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The discrete Tchebycheff transformation
in certain spaces of sequences and its applications

By J. J. BETANCOR (La Laguna), M. LINARES (La Laguna)

and J. M. R. MÉNDEZ-PÉREZ (La Laguna)

Abstract. It is proved that the discrete Tchebycheff transformation defines an
isomorphism from the space T (Z) of testing-sequences of rapid descent into the space
T (−1, 1) of testing-functions with slow growth at the end points 1 and −1. This result is
extended to spaces of generalized sequences and distributions. The discrete translation
operator and the discrete convolution are also studied. Finally, the operational calculus
generated is applied in solving certain finite-difference equations.

1. Introduction

The discrete Tchebycheff transformation

(1.1) (TΦ)(x) = ϕ(x) =
1
π

Φ(0) +
2
π

∞∑
n=1

Φ(n)Tn(x),

where Tn(x) = cos(n arccosx), n = 0, 1, 2, . . . , denote the well-known
Tchebycheff polynomials of the first kind ([4], [10] and [14]), can be consid-
ered as a special case of more general orthogonal series expansions. How-
ever, we think that it is worth doing a particular study of this transform be-
cause its properties are more simple than those corresponding to the Jacobi
series expansions investigated by G. Gasper [5] and I. I. Hirschman [9],
amongst other authors. The inverse of (1.1) is given by [16, p. 344]

(1.2)
(
T−1ϕ

)
(n) = Φ(n) =

∫ 1

−1

(1− x2)−1/2Tn(x)ϕ(x)dx.
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This direct form has been investigated in detail by P. L. Butzer and
P. L. Stens [3] in classical spaces of functions and by H.-J. Glaeske
and T. Runst [7] in the most general context of the finite Jacobi transform
in certain spaces of generalized functions. Since Tn(x) is an even function
of the discrete variable n, then Φ(n) is always an even sequence. By this
reason, instead of (1.1), we consider in [2] the most compact form

(1.3) (TΦ)(x) = ϕ(x) =
1
π

∞∑
n=−∞

Φ(n)Tn(x),

and discuss its classical properties, operational rules and applications.
In this paper we investigate the discrete transformation T in an even

complex-valued sequence space T (Z) and its dual T ′(Z). The operator
T transforms the space T (Z) into a space, called T (−1, 1), of infinitely
differentiable functions ϕ(x) defined on −1 < x < 1. Inasmuch as Tn(x)
does not belong to T (Z), considered as a function of the integer variable n,
the generalized discrete Tchebycheff transformation will be defined by the
adjoint of the classical transform T, that is to say, through the extension
of the Parseval equation

(1.4)
∞∑

n=−∞
Φ(n)Ψ(n) = π

∫ 1

−1

(1− x2)−1/2ϕ(x)ψ(x)dx,

with ϕ(x) and ψ(x) being the respective transforms of Φ(n) and Ψ(n).
This procedure has been employed by L. Schwartz [15] in relation to
the Fourier transform and by A. H. Zemanian [18], J. J. Betancor
and M. T. Flores [1] and J. M. R. Méndez-Pérez [11] to generalize
different versions of Hankel transform. It is proved that the distributional
transformation T ′ is a topological isomorphism between the spaces T ′(Z)
and T ′(−1, 1). We are specially interested in stressing the results obtained
when the discrete transform (1.3) is used, that is, when we deal with se-
quences, in contrast to other researches where the direct form (1.2) plays
the main role and acts on functions. Thus, the discrete translation op-
erator and the discrete convolution associated to the Tchebycheff series
expansions are analysed, and their main properties are established. Fi-
nally, the operational calculus generated is applied in solving a class of
finite-difference equations.

Now we remember that Tn(x), as function of x, satisfies the differential
equation [10, p. 79]

(1.5) (1− x2)T ′′n (x)− xT ′n(x) + n2Tn(x) = 0,
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whereas Tn(x), as a function of n, fulfils the difference equation [10,
p. 185(16)]

(1.6) Tn+1(x) + Tn−1(x) = 2xTn(x),

and the most general relation [14]

(1.7) Tn+l(x) + Tn−l(x) = 2Tn(x)Tl(x),

with l ∈ Z.
Along this paper, D(−1, 1) stands for the space of infinitely differen-

tiable functions whose supports are contained in the open interval (−1, 1)
and D′(−1, 1) is the space of Schwartz distributions on (−1, 1) [15]. Fi-
nally, E(−1, 1) represents the space of all infinitely differentiable functions
on (−1, 1) and its dual E′(−1, 1) is the space of distributions on (−1, 1)
with compact supports.

As for the notation, we choose the symbol
〈〈

,
〉〉

to represent a
functional acting on T (Z) and 〈 , 〉 to denote a functional operating on
T (−1, 1).

2. The testing function spaces T (Z) and T (−1, 1)
and their duals

T (−1, 1) is the space of all infinitely differentiable functions ϕ(x) de-
fined on (−1, 1) such that

(2.1) γk(ϕ) = sup
x∈(−1,1)

|Ωk
xϕ(x)|

exists for each nonnegative integer k, where Ωx denotes the differential
operator [10, p. 98]

(2.2)
Ωx = Ω = (1− x2)1/2Dx(1− x2)1/2Dx

= (1− x2)D2 − xD, D =
d

dx
.

