Publ. Math. Debrecen 42 / 1–2 (1993), 169–174

On osculation and system of connections

By L. KOZMA (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

The aim of this paper is to give a relationship of between current notions of connection theory, namely, those of osculation and system of connections.

The osculation method comes from Finsler connection theory. O. VAR-GA [Va] used this for introducing Cartan's connection in a Finsler space. Then A. MOÓR [Moór] generalized this method for the connections of the line element bundle, and recently [Koz] for arbitrary pull back bundles, thus a series of special cases can be considered at the same time. In Finslerian studies the recent paper of M. MATSUMOTO [Mat2] has given a new perspective for the notion of osculation. The osculation means that a connection in a pull back bundle is approximated along a fixed section by a connection for the base bundle in such a way that their geodesic curves have a contact of second order (for the case of tangent bundles).

A system of connections is, roughly speaking, a set of connections characterizable with parameters of finite number. This notion and that of a universal connection is a generalization [Mod] of the investigations for principal connections made by P.L. GARCIA [Gar1]. This was utilized for gauge theory [Gar2] as well, and by means of it some information can be gained on the properties of the underlying bundle, too [Can, Del]. A detailed exposition of this theory can be found in [Mod, Cab].

Now, we can regard in a natural way the set of all osculating connection $(H^{\sigma}, \sigma \in \text{Sec } \xi_1)$ of a connection H^* for the pull back bundle $\pi_1^*(\xi_2)$, and ask whether this set is a system of connections, or not. The answer is only partially affirmative. $(H^{\sigma}, \sigma \in \text{Sec } \xi_1)$ is a system of connections iff the *v*-horizontal part of H^* is trivial. (See Theorem 3.) L. Kozma

1. Basic notions and notations

Manifolds, functions and maps are of class C^{∞} as usual. $\xi =$ (E, B, π, F) denotes a vector bundle with a finite dimensional real fibre type F, a base manifold B, a total space E (n+r dimensional), and a projection $\pi: E \to B$. Sec ξ denotes the set of all differentiable sections of ξ . When $f: M \to B$ is a map, $f^*(\xi)$ denotes the pull back bundle whose total space is $M \times_B E = \{(m, z) \mid m \in M, z \in E, f(m) = \pi(z)\}$ and its projection is $pr_1: M \times_B E \to M$. Then the second projection $pr_2: M \times_B E \to E$ is bundle map with the property that its restriction on a fibre of $f^*(\xi)$ is a linear isomorphism. $V_z E$ is the kernel of $(d\pi)_z : T_z E \to T_{\pi(z)} B$. Then the vertical bundle $V\xi = (VE, E, \pi_V, F)$ is a subbundle of τ_E , and isomorphic to $\pi^*(\xi)$. The latter isomorphism is described as follows: $\varepsilon:\pi^*(\xi)\to V\xi$ $\varepsilon(z_1, z_2)$ = the tangent of the curve $z_1 + tz_2$ at 0, where $z_1, z_2 \in E$ with the property $\pi(z_1) = \pi(z_2)$.

By a connection of ξ we mean a splitting $H: \pi^*(\tau_B) \to \tau_E$ of the short exact sequence

(1)
$$0 \to V\xi \xrightarrow{\iota} \tau_E \xrightarrow{\widetilde{d\pi}} \pi^*(\tau_B) \to 0$$

where $\widetilde{d\pi}: \tau_E \to \pi^*(\tau_B)$ is given by $\widetilde{d\pi}(A) = (\pi_E(A), d\pi(A))$ for $A \in TE$. H is also called a horizontal map, and its images $H_z E = \operatorname{Im} H|_{\{z\} \times T_{\pi(z)}B}$ are the horizontal subspaces which are complementary to the vertical subspaces: $\tau_E = V \xi \oplus H \xi$. Let $\varphi: I \to B$ a curve in the base space. A section $\sigma \in \text{Sec}\,\xi$ is called parallel along φ if $d\sigma(\dot{\varphi})$ are horizontal vectors, where $\dot{\varphi}$ denotes the tangent of φ . This means that $H(\sigma \circ \varphi, \dot{\varphi}) = d\sigma(\dot{\varphi})$. From the elementary calculus it follows that for a given curve φ and a vector z in $E_{\varphi(0)}$ there exists — at least locally — a section σ which is parallel along φ and $z = \sigma(\varphi(0))$. $\sigma(\varphi(t))$ is called the parallel transport of z along φ , and denoted by $P_{\varphi}(t,z)$. The covariant derivation $\nabla: \mathcal{X}(B) \times \text{Sec } \xi \to \text{Sec } \xi$ is given as $\nabla_X \sigma = \alpha(v(d\sigma(X)))$ for all $X \in \mathcal{X}(B), \sigma \in \text{Sec } \xi$, where $\alpha = pr_2 \circ \varepsilon^{-1} \colon V\xi \to \xi$, and v is the vertical projection. Denote $\mu_t \colon E \to E$ the multiplication by $t \in R$ in the fibres of ξ . The

