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On the total curvature of hypersurfaces in
negatively curved Riemannian manifolds

By ALBERT BORBELY (Safat)

Abstract. The total curvature of hypersurfaces is estimated in certain Hadamard
manifolds.

0. Introduction

Let M™ be an n-dimensional Hadamard manifold, that is, a simply
connected manifold with nonpositive sectional curvature and F' be an n—1-
dimensional smooth immersed hypersurface. Denote by A, : T, F — T,F
the shape operator of F' at ¢ € F' and set K(q) = det A,. It is well defined
up to sign and when M is the Euclidean space it is called the Gauss-
Kronecker curvature. We adapt the same name for K in a Hadamard
manifold although it is no longer an intrinsic quantity of the hypersurface.

It is well known that in case M is the Euclidean space and F' is
compact we have

VOI(S”_l)degS—/ K,
F

where S denotes the Gauss map of F. As a consequence we also have

(1) /F|K > Vol(S™ 1.

This remains true for a general Hadamard manifold in dimensions
n = 2,3 as a result of the Gauss—Bonnet theorem. It seems natural to
expect that the above statement will hold in higher dimensions as well.
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There is another important motivation for trying to show that (1) is
satisfied for a general nonpositively curved manifold. This is the so called
isoperimetric conjecture (see [3], [4]).

Isoperimetric Conjecture. Let M" be a Hadamard manifold and
D C M™ be a compact domain with smooth boundary. Then it satisfies
the Fuclidean isoperimetric inequality:

area(9D) > d,,(vol(D))" =,

where d,, = area(S"~1)/(vol(B™)) "% .

This is now settled in dimension 4 by [3] and in dimension 3 by [4]. In
fact, the main part of the proof in [4] is to show how (1) implies the isoperi-
metric inequality. Although, it was carried out in dimension 3 only, it is
very likely (and is explicitly mentioned in [4]), that it generalizes to higher
dimensions. This means that a possible way of proving the isoperimetric
conjecture is to establish (1) for a general Hadamard manifold.

The goal of this paper is to prove inequality (1) in certain situations,
thereby making a case for the validity of (1) for a general Hadamard man-
ifold. We have the following theorem.

Theorem 1. Let M"™ be a Hadamard manifold which is rotationally
symmetric at p € M™ and p € E C M™ be an open subset with compact
closure and a smooth boundary. Then we have

() /8 K| = Val(s" ),

where K denotes the determinant of the shape operator of the boundary.
If equality occurs, then E is flat, that is, E is isometric to a subset of
the Euclidean space.

Since the n-dimensional hyperbolic space H" is rotationally symmet-
ric at any of its point we have the following corollary.

Corollary 1. Let F' be a closed (n — 1)-dimensional manifold and
F — H"™ be an isometric immersion. Then

/ |K| > Vol(S™™1).
F



Total curvature of hypersurfaces 19

There are several natural questions related to inequality (1’) which
could be studied in the context of general Hadamard manifolds. For ex-
ample, it seems natural to expect that Theorem 1 holds in general. One
might also try to generalize results of CHERN and LASHOF [2] to Hadamard
manifolds.

Although, we have precise results about certain integrals on hyper-
surfaces due to Chern (the curvature integra [1]) the generalized Gauss—
Bonnet—Chern theorem does not seem to help in higher dimension (at least
not in an obvious way).

1. Rotationally symmetric manifolds

Let M™ be a rotationally symmetric Hadamard manifold at p € M™.
We use the conformal model for M, that is, we think of M"™ as an open
Euclidean ball around p (possibly the whole R™) equipped with the metric:

(2) ds® = f(r)%dsh,  f(0)=1,

where dsg denotes the natural metric of the underlying Euclidean space
and r denotes the Euclidean distance from p.

We call a two-dimensional submanifold a radial plane if it is a radial
plane in the underlying Euclidean space. It is obviously true that:

Claim 1. Every radial plane is totally geodesic.

We also need the following. Let Z(p) € T, M™ be a unit tangent vector
and denote by Z the vector field which we obtained from Z(p) by parallel
translation along geodesics from p.

