Automatic continuity of homomorphisms into normed quadratic algebras

By ANTON CEDILNIK (Ljubljana) and ANGEL RODRÍGUEZ PALACIOS (Granada)

Abstract

Let B be a real or complex complete normed quadratic algebra. All homomorphisms from arbitrary (possibly non associative) complete normed algebras into B are continuous if and only if B has no non-zero element with zero square.

1. Introduction

A classical topic in the theory of automatic continuity is that of determining those normed algebras B which satisfy Property $A C H R$ which follows.

ACHR (Automatic Continuity of Homomorphisms into the Right side of the arrow). For every complete normed algebra A, each homomorphism $\varphi: A \rightarrow B$ is continuous.

Usually, Property $A C H R$ is considered in an associative context, so that the normed algebra B is assumed to be associative, and Property $A C H R$ for B means that, for every associative complete normed algebra A each homomorphism $\varphi: A \rightarrow B$ is continuous. For an approach to results in this direction, the reader is referred to the survey paper of H. G. Dales [4]. In this paper we are interested in the natural nonassociative meaning of Property $A C H R$. Then the normed algebra B can

[^0]be or not associative, and, even if B is associative, Property $A C H R$ for B has the stronger sense that, for every possibly non associative complete normed algebra A, each homomorphism $\varphi: A \rightarrow B$ is continuous. In this new setting, we know that real or complex absolute-valued algebras, as well as complete normed complex algebras with no non-zero one-sided topological divisors of zero, have property $A C H R$ (see [9] and [11], respectively).

As main result, we show that real or complex complete normed quadratic algebras have property $A C H R$ if and only if they have no non-zero element with zero square (Theorem 1). We note that quadratic algebras are important not only from an algebraic point of view [12], but also in connection with the analysis. For instance, the structure theory of $J B$ algebras [5] would not be understood without the consideration of the so-called spin $J B W$-factors, which are relevant examples of quadratic algebras. We note also that smooth normed non-associative algebras and normed non-commutative Jordan division algebras are quadratic algebras (see [2] and [7], and [6], respectively). By the way, we remark that, as a consequence of our results, spin $J B W$-factors, as well as smooth normed algebras and complete normed non-commutative Jordan division algebras, are $A C H R$-algebras.

2. The results

Algebras arising throughout this paper are not assumed to be associative. Let B be an algebra. A (two-sided) ideal M of B is said to be modular if there exists some element e in B such that $y-y e \in M$ and $y-e y \in M$ for every y in B. The strong radical of B is defined as the intersection of all modular maximal ideals of B. We say that B is strongly semisimple whenever the strong radical of B is equal to zero. For y in B, we define the sequence $\left\{y^{n}\right\}_{n \geq 1}$, of left powers of y, by $y^{1}=y$ and $y^{n+1}=y y^{n}$. By \mathbb{F} we mean the field of real or complex numbers. Our argument begins with the following variant of [1; Proposition 25.10].

Lemma 1. Let A be a complete normed algebra over \mathbb{F}, B a strongly semisimple algebra over \mathbb{F}, and $\varphi: A \rightarrow B$ a surjective homomorphism. Then $\operatorname{Ker}(\varphi)$ is closed in A.

Proof. Take a modular maximal ideal M of B, and denote by π the quotient mapping $B \rightarrow B / M$. Since B / M is a simple algebra with
a unit (say 1), and the homomorphism $\pi \circ \varphi: A \rightarrow B / M$ is surjective, $(\pi \circ \varphi)(\overline{\operatorname{Ker}(\varphi)})$ must be equal to either B / M or zero. Assume that the first possibility happens. Then we have $\mathbf{1}=(\pi \circ \varphi)(x)$ for some x in $\overline{\operatorname{Ker}(\varphi)}$. Taking y in $\operatorname{Ker}(\varphi)$ with $\|x-y\|<1$, putting $z:=x-y$, and considering the element t of A given by $t:=\sum_{n=1}^{\infty} z^{n}$, we obtain $\mathbf{1}=(\pi \circ \varphi)(z)$ and $z t=t-z$, leading the contradiction $(\pi \circ \varphi)(t)=(\pi \circ \varphi)(t)-\mathbf{1}$. It follows $(\pi \circ \varphi)(\operatorname{Ker}(\varphi))=0$, or equivalently $\varphi(\operatorname{Ker}(\varphi)) \subseteq M$. Since M is an arbitrary modular maximal ideal of B, and B is strongly semisimple, we finally deduce $\varphi(\overline{\operatorname{Ker}(\varphi)})=0$.

The above proof actually shows that, if A is a complete normed algebra over \mathbb{F}, if B is any algebra over \mathbb{F}, and if $\varphi: A \rightarrow B$ is a surjective homomorphism, then $\varphi(\overline{\operatorname{Ker}(\varphi)})$ is contained in the strong radical of B.