homogeneity condition for a horizontal map H says as

(2)
$$H(\mu_t(z), v) = d\mu_t(H(z, v))$$

holds for all $z \in E$, $v \in TB$ and $t \in R$. When H satisfies (2) and is differentiable anywhere, then we get a *linear connection*. It is important that for a linear connection the parallel transport exists along the entire curve φ , and is linear.

2. Osculation of connections for $\pi_1^*(\xi_2)$

Let $\xi_1 = (E_1, B, \pi_1, F_1)$ and $\xi_2 = (E_2, \pi_2, B, F_2)$ be two real vector

bundles with finite rank over the same base manifold B. Consider a connection H^* of the pull back bundle $\pi_1^*(\xi_2)$, i.e. a splitting $H^*: pr_1^*(\tau_{E_1}) \to \tau_{E_1 \times_B E_2}$ of the next short exact sequence

$$0 \to V\pi_1^*(\xi_2) \to \tau_{E_1 \times_B E_2} \to pr_1^*(\tau_{E_1}) \to 0$$

Let $\sigma \in Sec\xi_1$ be a fixed section. Then the map

$$H^{\sigma}: \pi_2^*(\tau_B) \to \tau_{E_2}$$

defined as

$$H^{\sigma}(z,v) := dpr_2(H^*(\beta_{\sigma}(z), d\sigma(v)))$$

is a horizontal map for ξ_2 , i.e. a connection in ξ_2 , where the map $\beta_{\sigma}: E_2 \to E_1 \times_B E_2$ is given as $\beta_{\sigma}(z) = (\sigma(\pi_2(z)), z)$. This connection H^{σ} is called as an osculating connection of H^* along

This connection H^{σ} is called as an osculating connection of H^* along $\sigma \in Sec\xi_1$ [Koz]. It is easy to show that if H^* is a linear connection in $\pi_1^*(\xi_2)$, then for any osculating connection H^{σ} along $\sigma \in Sec\xi_1$ is linear as well.

In order to investigate relationships between the structures at different levels we define a lift and a sunk of some sections.

Let $\eta \in \text{Sec}\,\xi_2$ be an arbitrary section of ξ_2 . The section η^{\uparrow} of $\pi_1^*(\xi_2)$ defined as $\eta^{\uparrow}(z) = (z, \eta(\pi_1(z)))$ for all $z \in E^1$ is called as a lift of η . Let now $\sigma \in Sec\xi_1$ be a fixed, and $\Sigma \in \text{Sec}\,\pi_1^*(\xi_2)$ an arbitrary section. Then the map $\Sigma_{\sigma}^{\downarrow} = pr_2 \circ \Sigma \circ \sigma$ is called as a sunk of Σ along $\sigma \in Sec\xi_1$.

The following theorem states [Koz] that the parallelity of sections is hereditary through lifting and sinking of sections with respect to osculation.

Theorem 1. Let $\sigma \in Sec\xi_1$ be a fixed section, and $\varphi : I \to B$ an arbitrary curve in B. If $\Sigma \in Sec \pi_1^*(\xi_2)$ is parallel along $\sigma \circ \varphi$ with respect to H^* , then the sunk $\Sigma_{\sigma}^{\downarrow} \in Sec\xi_2$ is parallel along φ with respect to the osculating connection H^{σ} , too.

