On osculation and system of connections

By L. KOZMA (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

The aim of this paper is to give a relationship of between current notions of connection theory, namely, those of osculation and system of connections.

The osculation method comes from Finsler connection theory. O. VARGA [Va] used this for introducing Cartan's connection in a Finsler space. Then A. Moór [Moór] generalized this method for the connections of the line element bundle, and recently [Koz] for arbitrary pull back bundles, thus a series of special cases can be considered at the same time. In Finslerian studies the recent paper of M. Matsumoto [Mat2] has given a new perspective for the notion of osculation. The osculation means that a connection in a pull back bundle is approximated along a fixed section by a connection for the base bundle in such a way that their geodesic curves have a contact of second order (for the case of tangent bundles).

A system of connections is, roughly speaking, a set of connections characterizable with parameters of finite number. This notion and that of a universal connection is a generalization [Mod] of the investigations for principal connections made by P.L. Garcia [Gar1]. This was utilized for gauge theory [Gar2] as well, and by means of it some information can be gained on the properties of the underlying bundle, too [Can, Del]. A detailed exposition of this theory can be found in [Mod, Cab].

Now, we can regard in a natural way the set of all osculating connection ($H^{\sigma}, \sigma \in \operatorname{Sec} \xi_{1}$) of a connection H^{*} for the pull back bundle $\pi_{1}^{*}\left(\xi_{2}\right)$, and ask whether this set is a system of connections, or not. The answer is only partially affirmative. ($H^{\sigma}, \sigma \in \operatorname{Sec} \xi_{1}$) is a system of connections iff the v-horizontal part of H^{*} is trivial. (See Theorem 3.)

1. Basic notions and notations

Manifolds, functions and maps are of class C^{∞} as usual. $\xi=$ (E, B, π, F) denotes a vector bundle with a finite dimensional real fibre type F, a base manifold B, a total space E ($n+r$ dimensional), and a projection $\pi: E \rightarrow B$. Sec ξ denotes the set of all differentiable sections of ξ. When $f: M \rightarrow B$ is a map, $f^{*}(\xi)$ denotes the pull back bundle whose total space is $M \times_{B} E=\{(m, z) \mid m \in M, z \in E, f(m)=\pi(z)\}$ and its projection is $p r_{1}: M \times_{B} E \rightarrow M$. Then the second projection $p r_{2}: M \times_{B} E \rightarrow E$ is bundle map with the property that its restriction on a fibre of $f^{*}(\xi)$ is a linear isomorphism. $V_{z} E$ is the kernel of $(d \pi)_{z}: T_{z} E \rightarrow T_{\pi(z)} B$. Then the vertical bundle $V \xi=\left(V E, E, \pi_{V}, F\right)$ is a subbundle of τ_{E}, and isomorphic to $\pi^{*}(\xi)$. The latter isomorphism is described as follows: $\varepsilon: \pi^{*}(\xi) \rightarrow V \xi$ $\varepsilon\left(z_{1}, z_{2}\right)=$ the tangent of the curve $z_{1}+t z_{2}$ at 0 , where $z_{1}, z_{2} \in E$ with the property $\pi\left(z_{1}\right)=\pi\left(z_{2}\right)$.

By a connection of ξ we mean a splitting $H: \pi^{*}\left(\tau_{B}\right) \rightarrow \tau_{E}$ of the short exact sequence

$$
\begin{equation*}
0 \rightarrow V \xi \xrightarrow{\iota} \tau_{E} \xrightarrow{\widetilde{d \pi}} \pi^{*}\left(\tau_{B}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

where $\widetilde{d \pi}: \tau_{E} \rightarrow \pi^{*}\left(\tau_{B}\right)$ is given by $\widetilde{d \pi}(A)=\left(\pi_{E}(A), d \pi(A)\right)$ for $A \in T E$. H is also called a horizontal map, and its images $H_{z} E=\left.\operatorname{Im} H\right|_{\{z\} \times T_{\pi(z)} B}$ are the horizontal subspaces which are complementary to the vertical subspaces: $\tau_{E}=V \xi \oplus H \xi$. Let $\varphi: I \rightarrow B$ a curve in the base space. A section $\sigma \in \operatorname{Sec} \xi$ is called parallel along φ if $d \sigma(\dot{\varphi})$ are horizontal vectors, where $\dot{\varphi}$ denotes the tangent of φ. This means that $H(\sigma \circ \varphi, \dot{\varphi})=d \sigma(\dot{\varphi})$. From the elementary calculus it follows that for a given curve φ and a vector z in $E_{\varphi(0)}$ there exists - at least locally - a section σ which is parallel along φ and $z=\sigma(\varphi(0)) . \sigma(\varphi(t))$ is called the parallel transport of z along φ, and denoted by $P_{\varphi}(t, z)$. The covariant derivation $\nabla: \mathcal{X}(B) \times \operatorname{Sec} \xi \rightarrow \operatorname{Sec} \xi$ is given as $\nabla_{X} \sigma=\alpha(v(d \sigma(X)))$ for all $X \in \mathcal{X}(B), \sigma \in \operatorname{Sec} \xi$, where $\alpha=p r_{2} \circ \varepsilon^{-1}: V \xi \rightarrow \xi$, and v is the vertical projection.