Claim 2. The orthogonal distribution Z+ is integrable and the inte-
gral manifolds are hyperplanes in the Euclidean sense.

PROOF. Denote by Z the vector field on M™ which is parallel in the
Euclidean sense and Z(p) = Z(p). From the special form of the metric one
can easily deduce that

1 =
Z=—7
f(r)
Since Z7t is obviously integrable and Z+ = Z1 the claim follows. U

Denote by H the family of integral manifolds of Z+. We are going
to show that every hypersurface of Hz has a definite 2nd fundamental
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form. More precisely, let ¢ € M™ be an arbitrary point different from p
and denote by H, the integral manifold of Z+ passing through g. Denote

by R the radial unit vector field (R = f(lT) ) defined on M™ — {p}. Then

we have:

Proposition 1. If (Z, R) > 0 at g, then the 2nd fundamental form of
H, at g with respect to the normal field Z is positive semi-definite.

PRrROOF. Let T'(q) be a unit tangent vector tangent to H, at ¢. We
need to show that (VyZ,T) > 0. Denote also by T the vector field de-
fined on the geodesic segment [pq] which is obtained from 7'(gq) by parallel
translation. Now, we have two globally defined unit vector fields Z and R
(actually R is defined only on M™ — {p}) and a unit vector field T" defined
only on the geodesic segment [pq].

The following computation takes place along the geodesic segment
[pq] — {p}. Since VRZ is zero on M™ — {p} and T is parallel along [pq] we
have

B)  R(V2Z,T)=(VeVrZT) = R(T,R)Z,T) = (Vir,p 2, T),

where R is the curvature tensor.

Let us decompose Z = aR + bT + Z; along [pq] — {p}, where a, b are
constants (since Z, T, R are all parallel along [pq] —{p}) and Z; is a vector
field along [pq] — {p} orthogonal to the two-plane determined by R and T
Since we assumed that (Z, R) > 0 a simple computation shows that a > 0.
Indeed, write

0<(Z,R)=a+0b(T,R)

and
0=(Z,T) =a(R,T) + 0.

Observing that T', R are unit vectors, the claim follows by substituting the
expression for b into the first inequality.

We can also write [T, R] along [pg] — {p} in the form [T, R] = ¢(r)T +
d(r)R. We will need the fact that ¢(r) > 0. Indeed, we have [T, R] = V1R
since VRT = 0 on [pq] — {p}. Write T' = T" 4+ dR along [pq] — {p},
where T” is orthogonal to R and d is some constant since Z, R are parallel
along [pq] — {p}. The shape operator of every ball centerd around p is
a positive multiple of the identity operator, therefore we have VR =
ViR = a(r)T’, where a(r) > 0. Taking into account that 77 =T — dR
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the fact follows. Since radial two-planes are totally geodesic (Claim 1) the
curvature term (R(7T, R)Z;,T) = 0 and (3) becomes

(4) R(V7Z,T) = a(R(T, R)R, T) — c(r) (V1 Z,T).

This is an ordinary differential equation for (V1 Z,T') along the geo-
desic segment [pg] — {p}. Since Z is a globally defined smooth vector field
(VrZ,T) is defined and is differentiable on the whole of [pg] with initial
value 0 at p. Since a(R(T, R)R,T) > 0 and ¢(r) > 0 the solution has to
be also non-negative. This concludes the proof of the proposition. (|

2. Proof of Theorem 1

We will need an elementary fact from linear algebra. Let C, D be two
positive definite matrices such that C' < D, that is, (CX,X) < (DX, X)
for every X. Then det(C) < det(D). This follows from Hadamard’s
inequality which states: for a positive definite matrix C' = [¢;;] we have
det(C) < e11¢92 - ...+ cpp. Equality occurs if and only if C' is a diagonal
matrix.

The method of the proof of Theorem 1 is the same as in the Euclidean
case. We are going to estimate the determinant of the Gauss map.