On the other hand, if $\eta \in \text{Sec}\,\xi_2$ is parallel along the curve φ with respect to H^{σ} , then the lift $\eta^{\uparrow} \in \text{Sec}\,\pi_1^*(\xi_2)$ is also parallel along $\sigma \circ \varphi$ with respect to H^* .

This theorem shows us that the notion of osculation could be defined in terms of parallelism. Namely, starting from a parallelism structure P^* of the pull back bundle $\pi_1^*(\xi_2)$, fixing a section $\sigma \in Sec\xi_1$, an osculation parallelism structure P^{σ} can be defined as follows:

$$P_{\varphi}^{\sigma} := pr_2 \circ P_{\sigma \circ \varphi}^* \circ \beta_{\sigma}(z)$$

It can be verified that this type of osculation means the same as the previous one. A similar argument is valid for covariant derivations under the next theorem: L. Kozma

Theorem 2. Denote ∇^* and ∇^{σ} the covariant derivations belonging to H^* and H^{σ} , resp. Then for any $X \in \mathcal{X}(B)$, $\eta \in \text{Sec } \xi_2$ and $\Sigma \in \text{Sec } \pi_1^*(\xi_2)$

$$(\nabla^*_{d\sigma(X)}\eta^{\uparrow})^{\downarrow}_{\sigma} = \nabla^{\sigma}_{X}\eta$$
$$(\nabla^*_{d\sigma(X)}\Sigma)^{\downarrow}_{\sigma} = \nabla^{\sigma}_{X}\Sigma^{\downarrow}_{\sigma}$$

hold.

An analogous relationship is valid for curvature structures through osculation. In [Koz] there are given the relationships for horizontal and vertical projections, and are regarded the metrical aspects of this osculation method as well.

3. A relationship between osculation and system of connections

In the study of system of connections we follow the ideas of M. MOD-UGNO [Mod] and A. CABRAS [Cab].

Definition 1. Let ξ and $\tilde{\xi}$ be two vector bundles over the same base manifold *B*. A triple $(\xi, \tilde{\xi}, k)$ is called a system of connections for ξ with phase bundle $\tilde{\xi}$ and evaluation map k, where $k : \pi^*(\tilde{\xi} \oplus \tau_B) \to \tau_E$ is bundle morphism, where *E* is the total space of ξ .

Any member of a connection system arises by performing the evaluation map of the system along an arbitrary chosen section $\tilde{\xi}$. Namely, for any $\eta \in \operatorname{Sec} \tilde{\xi}$ the map k^{η} defined as

$$k^{\eta}(z,v) = k(z,\eta(\pi(z)),v)$$
 for all $z \in E, v \in TB$

gives a horizontal map for ξ . This means a member of the connection system.

L. MANGIAROTTI and M. MODUGNO proved in 1985 [Mag] in case of principal bundles, that for a given system of connections there exists a unique connection k^* for the pull back bundle $\tilde{\pi}^*(\xi)$ for which the following diagram is commutative for any $\eta \in \text{Sec }\tilde{\xi}$

(3)

$$(\tilde{E} \times_B E) \times_{\tilde{E}} T\tilde{E} \xrightarrow{k^*} T(\tilde{E} \times_B E)$$

$$\eta^* \uparrow \qquad \qquad \downarrow dpr_2$$

$$E \times_B TB \xrightarrow{k^{\eta}} TE$$

where $\eta^*(z, v) = (\eta(\pi(z)), z, d\eta(v))$. This connection k^* is called the *universal connection of k*. It was also proved [Cab] that the universal connection reflects the common properties of the members of the connection system.

The relationship (3) yields that the same coupling operates between k^* and k^{η} as it does between H^* and H^{σ} . Thus we can put the following simple question: whether the family of all osculating connections H^{σ} — regarding every possible choice of $\sigma \in Sec\xi_1$ — for a given connection H^* of the pull back bundle $\pi_1^*(\xi_2)$ forms a system of connections, or not. The answer is only partially affirmative.

Theorem 3. The set of all osculating connections $\{H^{\sigma}, \sigma \in \text{Sec} \xi_1\}$ is just the set of the members of a system of connections with phase bundle ξ_1 if and only if the *v*-horizontal part of H^* is trivial, i.e.

