ(n) ≥ n/2, then the
above inequality is, in fact, strict. Now,

φ(n− φ(n)) ≤ n− φ(n) < φ(n),
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so n satisfies (A).
Assume now that n satisfies (ii). Since n > 2, it follows that φ(n)

is even. Since n is even as well, it follows that n − φ(n) is even. Since
φ(k) ≤ k/2, whenever k is even, it follows that

φ(n− φ(n)) ≤ n− φ(n)
2

< φ(n),

where the last inequality follows from the fact that φ(n) > n/3.
It now remains to “count” all positive integers satisfying either (i) or

(ii). We use the method outlined in [2].
Let x be an arbitrary positive real number. Let

(1) B0(x) = {n < x : n odd and φ(n) < n/2}.

For any s ≥ 1, let

(2) Bs(x) = {n < x : n = 2sm with m odd and φ(m) ≤ 2m/3}.

Notice that Bs(x) is empty when s > log2(x). Moreover, notice that if
n < x is such that n does not satisfy either (i) or (ii), then

(3) n ∈
⋃

0≤s≤log2(x)

Bs(x).

We now bound the cardinality b(x, s) of Bs(x) in terms of s and x. Set

T (x, s) =
∏
n<x
2s‖n

φ(n/2s)
n/2s

,

and let c(i) be the function (over the nonnegative integers N∪{0}) defined
by c(0) = 2 and c(i) = 1.5 for i > 0, then, by the definition of Bs(x), we
have

(4) T (x, s) ≤ c(s)−b(x,s).

Since φ(n)/n =
∏

p|n(1 − 1/p) and since for n ∈ Bs(x) we have n/2s <

x/2s, it follows that

(5) T (x, s) ≥
∏

3≤p<x

(
1− 1

p

) 1
2 ( x

2sp +1)

.



12 A. Grytczuk, F. Luca and M. Wójtowicz

From inequalities (4) and (5), we get

(6) b(x, s) log c(s) ≤ 1
2
· x

2s

(
S0 − log 2

2

)
+

1
2
S1,

where
S0 =

∑

p≥2

1
p

log
(
1 +

1
p− 1

)
< 0.58007

and
S1 =

∑

3≤p≤x

log
(
1 +

1
p− 1

)
.

Since
log

(
1 +

1
p− 1

)
<

1
p− 1

and since ∑

3≤p≤x

1
p− 1

= O(log log x),

it follows that

(7) b(x, s) log c(s) <
x

2
· 1
2s

(
S0 − log 2

2

)
+ C log log x,

where C is a constant. When s = 0, we get

(8)
b(x, 0)

x
<

1
2 log 2

(
S0 − log 2

2

)
+ o(x).

For s ≥ 1, we sum up inequalities (7) for all s ≤ log2(x) and use the fact
that ∑

s≥1

1
2s

= 1,

to get

(9)
1
x

∑

s≥1

b(x, s) <
1

2 log 1.5

(
S0 − log 2

2

)
+ o(x).

Now let
b(x) =

∑

s≥0

b(x, s).
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From formulae (8) and (9), we have

lim sup
x→∞

b(x)
x

≤ 1
2

( 1
log 2

+
1

log 1.5

)(
S0 − log 2

2

)
< 0.45637.

This implies that the lower density of the set of all numbers satisfying
either (i) or (ii) (and, hence, (A)), is at least

1− 0.45637 > 0.54.

Theorem 1 is therefore completely proved. ¤
In the next theorem we show that, in the context of the above result,

the set A is not only large, but it contains a “regular” infinite subset as
well. We give two independent proofs of this fact, i.e., a combinatorial and
an arithmetical one.

Theorem 2. If n > 2 is such that the odd part of n is squarefull, then
n satisfies inequality (A).

First proof. Notice that since n > 2, it follows that φ(n) is even.
Moreover, since the odd part of n is squarefull, it follows that every prime
number dividing n (including also 2 if n is even) divides φ(n) as well.
In particular, all primes dividing n divide also n− φ(n). Now notice that
φ(n−φ(n)) counts the number of all numbers < n−φ(n) which are coprime
to n−φ(n); in particular, to n. Hence, φ(n−φ(n)) ≤ φ(n). The inequality
is strict because since φ(n) > 1, it follows that n− 1 is a number which is
coprime to n and is larger than n− φ(n) (hence, n− 1 is counted by φ(n)
but not by φ(n− φ(n))). ¤