We equip T (−1, 1) with the topology generated by the countable
multinorm (2.1). Thus, T (−1, 1) is a Fréchet space. By using a technique
similar to the one employed by A. H. Zemanian [18] and H. J. Glaeske
and A. Hess [6] in relation to Hankel and Mehler–Fock transformations,
respectively, the members of the space T (−1, 1) can be characterized as
follows.
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Proposition 2.1. ϕ(x) belongs to the space T (−1, 1) if and only if

ϕ(x) is an infinitely differentiable function on the interval (−1, 1) and

Dkϕ(x) = O(1) as x → 1− 0 and x → −1 + 0, for all k = 0, 1, 2, . . . .

T ′(−1, 1) stands for the dual space of T (−1, 1). We consider only in
T ′(−1, 1) the weak ∗ topology [18, p. 21]. Then, T ′(−1, 1) is sequentially
complete.

We now list some properties of these spaces:

(i) The operation ϕ −→ Ωϕ, where Ωx is given by (2.2), gives rise to a
continuous linear mapping of T (−1, 1) into itself. Therefore, the mapping
f −→ Ω∗f , defined by

(2.3) 〈Ω∗f, ϕ〉 = 〈f, Ωϕ〉, f ∈ T ′(−1, 1), ϕ ∈ T (−1, 1),

is also a continuous linear mapping of T ′(−1, 1) into itself. Note that Ω∗

is the adjoint operator of Ω [12]

Ω∗x = Ω∗ = Dx(1− x2)1/2Dx(1− x2)1/2 = (1− x2)D2 − 3xD − 1.

(ii) The operation ϕ −→ xlϕ, l = 0, 1, 2, . . . , is a continuous linear
mapping of T (−1, 1) into itself. Consequently, the operation f −→ xlf

defined by means of

(2.4) 〈xlf(x), ϕ(x)〉 = 〈f(x), xlϕ(x)〉, f ∈ T ′(−1, 1), ϕ ∈ T (−1, 1),

is too a continuous linear mapping of T ′(−1, 1) into itself. To see the first
part of the assertion, observe that we can write

Ωx

[
xlϕ(x)

]
= xlΩxϕ(x)+2lxl−1(1−x2)Dϕ(x)+

[
l(l − 1)xl−2 − l2xl

]
ϕ(x)

for any l = 0, 1, 2, . . . . By an inductive procedure on k we can establish,
in general, that

Ωk
x

[
xlϕ(x)

]
=

k∑

i=0

Π(k)
l,i (x)Ωk−i

x ϕ(x)(2.5)

+ (1− x2)
k−1∑

i=0

Π(k)
l−1,i(x)DxΩk−i−1

x ϕ(x)
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where Π(k)
j,i (x) are polynomials of j-th degree. On the other hand, by

integrating in (2.2) we find that

(2.6)
∫ x

−1

(1− t2)−1/2Ωtϕ(t)dt = (1− x2)1/2Dxϕ(x),

since limx→−1(1 − x2)1/2Dxϕ(x) = 0 in view of Proposition 2.1. If we
substitute (2.6) in (2.5), we obtain

(2.7) γk

[
xlϕ(x)

] ≤
k∑

i=0

Ci(k, l)γi(ϕ),

where the positive constants Ci only depend on k and l. This completes
our proof. The second part of the assertion is inferred from the above
result.

(iii) Let f be an integrable function such that (1− x2)−1/2f(x) is ab-
solutely integrable on −1 < x < 1. Then, f generates a regular generalized
function f in T ′(−1, 1) through

(2.8) 〈f, ϕ〉 =
∫ 1

−1

(1− x2)−1/2f(x)ϕ(x)dx, ϕ ∈ T (−1, 1).

Indeed,

|〈f, ϕ〉| ≤ γ0(ϕ)
∫ 1

−1

(1− x2)−1/2|f(x)|dx.

Since ϕ ∈ T (−1, 1) fulfils the condition

∫ 1

−1

(1− x2)−1/2|ϕ(x)|dx ≤ πγ0(ϕ),

every member of T (−1, 1) gives rise to a regular distribution in T ′(−1, 1)
by means of (2.8). Moreover, two members of T (−1, 1) that generate the
same member of T ′(−1, 1) must be identical. Hence, T (−1, 1) can be
considered a subspace of T ′(−1, 1).

(iv) D(−1, 1) is a subspace of T (−1, 1) and the topology of D(−1, 1) is
stronger than that induced on it by T (−1, 1). Consequently, the restriction
of any f ∈ T ′(−1, 1) to D(−1, 1) is a member of D′(−1, 1).
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Note that ϕ(x) = x2 belongs to T (−1, 1) and ϕ(x) tends towards 1
as x → 1 − 0 and x → −1 + 0. Then, it is clear that the ball {ψ : ψ ∈
T (−1, 1), γ0(ψ − ϕ) < 1/2} does not contain any member of D(−1, 1).
Therefore, D(−1, 1) is not dense in T (−1, 1). On the other hand, T (−1, 1)⊂
E(−1, 1) and E′(−1, 1) is a subspace of T ′(−1, 1).

