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On osculation and system of connections

By L. KOZMA (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

The aim of this paper is to give a relationship of between current
notions of connection theory, namely, those of osculation and system of
connections.

The osculation method comes from Finsler connection theory. O. Var-
ga [Va] used this for introducing Cartan’s connection in a Finsler space.
Then A. Moór [Moór] generalized this method for the connections of the
line element bundle, and recently [Koz] for arbitrary pull back bundles,
thus a series of special cases can be considered at the same time. In
Finslerian studies the recent paper of M. Matsumoto [Mat2] has given a
new perspective for the notion of osculation. The osculation means that a
connection in a pull back bundle is approximated along a fixed section by
a connection for the base bundle in such a way that their geodesic curves
have a contact of second order (for the case of tangent bundles).

A system of connections is, roughly speaking, a set of connections
characterizable with parameters of finite number. This notion and that
of a universal connection is a generalization [Mod] of the investigations
for principal connections made by P.L. Garcia [Gar1]. This was utilized
for gauge theory [Gar2] as well, and by means of it some information can
be gained on the properties of the underlying bundle, too [Can, Del]. A
detailed exposition of this theory can be found in [Mod, Cab].

Now, we can regard in a natural way the set of all osculating connec-
tion (Hσ, σ ∈ Sec ξ1) of a connection H∗ for the pull back bundle π∗1(ξ2),
and ask whether this set is a system of connections, or not. The answer is
only partially affirmative. (Hσ, σ ∈ Sec ξ1) is a system of connections iff
the v-horizontal part of H∗ is trivial. (See Theorem 3.)
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1. Basic notions and notations

Manifolds, functions and maps are of class C∞ as usual. ξ =
(E, B, π,F ) denotes a vector bundle with a finite dimensional real fibre
type F , a base manifold B, a total space E (n+r dimensional), and a pro-
jection π: E → B. Sec ξ denotes the set of all differentiable sections of ξ.
When f : M → B is a map, f∗(ξ) denotes the pull back bundle whose total
space is M ×B E = {(m, z) | m ∈ M, z ∈ E, f(m) = π(z)} and its projec-
tion is pr1: M ×B E → M. Then the second projection pr2: M ×B E → E
is bundle map with the property that its restriction on a fibre of f∗(ξ) is a
linear isomorphism. VzE is the kernel of (dπ)z:TzE → Tπ(z)B. Then the
vertical bundle V ξ = (V E, E, πV , F ) is a subbundle of τE , and isomorphic
to π∗(ξ). The latter isomorphism is described as follows: ε: π∗(ξ) → V ξ
ε(z1, z2) = the tangent of the curve z1 + tz2 at 0, where z1, z2 ∈ E with
the property π(z1) = π(z2).

By a connection of ξ we mean a splitting H:π∗(τB) → τE of the short
exact sequence

(1) 0 → V ξ
ι−→ τE

fdπ−→ π∗(τB) → 0

where d̃π: τE → π∗(τB) is given by d̃π(A) = (πE(A), dπ(A)) for A ∈ TE.
H is also called a horizontal map, and its images HzE = Im H|{z}×Tπ(z)B

are the horizontal subspaces which are complementary to the vertical sub-
spaces: τE = V ξ ⊕Hξ. Let ϕ: I → B a curve in the base space. A section
σ ∈ Sec ξ is called parallel along ϕ if dσ(ϕ̇) are horizontal vectors, where ϕ̇
denotes the tangent of ϕ. This means that H(σ ◦ϕ, ϕ̇) = dσ(ϕ̇). From the
elementary calculus it follows that for a given curve ϕ and a vector z in
Eϕ(0) there exists — at least locally — a section σ which is parallel along ϕ
and z = σ(ϕ(0)). σ(ϕ(t)) is called the parallel transport of z along ϕ, and
denoted by Pϕ(t, z). The covariant derivation ∇:X (B) × Sec ξ → Sec ξ
is given as ∇Xσ = α(v(dσ(X))) for all X ∈ X (B), σ ∈ Sec ξ, where
α = pr2 ◦ ε−1: V ξ → ξ, and v is the vertical projection.