Denote $\mu_{t}: E \rightarrow E$ the multiplication by $t \in R$ in the fibres of ξ. The homogeneity condition for a horizontal map H says as

$$
\begin{equation*}
H\left(\mu_{t}(z), v\right)=d \mu_{t}(H(z, v)) \tag{2}
\end{equation*}
$$

holds for all $z \in E, v \in T B$ and $t \in R$. When H satisfies (2) and is differentiable anywhere, then we get a linear connection. It is important that for a linear connection the parallel transport exists along the entire curve φ, and is linear.

2. Osculation of connections for $\pi_{1}^{*}\left(\xi_{2}\right)$

Let $\xi_{1}=\left(E_{1}, B, \pi_{1}, F_{1}\right)$ and $\xi_{2}=\left(E_{2}, \pi_{2}, B, F_{2}\right)$ be two real vector
bundles with finite rank over the same base manifold B. Consider a connection H^{*} of the pull back bundle $\pi_{1}^{*}\left(\xi_{2}\right)$, i.e. a splitting $H^{*}: p r_{1}^{*}\left(\tau_{E_{1}}\right) \rightarrow$ $\tau_{E_{1} \times_{B} E_{2}}$ of the next short exact sequence

$$
0 \rightarrow V \pi_{1}^{*}\left(\xi_{2}\right) \rightarrow \tau_{E_{1} \times_{B} E_{2}} \rightarrow p r_{1}^{*}\left(\tau_{E_{1}}\right) \rightarrow 0
$$

Let $\sigma \in S e c \xi_{1}$ be a fixed section. Then the map

$$
H^{\sigma}: \pi_{2}^{*}\left(\tau_{B}\right) \rightarrow \tau_{E_{2}}
$$

defined as

$$
H^{\sigma}(z, v):=d p r_{2}\left(H^{*}\left(\beta_{\sigma}(z), d \sigma(v)\right)\right)
$$

is a horizontal map for ξ_{2}, i.e. a connection in ξ_{2}, where the map β_{σ} : $E_{2} \rightarrow$ $E_{1} \times{ }_{B} E_{2}$ is given as $\beta_{\sigma}(z)=\left(\sigma\left(\pi_{2}(z)\right), z\right)$.

This connection H^{σ} is called as an osculating connection of H^{*} along $\sigma \in \operatorname{Sec} \xi_{1}[\mathrm{Koz}]$. It is easy to show that if H^{*} is a linear connection in $\pi_{1}^{*}\left(\xi_{2}\right)$, then for any osculating connection H^{σ} along $\sigma \in S e c \xi_{1}$ is linear as well.

In order to investigate relationships between the structures at different levels we define a lift and a sunk of some sections.

Let $\eta \in \operatorname{Sec} \xi_{2}$ be an arbitrary section of ξ_{2}. The section η^{\uparrow} of $\pi_{1}^{*}\left(\xi_{2}\right)$ defined as $\eta^{\uparrow}(z)=\left(z, \eta\left(\pi_{1}(z)\right)\right)$ for all $z \in E^{1}$ is called as a lift of η. Let now $\sigma \in \operatorname{Sec} \xi_{1}$ be a fixed, and $\Sigma \in \operatorname{Sec} \pi_{1}^{*}\left(\xi_{2}\right)$ an arbitrary section. Then the map $\Sigma_{\sigma}^{\downarrow}=p r_{2} \circ \Sigma \circ \sigma$ is called as a sunk of Σ along $\sigma \in S e c \xi_{1}$.

The following theorem states [Koz] that the parallelity of sections is hereditary through lifting and sinking of sections with respect to osculation.

Theorem 1. Let $\sigma \in \operatorname{Sec}_{1}$ be a fixed section, and $\varphi: I \rightarrow B$ an arbitrary curve in B. If $\Sigma \in \operatorname{Sec} \pi_{1}^{*}\left(\xi_{2}\right)$ is parallel along $\sigma \circ \varphi$ with respect to H^{*}, then the sunk $\Sigma_{\sigma}^{\downarrow} \in \operatorname{Sec} \xi_{2}$ is parallel along φ with respect to the osculating connection H^{σ}, too.