(v) The Tchebycheff polynomial Tn(x) ∈ T (−1, 1) considered as func-
tion of the continuous variable x. Certainly, by invoking (1.5) we have

γk (Tn(x)) = sup
x∈(−1,1)

|n2kTn(x)| ≤ n2k, −1 < x < 1.

Next, we introduce the space T (Z), where Z denotes the set of integer
numbers. T (Z) consists of all the even complex-valued sequences Φ(n)
defined on Z such that

(2.9) τk,l(Φ) = sup
n∈Z

|n2kωl
nΦ(n)| < ∞,

for any pair of nonnegative integers k and l, where ωn stands for the
difference operator

(2.10) ωnΦ(n) = ωΦ(n) =
Φ(n + 1) + Φ(n− 1)

2
.

Note that this operator is formally selfadjoint. When endowed with the
topology generated by the family of seminorms {τk,l}k,l∈N,T (Z) becomes
a Fréchet space.

The study of the space T (Z) runs parallel to that of the space T (−1, 1).
Thus, it can be easily proved

Proposition 2.2. An even complex-valued sequence Φ(n), with n ∈ Z,

belongs to T (Z) when and only when Φ(n) is of rapid descent as |n| → ∞.

T ′(Z) symbolizes the dual space T (Z). We shall assign to T ′(Z) the
weak ∗ topology. As a matter of fact, it is well-known that the dual of T (Z)
is the space of slow increasing sequences, in other words, the members of
T ′(Z) are of slow growth at infinity.

(vi) The operation Φ −→ ωΦ is a continuous linear mapping of T (Z)
into itself. Hence, the mapping F −→ ωF , defined by

(2.11)
〈〈
ωF, Φ

〉〉
=

〈〈
F, ωΦ

〉〉
, F ∈ T ′(Z), Φ ∈ T (Z),
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is also a continuous linear mapping of T ′(Z) into itself.

(vii) Every sequence {F (n)}n∈Z of complex numbers such that∑∞
n=−∞ |F (n)| ≤ ∞ gives rise to a regular member in T ′(Z) by means of

(2.12)
〈〈
F, Φ

〉〉
=

∞∑
n=−∞

F (n)Φ(n), Φ ∈ T (Z).

The linearity being obvious, its continuity is inferred from

|〈〈F, Φ
〉〉| ≤ τ0,0(Φ)

∞∑
n=−∞

|F (n)| = Cτ0,0(Φ).

In particular, each member Φ of the space T (Z) generates a regular member
in T ′(Z). Indeed, the series

∞∑
n=−∞

|Φ(n)| ≤ [τ0,0(Φ) + τ1,0(Φ)]
∞∑

n=−∞

1
1 + n2

,

is absolutely convergent. Notice that two sequences of T (Z) that give rise
to the same regular member of T ′(Z) have to be identical. Therefore,
T (Z) can be identified with certain subspace of T ′(Z) and the inclusion
T (Z) ⊂ T ′(Z) is justified.

(viii) Now, on the contrary to that happens in (iv), for certain x ∈
(−1, 1), the Tchebycheff polynomials Tn(x) 6∈ T (Z) considered as a func-
tion of the discrete variable n. In fact, the sequence Tn(1−) is not of rapid
descent at infinity since

τk,0 {Tn(1−)} = sup
n∈Z

|n2k| = ∞, k = 1, 2, 3, . . .

(ix) The operation Φ −→ n2rΦ, r = 0, 1, 2, . . . , is a continuous linear
mapping of T (Z) into itself. Therefore, the operation F −→ n2rF defined
by

(2.13)
〈〈
n2rF, Φ

〉〉
=

〈〈
F, n2rΦ

〉〉
, F ∈ T ′(Z), Φ ∈ T (Z),

is also a continuous linear mapping of T ′(Z) into itself.
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To see this note that, for every k ∈ N, τk,0(n2rΦ) = τk+r,0(Φ). On the
other hand, when l = 1 the expression n2kωn

[
n2rΦ(n)

]
can be written

1
2

[(
n

n +1

)2k

(n +1)2(k+r)Φ(n +1) +
(

n

n− 1

)2k

(n− 1)2(k+r)Φ(n− 1)

]
,

if n 6= ±1, and takes the value 22rΦ(2) = 2−k 22(k+r)Φ(2) if n = ±1.
Hence,

τk,1(n2rΦ) ≤ Ckτk+r,0(Φ),

Ck being a certain positive constant. The general case

τk,l(n2rΦ) ≤ Ck,lτk+r,0(Φ),

with Ck,l > 0, follows by induction on l. Moreover, n2rΦ(n) is clearly an
even sequence.

Remark 2.1. We can argue as in the proof of the property (ii) to
establish the following assertion:

If P (x) and Q(x) are polynomials and Q(x) has no zeros on −1 ≤
x ≤ 1, then the operator ϕ(x) → (P (x)/Q(x)) ϕ(x) is a continuous lin-
ear mapping of T (−1, 1) into itself. Consequently, the operator f(x) →
(P (x)/Q(x)) f(x), which is defined on T ′(−1, 1) by
〈
(P (x)/Q(x)) f(x), ϕ(x)

〉
=

〈
f(x), (P (x)/Q(x)) ϕ(x)

〉
, ϕ ∈ T (−1, 1),

is also a continuous linear mapping of T ′(−1, 1) into itself. In short,
P (x)/Q(x) is a multiplier for both the spaces T (−1, 1) and T ′(−1, 1).