Let B be an algebra over \mathbb{F}. We say that B is algebraic (respectively, power-associative) if every one-generated subalgebra of B is finitedimensional (respectively, associative). Assume that B is associative, and let y be an element of B. We say that y is quasi-invertible in B if there exists z in B satisfying $y z=z y=y+z$. It is easy to see that y is quasiinvertible in B if an only if $\mathbf{1 - y}$ is invertible in the formal unital hull of B. For \mathbb{F} equal to \mathbb{C} and \mathbb{R}, we define the spectrum $\operatorname{sp}(B, y)$ of y relative to B by the equalities

$$
\begin{aligned}
& \operatorname{sp}(B, y):=\{0\} \cup\left\{\lambda \in \mathbb{C} \backslash\{0\}: \lambda^{-1} y \text { is not quasi-invertible in } B\right\} \\
& \quad \text { and } \\
& \operatorname{sp}(B, y):=\operatorname{sp}\left(B_{\mathbb{C}}, y\right) \text { (where } B_{\mathbb{C}} \text { stands for the complexification of } B \text {), }
\end{aligned}
$$

respectively.
Now let B be an algebraic power-associative algebra over \mathbb{F}, and y an element of B. An elemental spectral calculus shows that, for every associative subalgebra C of B containing $y, \operatorname{sp}(C, y)$ does not depend on C. This allows us to define the spectrum of y relative to B, $\operatorname{sp}(B, y)$, by means of the equality $\operatorname{sp}(B, y):=\operatorname{sp}(C, y)$ for some C as above. Actually $\operatorname{sp}(B, y)$ is nothing but the set of (possibly complex) roots of a one-indeterminate polynomial p over \mathbb{F} without constant term and which has minimum degree among those satisfying $p(y)=0$. We define the algebraic spectral radius $r(B, y)$ of y relative to B by the equality $r(B, y):=\max \{|\lambda|: \lambda \in \operatorname{sp}(B, y)\}$.

Lemma 2. Let A be a complete normed algebra over \mathbb{F}, B a strongly semisimple algebraic power-associative algebra over \mathbb{F}, and $\varphi: A \rightarrow B$ a surjective homomorphism. Then, for every x in A, the inequality $r(B, \varphi(x)) \leq\|x\|$ holds.

Proof. By Lemma $1, \operatorname{Ker}(\varphi)$ is a closed ideal of A, and therefore $A / \operatorname{Ker}(\varphi)$ is a complete normed algebra over \mathbb{F} in a natural way. Let ϕ : $A / \operatorname{Ker}(\varphi) \rightarrow B$ be the unique surjective isomorphism such that $\phi \circ \pi=\varphi$ (where $\pi: A \rightarrow A / \operatorname{Ker}(\varphi)$ denotes quotient mapping). Then the function $y \rightarrow|y|:=\left\|\phi^{-1}(y)\right\|$ from B to \mathbb{R} is an algebra norm on B. Since B is algebraic, such a norm is complete on each one-generated subalgebra of B, and therefore, by power-associativity and standard Banach algebra theory, we have $r(B, y) \leq|y|$ for every y in B. Finally, for x in A we obtain

$$
r(B, \varphi(x)) \leq|\varphi(x)|=\left\|\phi^{-1}(\varphi(x))\right\|=\|\pi(x)\| \leq\|x\| .
$$

An element y of an algebra is said to be isotropic if $y \neq 0=y^{2}$. As we show in the next remark, the presence of isotropic elements in a normed algebra B becomes a serious handicap for the automatic continuity of homomorphisms from normed algebras into B.

Remark 1. Let A be a normed algebra over \mathbb{F} such that A^{2} is contained in some non-closed hyperplan, and B a normed algebra over \mathbb{F} possessing isotropic elements. Then there exist discontinuous homomorphisms from A into B. Indeed, we have $A^{2} \subseteq \operatorname{Ker}(\psi)$ for a suitable discontinuous linear functional ψ on A, so that, by choosing an isotropic element z in B, the mapping $\varphi: x \rightarrow \psi(x) z$ from A to B becomes a discontinuous homomorphism. We note that the normed algebra A above can be chosen complete, associative, and commutative. Indeed, starting from an arbitrary infinitedimensional Banach space X over \mathbb{F}, and considering the normed algebra A over \mathbb{F} whose vector space is $\mathbb{F} \times X$ and whose product and norm are given by $(\lambda, \xi)(\mu, \eta):=(\lambda \mu, 0)$ and $\|(\lambda, \xi)\|:=|\lambda|+\|\xi\|$, respectively, A becomes a complete normed, associative, and commutative algebra with A^{2} contained in some non closed hyperplan. In the case that B has a unit, an alternative method, to construct discontinuous homomorphisms from (better) complete normed associative and commutative algebras into B, can be derived from [4; Proposition 6.6 and Example 6.5].