On the other hand, if $\eta \in \operatorname{Sec} \xi_{2}$ is parallel along the curve φ with respect to H^{σ}, then the lift $\eta^{\uparrow} \in \operatorname{Sec} \pi_{1}^{*}\left(\xi_{2}\right)$ is also parallel along $\sigma \circ \varphi$ with respect to H^{*}.

This theorem shows us that the notion of osculation could be defined in terms of parallelism. Namely, starting from a parallelism structure P^{*} of the pull back bundle $\pi_{1}^{*}\left(\xi_{2}\right)$, fixing a section $\sigma \in S e c \xi_{1}$, an osculation parallelism structure P^{σ} can be defined as follows:

$$
P_{\varphi}^{\sigma}:=p r_{2} \circ P_{\sigma \circ \varphi}^{*} \circ \beta_{\sigma}(z)
$$

It can be verified that this type of osculation means the same as the previous one. A similar argument is valid for covariant derivations under the next theorem:

Theorem 2. Denote ∇^{*} and ∇^{σ} the covariant derivations belonging to H^{*} and H^{σ}, resp. Then for any $X \in \mathcal{X}(B), \eta \in \operatorname{Sec} \xi_{2}$ and $\Sigma \in \operatorname{Sec} \pi_{1}^{*}\left(\xi_{2}\right)$

$$
\begin{gathered}
\left(\nabla_{d \sigma(X)}^{*} \eta^{\uparrow}\right)_{\sigma}^{\downarrow}=\nabla_{X}^{\sigma} \eta \\
\left(\nabla_{d \sigma(X)}^{*} \Sigma\right)_{\sigma}^{\downarrow}=\nabla_{X}^{\sigma} \Sigma_{\sigma}^{\downarrow}
\end{gathered}
$$

hold.
An analogous relationship is valid for curvature structures through osculation. In [Koz] there are given the relationships for horizontal and vertical projections, and are regarded the metrical aspects of this osculation method as well.

3. A relationship between osculation and system of connections

In the study of system of connections we follow the ideas of M. Modugno [Mod] and A. Cabras [Cab].

Definition 1. Let ξ and $\tilde{\xi}$ be two vector bundles over the same base manifold B. A triple $(\xi, \tilde{\xi}, k)$ is called a system of connections for ξ with phase bundle $\tilde{\xi}$ and evaluation map k, where $k: \pi^{*}\left(\tilde{\xi} \oplus \tau_{B}\right) \rightarrow \tau_{E}$ is bundle morphism, where E is the total space of ξ.

Any member of a connection system arises by performing the evaluation map of the system along an arbitrary chosen section $\tilde{\xi}$. Namely, for any $\eta \in \operatorname{Sec} \tilde{\xi}$ the map k^{η} defined as

$$
k^{\eta}(z, v)=k(z, \eta(\pi(z)), v) \text { for all } z \in E, v \in T B
$$

gives a horizontal map for ξ. This means a member of the connection system.
L. Mangiarotti and M. Modugno proved in 1985 [Mag] in case of principal bundles, that for a given system of connections there exists a unique connection k^{*} for the pull back bundle $\tilde{\pi}^{*}(\xi)$ for which the following diagram is commutative for any $\eta \in \operatorname{Sec} \tilde{\xi}$

$$
\begin{array}{ccc}
\left(\tilde{E} \times_{B} E\right) \times_{\tilde{E}} T \tilde{E} \xrightarrow{k^{*}} T\left(\tilde{E} \times_{B} E\right) \\
\eta^{*} \uparrow & & \downarrow d p r_{2} \tag{3}\\
E \times_{B} T B & \xrightarrow{k^{\eta}} & T E
\end{array}
$$

where $\eta^{*}(z, v)=(\eta(\pi(z)), z, d \eta(v))$. This connection k^{*} is called the universal connection of k. It was also proved [Cab] that the universal connection reflects the common properties of the members of the connection system.

The relationship (3) yields that the same coupling operates between k^{*} and k^{η} as it does between H^{*} and H^{σ}. Thus we can put the following simple question: whether the family of all osculating connections H^{σ} regarding every possible choice of $\sigma \in S e c \xi_{1}$ - for a given connection H^{*} of the pull back bundle $\pi_{1}^{*}\left(\xi_{2}\right)$ forms a system of connections, or not. The answer is only partially affirmative.