Remark 2.2. It is easily seen, by invoking Proposition 2.1, that the
space T (−1, 1) is closed under the product of functions. Even more, we
can proceed as in the proof of property (ii) to establish that the members
of the space T (−1, 1) are multipliers of the same space, that is to say, the
operator ϕ −→ ψϕ, with ϕ,ψ ∈ T (−1, 1), is a continuous linear mapping
of T (−1, 1) into itself. Hence, the operator f −→ ψf , where f ∈ T ′(−1, 1)
and ψ ∈ T (−1, 1), defined by

〈ψf, ϕ〉 = 〈f, ψϕ〉, ϕ ∈ T (−1, 1)

is also a continuous linear mapping of T ′(−1, 1) into itself.
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3. The generalized discrete Tchebycheff
transformation

Firstly we investigate the behaviour of the classical Tchebycheff trans-
formations (1.3) and (1.2) in the spaces T (−1, 1) and T (Z).

Theorem 3.1. The discrete Tchebycheff transformation T, defined by

(1.3), is an isomorphism from T (Z) into T (−1, 1). Its inverse is T−1, as

given by (1.2).

Proof. Let Φ ∈ T (Z). Observe that the function (TΦ)(x) = ϕ(x)
exists and is infinitely differentiable on −1 ≤ x ≤ 1. On the other hand,
formally applying the operator (1 − x2)1/2Dx under the summation sign
in (1.3), we obtain

(3.1)
∞∑

n=−∞
Φ(n)n sin(n arccosx).

This series is bounded by

[
τ1,0(Φ) + τ2,0(Φ)

] ∞∑
n=−∞

1
1 + n2

,

that is to say, (3.1) converges uniformly on −1 ≤ x ≤ 1. By applying
again the operator (1− x2)1/2Dx in (3.1), the resulting series

∞∑
n=−∞

Φ(n)n2Tn(x)

converges uniformly on −1 ≤ x ≤ 1, as well. From this and (2.2) we see
that the differential operator Ωx may be applied in (1.3) term by term, to
get for an arbitrary nonnegative integer k

(3.2) Ωk
xϕ(x) =

1
π

∞∑
n=−∞

Φ(n)(−1)kn2kTn(x),

in view of (1.5). Finally, from (3.2) we are immediately led to

γk(ϕ) = γk

(
TΦ

)
≤ C [τk,0(Φ) + τk+1,0(Φ)] ,
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for a certain positive constant C. This implies that T is a continuous linear
mapping of T (Z) into T (−1, 1).

To prove the converse, assume that ϕ ∈ T (−1, 1). For any pair of
nonnegative integers k and l we can write

(3.3)

n2kωl
nΦ(n) = n2k

∫ 1

−1

(1− x2)−1/2ϕ(x)
[
ωl

nTn(x)
]
dx

= n2k

∫ 1

−1

(1− x2)−1/2ϕ(x)xlTn(x)dx,

in accordance with (1.6). Furthermore, bearing in mind (1.5) the right-
hand side of (3.3) adopts the form

(3.4) (−1)k

∫ 1

−1

(1− x2)−1/2ϕ(x)xl
[
Ωk

xTn(x)
]
dx.

By integrating by parts 2k times, we find

(3.5) n2kωl
nΦ(n) = (−1)k

∫ 1

−1

(1− x2)−1/2Tn(x)Ωk
x

[
xlϕ(x)

]
dx.

This expression has a sense due to property (ii) in the above paragraph.
Finally, by invoking (2.7) we derive from (3.5)

τk,l(Φ) = τk,l

(
T−1ϕ

)
≤ πγk(xlϕ) ≤ π

k∑

i=0

Ci(k, l)γi(ϕ),

because of |Tn(x)| ≤ 1 on −1 ≤ x ≤ 1. Consequently, T−1 is also a
continuous linear mapping from T (−1, 1) into T (Z). Inasmuch as T and
T−1 are inverses of each other, the proof of the assertion is complete. ¤

The generalized discrete Tchebycheff transformation

T ′ : T ′(Z) −−−−−−−−→ T ′(−1, 1)

F (n) −−−−−−−−→ (T ′ F )(x)

is defined through

(3.6) π
〈
(T ′F )(x), (TΦ)(x)

〉
=

〈〈
F (n),Φ(n)

〉〉
,

for any F ∈ T ′(Z) and Φ ∈ T (Z). So (3.6) appears as an extension of the
mixed Parseval equation (1.4) to distributions.
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Theorem 3.2. The generalized discrete Tchebycheff transformation
T ′, defined by (3.6), is an isomorphism from T ′(Z) into T ′(−1, 1).

Proof. This result can be seen as a consequence of Theorem 3.1 and
[18, Theorem 1.10-1]. Notice that the inverse T ′−1 is easily supplied by
setting (T ′ F )(x) = f(x) and (TΦ)(x) = ϕ(x).Then, (3.6) may be rewritten

(3.7)
〈〈

(T ′−1f)(n), (T−1ϕ)(n)
〉〉

= π 〈f(x), ϕ(x)〉 ,

for any f ∈ T ′(−1, 1) and ϕ ∈ T (−1, 1). ¤
Corollary 3.1. The classical discrete Tchebycheff transformation T,

when acting on T (Z), is a special case of the generalized transformation
T ′ as defined by (3.6)–(3.7), in other words,

(3.8) T(F ) = T ′(F ),

for an arbitrary F ∈ T (Z).