(4)
$$dpr_2(H^*(Z,U)) = 0 \text{ for all } Z \in E_1 \times_B E_2, \quad U \in VE_1.$$

In this case H^* is just the universal connection of the system.

PROOF. $\{H^{\sigma}, \sigma \in \text{Sec} \xi_1\}$ is a system of connections with phase bundle ξ_1 iff the following definition of an evaluation map is unique:

$$k(z_2, z_1, v) = H^{\sigma}(z_2, v), \text{ where } \sigma(\pi_2(z_2)) = z_1$$

This is just independent from the special choice of σ iff for any $\sigma_1, \sigma_2 \in$ Sec ξ_1 satisfying $\sigma_1(\pi(z_2)) = \sigma_2(\pi(z_2)) = z_1$ the equality $H^{\sigma_1}(z_2, v) = H^{\sigma_2}(z_2, v)$ is also valid, i.e.

$$dpr_2(H^*((z_1, z_2), d\sigma_1(v))) = dpr_2(H^*((z_1, z_2), d\sigma_2(v))).$$

It means that

$$dpr_2(H^*((z_1, z_2), d\sigma_1(v) - d\sigma_2(v))) = 0.$$

 $d\sigma_1(v) - d\sigma_2(v)$ is a vertical vector in τ_{E_1} , thus the relationship

$$dpr_2(H^*((z_1, z_2), U)) = 0$$

is to satisfy for any U vertical vector. Q.e.d.

Corollary. The universal connection k^* of a system of connections has a trivial v-horizontal part. The osculating connections of a universal connection are just members of the connection system.

We note that a connection (for Finslerian case) satisfying (4) is called by M. MATSUMOTO [Mat1] as a "flat vertical" connection. In Finslerian context this assumption means exactly that the v-horizontal subspaces of H^* coincide with the v-induced vertical subspaces.

It is an open problem whether there exists another (broader) phase bundle for $\{H^{\sigma}, \sigma \in \text{Sec} \xi_1\}$ when the assumption of this Theorem does not hold.

References

[Cab] A. CABRAS, On the universal connection of a system of connections, Note di Mat. Vol. VII (1987), 173–209.

- [Can] D. CANARUTTO, and C. T. J. DODSON, On the bundle of principal connections and stability of b-incompleteness of manifolds, Math. Proc. Camb. Phil. Soc. 98 (1985), 51–59.
- [Del] L. DEL RIEGO, and C. T. J. DODSON, Sprays, universality and stability, *Math. Proc. Camb. Phil. Soc.* **103** (1988), 515–534.
- [Gar1] P. L. GARCIA, Connections and 1-jet fiber bundles, *Rend. Sem. Mat. Univ. Padova* 47 (1972), 227–242.
- [Gar2] P. L. GARCIA, Gauge algebras, curvature and symplectic structures, J. Diff. Geom. 12 (1977), 209–227.
- [Koz] L. KOZMA, On osculation of Finsler type connections, Acta Math. Hung. 53 (1989), 389–397.
- [Mag] L. MANGIAROTTI and M. MODUGNO, On the geometric structure of gauge theories, J. Math. Phys. 26 (1985), 1373–1379.
- [Mat1] M. MATSUMOTO, Foundations of Finsler Geometry and Special Finsler Spaces, Saikawa, Otsushi, Kaiseisha Press, 1986.
- [Mat2] M. MATSUMOTO, Contributions of prescribed supporting element and the Cartan Y-connection, Tensor, N.S. 49 (1990), 9–17.
- [Mod] M. MODUGNO, An introduction to the system of connections, Sem. Istit. Matem. Applic., "G. Sansone", Florence (1986), 1–62.
- [Moór] A. Moór, Über oskulierende Punkträume von affinzusammenhängenden Linienelementenmannigfaltigkeiten, Annals of Math. 56 (1952), 397–403.
- [Va] O. VARGA, Zur Herleitung des invarianten Differentials in Finslerschen Räumen, Monatshefte für Math. und Phys. 50 (1941), 165–175.

L. KOZMA DEPARTMENT OF MATHEMATICS UNIVERSITY OF DEBRECEN H-4010 DEBRECEN PF. 12 HUNGARY

(Received September 11, 1992)