Let p € int E and let Z(p) € T, M™ be an arbitrary unit tangent vector
at p. As before we construct the vector field Z and the family of integral
manifolds Hz. If we think of M"™ as a Euclidean ball equipped with the
metric (2) it is clear from previous remarks (Claim 2) that Hyz is a family
of parallel hyperplanes in the Euclidean sense. Let H be the supporting
hyperplane of the set E such that E lies completely on one side of H and
the outward unit normals at the intersection H N JF are the same as the
corresponding values of the vector field Z. Set Fz = HNOE # ) and let
F be the union of F for all unit vectors Z € T,M™. Then F' C OF and
we are going to show that

/ K| > Vol($™1).
F

This clearly implies Theorem 1.
Let G : TM™ — T,M"™ be the map defined by parallel translating
vectors in T, M™ to T, M™ along the geodesic segment [gp]. This is clearly
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a differentiable map on T'M™ which is linear on the fibers T; M". Denote
the restriction of G, to T,M" by G4, : T,M"™ — T,M™.

For ¢ € OF denote by N(q) the outer unit normal and define the
map S : OF — T,M™ by S(q) = G,(N(g)). This may be regarded as the
generalization of the Gauss map. Then dS : TOE — TS"! Cc T,M",
where S™~1 denotes the unit sphere in 7, M™.

Let ¢ € F be an arbitrary point. From the construction of F' we
know that there exists a unit vector Z(p) € T,,M™ such that the integral
manifold H, of the distribution Z L at ¢ is tangent to OF, E lies completely
on one side of H, and the outward normal of OF coincides with Z at q.
Here Z, as before, denotes the vector field obtained from Z(p) by parallel
translation along geodesics.

We are going to express dS in terms of the covariant derivatives. Let
T € T,OF be a unit vector and « : [0,€) — JF be a curve emanating from
g with 4/(0) = T'. Then

dS(T) = lim Gp(N(v(®))) = Gp(N(@) _ . G, <N(7(t)) - Z(y(t)))

t—0 t t—0

. N

=G <}1—I3% t

If we identify the tangent spaces T, M"™ and T, M™ via the isometry
Gpq, then G;pl odS :T,0F — T,0F is a symmetric map and

Gy 0dS(T)=Vy(N —Z)=V¢N - VrZ.

The terms on the right hand side are the shape operators of 0F and H,
at ¢ which we denote by A, and By, respectively. Since H, “envelops”
OF at ¢, that is, OF lies completely on one side of H, and they have
a common normal at ¢ we conclude that A, > B, in the sense that for
every T' € T,H = T,0F we have (A,/T,T) > (B,T,T). This implies that
Gq_pl o dS is positive semi-definite. Since p € int ¥ from the construction
of H, it is clear that (R,Z) > 0 at ¢. Taking into account Proposition 1
we conclude that B, > 0, therefore

-1
0< G, odS < A,
From Hadamard’s inequality one can easily get

0 < det(dS) < det(A,) = |K].
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Since the Gauss map S : FF — S™~! is onto it implies

Vol(S”1)§/Fdet(d5)§/F|K|§/8E|K|.

This concludes the proof of the inequality.

If equality occurs, then det(dS) = det(A) at every point of F. Let
q € OF be a point where dist(p, ¢) is maximal. We will show that ¢ must
belong to the set F'. Let H, denote the supporting hyperplane (in the
Euclidean sense) of E at the point ¢. Since the metric is rotationally
symmetric and the dist(p, ¢) is maximal, we conclude that the set E must
lie on completely one side of H, and from the definition of F' the claim
follows.

Clearly, the shape operator A, at ¢ is positive definite and from the
equality case of Hadamard’s inequality we conclude that A, = dS at g.
This implies that H is flat at ¢ (B, = 0), that is, all the principal curvatures
of H are zero at q. The vector fields Z and R introduced in the proof
of Proposition 1 are equal at ¢, which means that @ = 1 in (4). Since
(VrZ,T) = 0 at p and at ¢ from the differential equation (4) we obtain
that (VrZ,T) = 0 on [pq], which implies that (R(T, R)R,T)) = 0 along
the geodesic segment [pq|. Since T' € T,0F was arbitrary, we conclude that
the radial sectional curvatures along [pq| are zero. Taking into account the
rotational symmetry we see that all the radial sectional curvatures are zero
and since they completely determine the metric the theorem follows. [
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