Proof. Let F, Φ ∈ T (Z). By resorting to property (vii) in Section 2,
expression (3.8) has a meaning. To see the equality, recall that F (n)
generates a regular member in T ′(Z) by means of (2.12)

(3.9) π〈T ′F, TΦ〉 =
〈〈
F, Φ

〉〉
=

∞∑
n=−∞

F (n)Φ(n).

By applying the Parseval equality (1.4) to the right-hand side in (3.9), we
get that

(3.10)

〈T ′F, TΦ〉 =
∫ 1

−1

(1− x2)−1/2f(x)ϕ(x)dx

=
∫ 1

−1

(1− x2)−1/2(TF )(x)(TΦ)(x)dx

where (TF )(x) = f(x) and (TΦ)(x) = ϕ(x) belong to the space T (−1, 1)
by virtue of Theorem 3.1. Finally, taking into account (2.8), the right-hand
side in (3.10) can be written 〈TF, TΦ〉. Therefore,

〈T ′ F, TΦ〉 = 〈T F, TΦ〉,

which is what we wished to prove. ¤
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Remark 3.1. Since Tn(x) 6∈ T (Z) considered as function of n, for some
−1 ≤ x ≤ 1, it is impossible to define the generalized transformation T′ of
F ∈ T ′(Z) through

(T ′ F )(x) =
1
π

〈〈
F (n), Tn(x)

〉〉
,

because this expression has no sense. By this reason, we are obliged to
adopt the most general definition (3.6).

Remark 3.2. Note that the Parseval relation (1.4) holds for any Φ and
Ψ in T (Z), where ϕ(x) = (TΦ)(x) and ψ(x) = (TΨ)(x). This formula is
readily obtained by substituting ϕ(x) = (TΦ)(x) into the right-hand side
of (1.4) and then bearing in mind that the signs of the summation and the
integral can be interchanged.

In the next assertion we compile the main operational rules of the
discrete Tchebycheff transformations T and T ′.

Proposition 3.1. If Φ ∈ T (Z), then

T
{
ωk

nΦ(n)
}

(x) = xk(TΦ)(x), k = 0, 1, 2, . . .(3.11)

T
{(− n2

)k Φ(n)
}

(x) = Ωk
x(TΦ)(x), k = 0, 1, 2, . . .(3.12)

and when F ∈ T ′(Z), we find

T ′
{
ωk

nF (n)
}

(x) = xk(T ′F )(x), k = 0, 1, 2, . . .(3.13)

T ′
{(− n2

)k
F (n)

}
(x) = Ω∗kx (T ′F )(x), k = 0, 1, 2, . . .(3.14)

Proof. Let Φ ∈ T (Z). To obtain (3.11), assume firstly that k = 1.
Then, from definitions (1.3) and (2.10), we get

T {ωnΦ(n)} =
1
2π

∞∑
n=−∞

[Φ(n + 1) + Φ(n− 1)] Tn(x)

=
1
2π

{ ∞∑
n=−∞

Φ(n)Tn−1(x) +
∞∑

n=−∞
Φ(n)Tn+1(x)

}

=
1
π

∞∑
n=−∞

Φ(n) xTn(x) = x (TΦ),
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by using (1.6). Since T (Z) is closed under the difference operator ωn

(Remember (vi) of Section 2), we may repeatedly apply this result to
deduce (3.11). To see (3.12), by invoking property (ix) of the paragraph 2,
the series ∞∑

n=−∞
(−n2)kΦ(n)Tn(x)

is bounded by
[
τk+1,0(Φ) + τk,0(Φ)

] ∞∑
n=−∞

1
1 + n2

,

in other words, it converges uniformly on −1 ≤ x ≤ 1. By this reason,
making use previously of (1.5), we are authorized to interchange the dif-
ferential operator Ωx and the summation sign, and so on until we reach

T
{
(−n2)k Φ(n)

}
(x) =

1
π

∞∑
n=−∞

Φ(n)
[
Ωk

xTn(x)
]

= Ωk
x

(
1
π

∞∑
n=−∞

Φ(n)Tn(x)
)

= Ωk
x (TΦ).

Let F ∈ T ′(Z). To verify (3.13), assume again that k = 1 and invoke
our definitions (3.7) and (2.11) to write for every Φ ∈ T (Z)

〈
T ′ {ωnF (n)} , TΦ(n)

〉
= π−1

〈〈
ωnF (n), Φ(n)

〉〉
= π−1

〈〈
F (n), ωnΦ(n)

〉〉

= 〈T ′F (n), T {ωnΦ(n)}〉 .(3.15)

Finally, according to (3.11) and (2.4), the right-hand side in (3.15) becomes

(3.16) 〈T ′F (n), x {TΦ(n)}〉 = 〈x {
T ′F (n)

}
,TΦ(n)〉.

By combining (3.15) and (3.16) we deduce (3.13) when k = 1, the
general formula being confirmed by repeating the process. In order to
establish (3.14) it suffices to bear in mind (3.7), (2.13), (3.12) and (2.3).