Second proof. Let n = 2α
∏r

j=1 p
αj

j , where pj ’s are pairwise dis-
tinct odd primes, αj ≥ 2, r ≥ 1, and α ≥ 0. We shall consider the case
α ≥ 1 and r ≥ 2, since it can be checked directly that every number
n = 2αpβ , with p odd prime, α ≥ 1 and β ≥ 2, satisfies inequality (A),
while for α = 0 the proof is similar to the one presented below. We have

(10) n− φ(n) = 2α(x− y)
r∏

j=1

p
αj−1
j ,

where

(11) x =
r∏

j=1

pj and y = (1/2)
r∏

j=1

(pj − 1).
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Let S denote the (possibly empty) set {j ≤ r : pj divides x − y}. From
(11) we get

(12) x− y =
∏

j∈S

p
βj

j ·
t∏

k=1

Qγk

k ,

where βj ≥ 1, t ≥ 0, γk ≥ 1, and where Qk are odd primes with Qk 6= pj

for all indices j ≤ r, k ≤ t. Now, from (10), (11) and (12) we obtain

φ(n− φ(n)) = 2α−1
∏

j∈S

p
αj+βj−2
j

∏

j /∈S

p
αj−2
j

r∏

j=1

(pj − 1)
t∏

k=1

Qγk−1
k (Qk − 1)

=
φ(n)

x

∏

j∈S

p
βj

j

t∏

k=1

Qγk−1(Qk − 1) < φ(n)
x− y

x
< φ(n).

Theorem 2 is therefore proved. ¤
The last theorem deals with the problem (EC2) and inequality (C).

We prove that a sharper inequality than Erdős conjectured holds for in-
finitely many n’s.

Theorem 3. Let m be an odd positive integer with (3,m) = 1 and
such that the number p defined by the rule

(13) p = 3m− φ(m)

is prime. Then m is squarefree and for every positive integer k the number
n := 2k3m satisfies inequality

(14) φ(n− φ(n)) ≥ φ(n) + 2k.

Remark 1. The set of the solutions of equation (13) is nonempty. If
m = q is a prime number, then p is of the form p = 2q + 1, i.e., it is a
Sophie Germain’s prime ([4], p. 261) with q ≥ 5. Notice that in this case
(14) is, in fact, an equality. If m = q1q2 with q1, q2 ≥ 5 different primes,
then p is of the form p = 2q1q2 + q1 + q2 − 1. It is easy to check that the
least prime number p of this form is 191, obtained for q1 = 5 and q2 = 17.

Proof of Theorem 3. Let m = pα1
1 · . . . · pαr

r , where p1, . . . , pr are
distinct primes, r ≥ 1, and α1, . . . , αr ≥ 1. If m satisfies equality (13),
then we easily obtain that α1 = · · · = αr = 1, i.e., m is squarefree.
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If k is a positive integer, then for the number n = 2k3m we have

(15) φ(n) = 2kφ(m),

and hence n− φ(n) = 2k(3m− φ(m)) = 2kp. It follows that

(16) φ(n− φ(n)) = 2k−1(p− 1).

From (15) and (16) it follows that to prove inequality (14) it is enough to
show that

(17) p− 1 ≥ 2(φ(m) + 1).

This inequality follows easily from the obvious inequality 3(m−φ(m)) ≥ 3
and from (13).

Theorem 3 is therefore completely proved. ¤
Remark 2. The set C contains other sequences of positive integers

which do not arise as particular cases of Theorem 3. For example, when
n = 2k · 3 · 5 · 11 one gets that

(18) φ(n) = 2k+3 · 5,

and

(19) φ(n−φ(n)) = φ
(
2k ·3·5·11−2k+3 ·5)

= φ
(
2k ·5·(33−8)

)
= 2k+1 ·52.

From formulae (18) and (19), it is easily seen that n ∈ C. On the other
hand, n = 2k · 3 ·m, where m = 55 does not satisfy condition (13).

Remark 3. It is clear that

lim sup
n→∞

φ(n)− φ(n− φ(n))
n

= 1.

Indeed, it suffices to tend to infinity in the above expression through prime
values of n. On the other hand, taking n = 2k3m, where m satisfies equal-
ity (13), and tending to infinity through the powers of 2, from Theorem 3
we get

(20) lim inf
n→∞

φ(n)− φ(n− φ(n))
n

≤ φ(m)
2m

+
1

6m
− 1

2
.

In particular, for m = 5 the right side of (20) equals −1/15. Can one find
the exact value of the lim inf above?
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