Denote µt:E → E the multiplication by t ∈ R in the fibres of ξ. The
homogeneity condition for a horizontal map H says as

(2) H(µt(z), v) = dµt(H(z, v))

holds for all z ∈ E, v ∈ TB and t ∈ R. When H satisfies (2) and is
differentiable anywhere, then we get a linear connection. It is important
that for a linear connection the parallel transport exists along the entire
curve ϕ, and is linear.

2. Osculation of connections for π∗1(ξ2)

Let ξ1 = (E1, B, π1, F1) and ξ2 = (E2, π2, B, F2) be two real vector
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bundles with finite rank over the same base manifold B. Consider a con-
nection H∗ of the pull back bundle π∗1(ξ2), i.e. a splitting H∗ : pr∗1(τE1) →
τE1×BE2 of the next short exact sequence

0 → V π∗1(ξ2) → τE1×BE2 → pr∗1(τE1) → 0

Let σ ∈ Secξ1 be a fixed section. Then the map

Hσ : π∗2(τB) → τE2

defined as
Hσ(z, v) := dpr2(H∗(βσ(z), dσ(v)))

is a horizontal map for ξ2, i.e. a connection in ξ2, where the map βσ: E2 →
E1 ×B E2 is given as βσ(z) = (σ(π2(z)), z).

This connection Hσ is called as an osculating connection of H∗ along
σ ∈ Secξ1 [Koz]. It is easy to show that if H∗ is a linear connection in
π∗1(ξ2), then for any osculating connection Hσ along σ ∈ Secξ1 is linear as
well.

In order to investigate relationships between the structures at different
levels we define a lift and a sunk of some sections.

Let η ∈ Sec ξ2 be an arbitrary section of ξ2. The section η↑ of π∗1(ξ2)
defined as η↑(z) = (z, η(π1(z))) for all z ∈ E1 is called as a lift of η. Let
now σ ∈ Secξ1 be a fixed, and Σ ∈ Sec π∗1(ξ2) an arbitrary section. Then
the map Σ↓σ = pr2 ◦ Σ ◦ σ is called as a sunk of Σ along σ ∈ Secξ1 .

The following theorem states [Koz] that the parallelity of sections is
hereditary through lifting and sinking of sections with respect to oscula-
tion.

Theorem 1. Let σ ∈ Secξ1 be a fixed section, and ϕ : I → B an
arbitrary curve in B. If Σ ∈ Secπ∗1(ξ2) is parallel along σ ◦ϕ with respect
to H∗, then the sunk Σ↓σ ∈ Sec ξ2 is parallel along ϕ with respect to the
osculating connection Hσ, too.

On the other hand, if η ∈ Sec ξ2 is parallel along the curve ϕ with
respect to Hσ , then the lift η↑ ∈ Sec π∗1(ξ2) is also parallel along σ ◦ ϕ
with respect to H∗.

This theorem shows us that the notion of osculation could be defined
in terms of parallelism. Namely, starting from a parallelism structure P ∗
of the pull back bundle π∗1(ξ2), fixing a section σ ∈ Secξ1 , an osculation
parallelism structure P σ can be defined as follows:

P σ
ϕ := pr2 ◦ P ∗σ◦ϕ ◦ βσ(z)

It can be verified that this type of osculation means the same as the pre-
vious one. A similar argument is valid for covariant derivations under the
next theorem:



172 L. Kozma

Theorem 2. Denote∇∗ and∇σ the covariant derivations belonging to
H∗ and Hσ , resp. Then for any X ∈ X (B), η ∈ Sec ξ2 and Σ ∈ Sec π∗1(ξ2)

(∇∗dσ(X)η
↑)↓σ = ∇σ

Xη

(∇∗dσ(X)Σ)↓σ = ∇σ
XΣ↓σ

hold.