¤
Remark 3.3. It is worth to notice that the operational rules (3.11) and

(3.13) involve the finite difference operator ωn, unlike the results achieved
in [7, Propositions 5.1 and 5.1’] concerning the Jacobi differential operator
[7, (2.2)].
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4. The discrete convolution in the spaces T (Z) and T ′(Z)
Applications

In [2] we introduced the discrete Tchebycheff translation Θl by means
of

(4.1) ΘlΦ(m) =
Φ(l + m) + Φ(l −m)

2
, l, m ∈ Z,

for every Φ ∈ T (Z).
In next assertion the main properties of this operator are listed

Proposition 4.1.

(i) The operation Φ −→ ΘlΦ is a continuous linear mapping from the
space T (Z) into itself, for every l ∈ Z.

(ii) T(ΘlΦ)(x) = Tl(x)(TΦ)(x), for every Φ ∈ T (Z) and l ∈ Z.

(iii) The mapping F → ΘlF , given by
〈〈
ΘlF (m), Φ(m)

〉〉
=

〈〈
F (m),ΘlΦ(m)

〉〉
, Φ ∈ T (Z),

is too a continuous linear mapping from T ′(Z) into itself, for each
l ∈ Z.

(iv) T ′(ΘlF )(x) = Tn(x)(T ′F )(x), F ∈ T ′(Z).

Proof. Let Φ ∈ T (Z). To verify (i), notice firstly that an inductive
argument on s ∈ N allows us to obtain

ωsΘlΦ(n) =
1
2s

{
s∑

j=0

(
s

j

)
Φ(n + l + s− 2j) +

s∑

j=0

(
s

j

)
Φ(n− l + s− 2j)

}
,

for every l, n ∈ Z. Then, making use of this formula, we can conclude that

τr,s

(
ΘlΦ

)
= sup

n∈Z

∣∣∣n2rωs
n

(
ΘlΦ(n)

)∣∣∣ ≤ Cr,s,lτr,0(Φ),

for every r, s ∈ N and l ∈ Z, where Cr,s,l is certain positive constant.
To prove (ii) it is sufficient to recall the corresponding definitions,

make a change of indices and invoke (1.7) to get

T(ΘlΦ)(x) =
1
π

∞∑
n=−∞

Φ(n + l) + Φ(n− l)
2

Tn(x)

=
1
π

∞∑
n=−∞

Φ(n)
Tn+l(x) + Tn−l(x)

2
= Tl(x)(TΦ)(x).
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Properties (iii) and (iv) are simple consequences of the above results.
¤

The convolution Φ ◦Ψ of Φ ∈ T (Z) and Ψ ∈ T (Z), is defined through

(Φ ◦Ψ)(l) =
∞∑

n=−∞
Φ(n)(ΘlΨ)(n), l ∈ Z.

By taking into account the interchange formula ([2, (2.5)]), since the
pointwise multiplication is a closed operation in T (−1, 1), we can see that
the ◦-convolution defines a bilinear and continuous mapping from T (Z)×
T (Z) into T (Z).

We now characterize the convolution operators on T (Z) as those con-
tinuous linear mappings from T (Z) into itself that commut with the trans-
lations Θl, l ∈ Z, or with the difference operator ω, or with the ◦-
convolution.

Proposition 4.2. Let L be a continuous linear mapping from T (Z)
into itself. The following properties are equivalent.

(i) There exists a unique Φ ∈ T (Z) such that L(Ψ) = Φ ◦ Ψ, for every

Ψ ∈ T (Z).

(ii) L commuts with the operator ω, that is, L(ωΦ) = ωL(Φ), for every

Φ ∈ T (Z).

(iii) L commuts with Θl, l ∈ Z, that is to say, L(ΘlΦ) = ΘlL(Φ), for every

Φ ∈ T (Z).

(iv) L commuts with the ◦-convolution, in other words, L(Φ ◦ Ψ) = Φ ◦
L(Ψ), for every Φ,Ψ ∈ T (Z).

Proof. (i) =⇒ (ii) This property can be immediately inferred from
(3.11) and the interchange formula [2, (2.5)].

(ii) =⇒ (iii) Let Φ ∈ T (Z) and l ∈ Z. According to Proposition
4.1, (ii), we have

T (ΘlΦ)(x) = Tl(x)T (Φ)(x), x ∈ (−1, 1).

Hence, from (3.11) and Theorem 3.1 we deduce

ΘlΦ = Tl(ω)Φ.
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Then, according to (ii),

L(ΘlΦ) = Tl(ω)L(Φ) = ΘlL(Φ).

Thus (iii) is established.

(iii) =⇒ (iv) Let Φ, Ψ ∈ T (Z). We can write

(4.2) (Φ ◦Ψ)(l) =
∞∑

n=−∞
Φ(n)(ΘlΨ)(n), l ∈ Z,

where the convergence of the series is understood in T (Z). Indeed, let
α, β ∈ N. By resorting to Theorem 3.1 and the inequality |T (j)

n (x)| ≤
|n|2j , j ∈ N and x ∈ (−1, 1), involving the derivatives of the Tchebycheff
polynomials [14, p. 51], for certain C > 0 and s ∈ N, we obtain

sup
l∈Z

∣∣∣l2βωα
l (ΘlΨ)(n)

∣∣∣ ≤ C max
0≤m≤s

|Dm(Tn(x)T(Ψ)(x))|

≤ C
(
|n|2s + 1

)
, n ∈ Z.