Theorem 3. The set of all osculating connections $\left\{H^{\sigma}, \sigma \in \operatorname{Sec} \xi_{1}\right\}$ is just the set of the members of a system of connections with phase bundle ξ_{1} if and only if the v-horizontal part of H^{*} is trivial, i.e.

$$
\begin{equation*}
d p r_{2}\left(H^{*}(Z, U)\right)=0 \text { for all } Z \in E_{1} \times_{B} E_{2}, \quad U \in V E_{1} . \tag{4}
\end{equation*}
$$

In this case H^{*} is just the universal connection of the system.
Proof. $\left\{H^{\sigma}, \sigma \in \operatorname{Sec} \xi_{1}\right\}$ is a system of connections with phase bundle ξ_{1} iff the following definition of an evaluation map is unique:

$$
k\left(z_{2}, z_{1}, v\right)=H^{\sigma}\left(z_{2}, v\right), \quad \text { where } \sigma\left(\pi_{2}\left(z_{2}\right)\right)=z_{1}
$$

This is just independent from the special choice of σ iff for any $\sigma_{1}, \sigma_{2} \in$ Sec ξ_{1} satisfying $\sigma_{1}\left(\pi\left(z_{2}\right)\right)=\sigma_{2}\left(\pi\left(z_{2}\right)\right)=z_{1}$ the equality $H^{\sigma_{1}}\left(z_{2}, v\right)=$ $H^{\sigma_{2}}\left(z_{2}, v\right)$ is also valid, i.e.

$$
d p r_{2}\left(H^{*}\left(\left(z_{1}, z_{2}\right), d \sigma_{1}(v)\right)\right)=d p r_{2}\left(H^{*}\left(\left(z_{1}, z_{2}\right), d \sigma_{2}(v)\right)\right) .
$$

It means that

$$
d p r_{2}\left(H^{*}\left(\left(z_{1}, z_{2}\right), d \sigma_{1}(v)-d \sigma_{2}(v)\right)\right)=0
$$

$d \sigma_{1}(v)-d \sigma_{2}(v)$ is a vertical vector in $\tau_{E_{1}}$, thus the relationship

$$
d p r_{2}\left(H^{*}\left(\left(z_{1}, z_{2}\right), U\right)\right)=0
$$

is to satisfy for any U vertical vector. Q.e.d.
Corollary. The universal connection k^{*} of a system of connections has a trivial v-horizontal part. The osculating connections of a universal connection are just members of the connection system.

We note that a connection (for Finslerian case) satisfying (4) is called by M. Matsumoto [Mat1] as a "flat vertical" connection. In Finslerian context this assumption means exactly that the v-horizontal subspaces of H^{*} coincide with the v-induced vertical subspaces.

It is an open problem whether there exists another (broader) phase bundle for $\left\{H^{\sigma}, \sigma \in \operatorname{Sec} \xi_{1}\right\}$ when the assumption of this Theorem does not hold.

References

[Cab] A. Cabras, On the universal connection of a system of connections, Note di Mat. Vol. VII (1987), 173-209.
[Can] D. Canarutto, and C. T. J. Dodson, On the bundle of principal connections and stability of b-incompleteness of manifolds, Math. Proc. Camb. Phil. Soc. 98 (1985), 51-59.
[Del] L. Del Riego, and C. T. J. Dodson, Sprays, universality and stability, Math. Proc. Camb. Phil. Soc. 103 (1988), 515-534.
[Gar1] P. L. Garcia, Connections and 1-jet fiber bundles, Rend. Sem. Mat. Univ. Padova 47 (1972), 227-242.
[Gar2] P. L. Garcia, Gauge algebras, curvature and sypmlectic structures, J. Diff. Geom. 12 (1977), 209-227.
[Koz] L. Kozma, On osculation of Finsler type connections, Acta Math. Hung. 53 (1989), 389-397.
[Mag] L. Mangiarotti and M. Modugno, On the geometric structure of gauge theories, J. Math. Phys. 26 (1985), 1373-1379.
[Mat1] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Saikawa, Otsushi, Kaiseisha Press, 1986.
[Mat2] M. Matsumoto, Contributions of prescribed supporting element and the Cartan Y-connection, Tensor, N.S. 49 (1990), 9-17.
[Mod] M. Modugno, An introduction to the system of connections, Sem. Istit. Matem. Applic., "G. Sansone", Florence (1986), 1-62.
[Moór] A. Moór, Über oskulierende Punkträume von affinzusammenhängenden Linienelementenmannigfaltigkeiten, Annals of Math. 56 (1952), 397-403.
[Va] O. Varga, Zur Herleitung des invarianten Differentials in Finslerschen Räumen, Monatshefte für Math. und Phys. 50 (1941), 165-175.

```
L. KOZMA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN PF. }1
HUNGARY
```