An analogous relationship is valid for curvature structures through
osculation. In [Koz] there are given the relationships for horizontal and
vertical projections, and are regarded the metrical aspects of this oscula-
tion method as well.

3. A relationship between osculation and
system of connections

In the study of system of connections we follow the ideas of M. Mod-
ugno [Mod] and A. Cabras [Cab].

Definition 1. Let ξ and ξ̃ be two vector bundles over the same base
manifold B. A triple (ξ, ξ̃, k) is called a system of connections for ξ with
phase bundle ξ̃ and evaluation map k, where k :π∗(ξ̃⊕ τB) → τE is bundle
morphism, where E is the total space of ξ.

Any member of a connection system arises by performing the evalu-
ation map of the system along an arbitrary chosen section ξ̃. Namely, for
any η ∈ Sec ξ̃ the map kη defined as

kη(z, v) = k(z, η(π(z)), v) for all z ∈ E, v ∈ TB

gives a horizontal map for ξ. This means a member of the connection
system.

L. Mangiarotti and M. Modugno proved in 1985 [Mag] in case
of principal bundles, that for a given system of connections there exists a
unique connection k∗ for the pull back bundle π̃∗(ξ) for which the following
diagram is commutative for any η ∈ Sec ξ̃

(Ẽ×BE)×Ẽ TẼ
k∗−→ T (Ẽ ×B E)

η∗ ↑ ↓ dpr2(3)

E ×B TB
kη

−→ TE

where η∗(z, v) = (η(π(z)), z, dη(v)). This connection k∗ is called the uni-
versal connection of k. It was also proved [Cab] that the universal con-
nection reflects the common properties of the members of the connection
system.
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The relationship (3) yields that the same coupling operates between
k∗ and kη as it does between H∗ and Hσ. Thus we can put the following
simple question: whether the family of all osculating connections Hσ —
regarding every possible choice of σ ∈ Secξ1 — for a given connection H∗
of the pull back bundle π∗1(ξ2) forms a system of connections, or not. The
answer is only partially affirmative.

Theorem 3. The set of all osculating connections {Hσ, σ ∈ Sec ξ1} is
just the set of the members of a system of connections with phase bundle
ξ1 if and only if the v–horizontal part of H∗ is trivial, i.e.

(4) dpr2(H∗(Z, U)) = 0 for all Z ∈ E1 ×B E2, U ∈ V E1.

In this case H∗ is just the universal connection of the system.

Proof. {Hσ, σ ∈ Sec ξ1} is a system of connections with phase bun-
dle ξ1 iff the following definition of an evaluation map is unique:

k(z2, z1, v) = Hσ(z2, v), where σ(π2(z2)) = z1.

This is just independent from the special choice of σ iff for any σ1, σ2 ∈
Sec ξ1 satisfying σ1(π(z2)) = σ2(π(z2)) = z1 the equality Hσ1(z2, v) =
Hσ2(z2, v) is also valid, i.e.

dpr2(H∗((z1, z2), dσ1(v))) = dpr2(H∗((z1, z2), dσ2(v))).

It means that

dpr2(H∗((z1, z2), dσ1(v)− dσ2(v))) = 0.

dσ1(v)− dσ2(v) is a vertical vector in τE1 , thus the relationship

dpr2(H∗((z1, z2), U)) = 0

is to satisfy for any U vertical vector. Q.e.d.

Corollary. The universal connection k∗ of a system of connections
has a trivial v–horizontal part. The osculating connections of a universal
connection are just members of the connection system.

We note that a connection (for Finslerian case) satisfying (4) is called
by M. Matsumoto [Mat1] as a “flat vertical” connection. In Finslerian
context this assumption means exactly that the v–horizontal subspaces of
H∗ coincide with the v-induced vertical subspaces.

It is an open problem whether there exists another (broader) phase
bundle for {Hσ, σ ∈ Sec ξ1} when the assumption of this Theorem does
not hold.
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