Then, for every m ∈ Z,

sup
l∈Z

∣∣∣∣l2βωα
l

( ∑

|n|≥m

Φ(n)(ΘlΨ)(n)
)∣∣∣∣

≤ C
[
τs+1,0(Φ) + τs,0(Φ) + τ1,0(Φ) + τ0,0(Φ)

] ∑

|n|≥m

1
1 + n2

.

Hence the series in (4.2) converges in T (Z).
Since L is a continuous linear mapping from T (Z) into itself, from (iii)

we deduce that

L(Φ ◦Ψ)(l) =
∞∑

n=−∞
Φ(n)L(ΘnΨ)(l) =

∞∑
n=−∞

Φ(n)(ΘnL(Ψ))(l)

= (Φ ◦ (LΨ))(l), l ∈ Z.

Thus (iv) is proved.

(iv) =⇒ (i) We define the sequence Φ0 by

Φ0(n) = 0, n ∈ Z \ {0}, and Φ0(0) = 1.
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It is clear that Φ0 ∈ T (Z). Then L(Φ0) ∈ T (Z). Since Φ0 ◦ Φ = Φ, for
every Φ ∈ T (Z), from (iv) we infer that

L(Φ) = L(Φ0 ◦ Φ) = L(Φ0) ◦ Φ, Φ ∈ T (Z).

The interchange formula [2, (2.5)] implies that if Φ ∈ T (Z) and
L(Ψ) = Φ ◦Ψ, Ψ ∈ T (Z), then Φ = L(Φ0). ¤

Now we can define the convolution F ◦Φ of F ∈ T ′(Z) with Φ ∈ T (Z)
by means of

(4.3) (F ◦ Φ)(n) =
〈〈
F (l), ΘnΦ(l)

〉〉
.

Note that (4.3) is well-defined by virtue of property (i) in Proposi-
tion 4.1.

Proposition 4.3.

(i) Let F ∈ T ′(Z) and Φ ∈ T (Z). Then, F ◦ Φ ∈ T ′(Z) and, for every

Ψ ∈ T (Z), next equality holds

(4.4)
〈〈
F ◦ Φ, Ψ

〉〉
=

〈〈
F, Φ ◦Ψ

〉〉
.

Moreover, the mapping F −→ F ◦ Φ is continuous from the space

T ′(Z) into itself.

(ii)

(4.5) T ′(F ◦ Φ) = (T ′F )(TΦ),

for every Φ ∈ T (Z) and F ∈ T ′(Z).

(iii) Let F ∈ T ′(Z). Then F ◦ Φ ∈ T (Z), for every Φ ∈ T (Z), if and only

if F ∈ T (Z).

(iv) ω(F ◦ Φ) = (ωF ) ◦ Φ = F ◦ (ωΦ), for all F ∈ T ′(Z) and Φ ∈ T (Z).

(v) Θl(F ◦ Φ) = (ΘlF ) ◦ Φ = F ◦ (ΘlΦ), for every l ∈ Z, F ∈ T ′(Z) and

Φ ∈ T (Z).

Proof. We start proving (i). Since F ∈ T ′(Z) there exist C > 0 and
r ∈ N such that

|(F ◦ Φ)(n)| ≤ C sup
l∈Z

0≤s,k≤r

∣∣∣l2sωk
l (ΘnΦ)(l)

∣∣∣, n ∈ Z.
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Then, according to Theorems 3.1 and 4.1, (ii), we can write

|(F ◦ Φ)(n)| ≤ C sup
x∈(−1,1)
0≤k≤r

∣∣∣Dk
(
Tn(x)T(Φ)(x)

)∣∣∣, n ∈ Z,

for certain C > 0 and r ∈ N. Hence, by invoking [14, p. 51, 1.5.35], we
conclude that

|(F ◦ Φ)(n)| ≤ C
(
|n|2r + 1

)
, n ∈ Z.

Thus, we show that F ◦ Φ is a slowly decreasing sequence. In accordance
with (2.12), F ◦ Φ defines an element of T ′(Z) by

〈〈
F ◦ Φ, Ψ

〉〉
=

∞∑
n=−∞

(F ◦ Φ)(n)Ψ(n), Ψ ∈ T (Z).

To establish (4.4) it is sufficient to argue as in the proof of the impli-
cation (iii) =⇒ (iv) in Proposition 4.2.

Finally, since the ◦-convolution defines a continuous bilinear mapping
from T (Z)×T (Z) into T (Z), for every Φ ∈ T (Z), the mapping F → F ◦Φ
is continuous from the space T ′(Z) into itself.

To see (ii), let F ∈ T ′(Z) and Φ ∈ T (Z). Then, for every Ψ ∈ T (Z),
making use of (3.6), [2, (2.5)] and Remark 2.2, we deduce that

π〈T ′(F ◦ Φ), TΨ〉 =
〈〈
F ◦ Φ, Ψ

〉〉

=
∞∑

n=−∞
(F ◦ Φ)(n)Ψ(n) =

∞∑
n=−∞

〈〈
F (l), ΘnΦ(l)

〉〉
Ψ(n)

=
〈〈

F (l),
∞∑

n=−∞
Ψ(n)ΘnΦ(l)

〉〉
=

〈〈
F, Φ ◦Ψ

〉〉

= π〈T ′F, (TΦ)(TΨ)〉 = π〈(T ′F )(TΦ), TΨ〉.

The proof of (4.5) is now complete.
To verify (iii) observe that, as it was pointed out previously, if F

and Φ ∈ T (Z) then F ◦ Φ is also in T (Z). Conversely, suppose now that
F ◦ Φ ∈ T (Z), for each Φ ∈ T (Z). Then, according to (4.5) we have that

(4.6) T ′(F )T(Φ) ∈ T (−1, 1), Φ ∈ T (Z).
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By taking into account Proposition 2.1, it is not hard to see that
the functions φ1(x) = ex and φ2(x) = e−x, x ∈ [−1, 1], are in T (−1, 1).
Hence, from (4.6) we can infer that T ′(F ) ∈ T (−1, 1). By Theorem 3.1 we
conclude that F ∈ T (Z).

Finally, properties (iv) and (v) are rapidly inferred of the operational
rules (3.11) and (4.3), and the inversion formula (Theorem 3.2). ¤

To illustrate the use of the discrete Tchebycheff transformation , we
propose to solve the following problems involving certain difference equa-
tions

(a) To find the solution U(n) ∈ T ′(Z) of

(4.7) P (ω)U(n) = G(n),

where G(n) is a known member of T ′(Z) and P (z) denotes a polynomial
having no roots on −1 ≤ x ≤ 1. By applying T ′ to (4.7) and setting
u(x) = (T ′U)(x) and g(x) = (T ′G)(x), we get in line with (3.13)

(4.8) P (x)u(x) = g(x).

By virtue of Theorem 3.2, u and g belong to T ′(−1, 1). On the other hand,
in agreement with Remark 2.1, 1/P (x) is a multiplier for both the spaces
T (−1, 1) and T ′(−1, 1). Then, taking the inverse Tchebycheff transforma-
tion, we are led to the desired solution

(4.9) U(n) = T ′−1

{
1

P (x)
g(x)

}
.

In accordance with (3.7) and (3.8) we can express the solution (4.9) in
terms of the known sequence G

〈〈
U(n), Φ(n)

〉〉
= π

〈 1
P (x)

g(x), ϕ(x)
〉

= π
〈
g(x),

1
P (x)

ϕ(x)
〉

=
〈〈

G(n), T−1
{ 1

P (x)
ϕ(x)

}
(n)

〉〉
,

where Φ is an arbitrary member of T (Z) and ϕ(x) = (TΦ)(x). Conse-
quently, in view of (1.2), the solution U(n) of (4.7) is given through the
functional in T ′(Z)

〈〈
U(n),Φ(n)

〉〉
=

〈〈
G(n),

∫ 1

−1

(1− x2)−1/2 ϕ(x)
P (x)

Tn(x)dx
〉〉

.
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(b) To determine the solution u(m,n) in T ′(Z), for every n ∈ N, of
the partial difference equation (m ∈ Z)

1
4
u(m + 2, n) + u(m + 1, n) +

3
2
u(m, n)(4.10)

+ u(m− 1, n) +
1
4
u(m− 2, n)− u(m,n + 2) = 0,

satisfying the conditions

(4.11) u(m, 0) = A(m) ∈ T ′(Z), u(m, 1) = 0.

Note that the use of the difference operator ωn allows us to rewrite the
equation (4.10) as follows

(4.12) ω2
mu(m,n) + 2ωmu(m,n) + u(m,n)− u(m,n + 2) = 0.

Now by setting U(x, n) = T ′u(m,n) and applying the operational rule
(3.11), the problem (4.12) becomes

(x2 + 2x + 1)U(x, n)− U(x, n + 2) = 0,

which is an ordinary difference equation whose general solution is

U(x, n) = (C1 + C2n)(x + 1)n.

Initial conditions (4.11) suggest to choose C1 = −C2 = a(x), where a(x) =
(T ′A)(x). Thus, the transform solution is

U(x, n) = (1− n)(x + 1)na(x).

By resorting to Theorem 3.1 we can obtain the solution in the form

u(m,n) = T ′−1{U(x, n)} = (1− n)
∫ 1

−1

(1− x2)−1/2a(x)Tm(x)(x + 1)ndx,

or, bearing in mind (4.5) and [13, p. 452], in this alternative form involving
the discrete convolution

u(m,n) = (1− n)2nB(1/2, n + 1/2)

×
[

3F2(−m,m, 1/2; 1/2, n + 1; 1) ◦A(m)
]
,
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where B and 3F2 represent the Beta function and the hypergeometric
function, respectively.

To see other applications of the discrete Tchebycheff transform, we
refer to [2].
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UNIVERSIDAD DE LA LAGUNA
38271 – LA LAGUNA, TENERIFE
ISLAS CANARIAS, ESPAÑA
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UNIVERSIDAD DE LA LAGUNA
38271 – LA LAGUNA, TENERIFE
ISLAS CANARIAS, ESPAÑA
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