Following [12; pp. 49-50], we say that a non-zero algebra B over \mathbb{F} is quadratic if it has a unit 1, and for each y in B there exist elements $\tau(y)$
and $n(y)$ in \mathbb{F} such that $y^{2}-2 \tau(y) y+n(y) \mathbf{1}=0$. Actually, in the definition of [12] the fact that $B \neq \mathbb{F} \mathbf{1}$ is additionally required, but such a requirement is unnecessary for our development. If B is a quadratic algebra over \mathbb{F}, then, for y in $B \backslash \mathbb{F} \mathbf{1}$, the scalars $\tau(y)$ and $n(y)$ are uniquely determined, so that, choosing $\tau(\alpha \mathbf{1}):=\alpha$ and $n(\alpha \mathbf{1}):=\alpha^{2}(\alpha \in \mathbb{F})$, we obtain mappings τ and n (called the trace form and the norm form, respectively) from B to \mathbb{F}, which are linear and quadratic, respectively (see again [12; pp. 49-50]). We note that quadratic algebras are algebraic and power-associative.

Lemma 3. Let B be a quadratic algebra over \mathbb{F} without isotropic elements, and C a non-zero subalgebra of B. Then C is either simple with a unit or isomorphic to $\mathbb{F} \oplus \mathbb{F}$.

Proof. First assume that C does not contain the unit 1 of B. Then for every y in C we have $y^{2}=2 \tau(y) y$ and hence, since B has no isotropic element, the restriction of τ to C is an injective linear from. It follows $C=\mathbb{F} f$ for some f in C satisfying $2 \tau(f)=1$, so that the mapping $\lambda \rightarrow \lambda f$ is an isomorphism from \mathbb{F} onto C, and the proof is concluded in this case. Now assume that $\mathbf{1} \in C$. Then C is a quadratic algebra over \mathbb{F} without isotropic elements, so that there is no restriction in taking $C=B$. Assume additionally that B is not simple. Then we can choose an ideal M of B with $0 \neq M$ and $\mathbf{1} \notin M$. By the first part of the proof, we have $M=\mathbb{F} f$ for some idempotent f in B with $0 \neq f \neq 1$: Let $B=B_{1} \oplus B_{1 / 2} \oplus B_{0}$ be the Peirce decomposition of B relative to f [12; pp. 130-131]. The definition of B_{1} and $B_{1 / 2}$, together with the fact that $\mathbb{F} f$ is an ideal of B, directly leads to $B_{1}=\mathbb{F} f$ and $B_{1 / 2}=0$, so that $B=\mathbb{F} f \oplus B_{0}$. By the definition of B_{0}, we have $f B_{0}=0$, and hence $\mathbf{1} \notin B_{0}$. But B_{0} is a subalgebra of the algebra B^{+}obtained by symmetrization of the product of B (see again [12; p. 131]). Since B^{+}has the same properties as B, it follows from the first part of the proof that $B_{0}=\mathbb{F} g$ for some non-zero idempotent g in B. Now we have $B=\mathbb{F} f \oplus \mathbb{F} g$ with f and g non-zero idempotents satisfying $f g=g f=0$, and hence $(\lambda, \mu) \rightarrow \lambda f+\mu g$ is an isomorphism from $\mathbb{F} \oplus \mathbb{F}$ onto B.

Remark 2. It is worth mentioning that, if $\mathbb{F}=\mathbb{C}$, then in fact the algebra B in the above lemma is isomorphic to either \mathbb{C} or $\mathbb{C} \oplus \mathbb{C}$. Indeed, if the dimension of B is ≥ 3, then the restriction of the norm form n of B to $\operatorname{Ker}(\tau)$ (where τ denotes the trace form on B) is a quadratic form on a complex vector space of dimension ≥ 2, and hence there exists a non-zero $y \in \operatorname{Ker}(\tau)$ such that $n(y)=0$, leading to the contradiction $y \neq 0=y^{2}$.

Now we are ready to formulate and prove the main tool in our argument.

Proposition 1. Let A be a complete normed algebra over \mathbb{F}, B a quadratic algebra over \mathbb{F} without isotropic elements, and $\varphi: A \rightarrow B$ a homomorphism. Then, for every x in A, the inequality $r(B, \varphi(x)) \leq\|x\|$ holds.

Proof. We can assume $\varphi \neq 0$, so that $\varphi(A)$ is a non-zero subalgebra of B. By Lemma 3, $\varphi(A)$ is strongly semisimple. Therefore we can see φ as a homomorphism from A onto $\varphi(A)$, and apply Lemma 2 to obtain $r(\varphi(A), \varphi(x)) \leq\|x\|$ for every x in A. Finally note that, for y in $\varphi(A)$, the equality $r(\varphi(A), y)=r(B, y)$ holds.

We note that, if B is an algebraic power-associative algebra over \mathbb{F}, and if $r(B, y) \neq 0$ for every non-zero $y \in B$, then B has no isotropic element. Keeping in mind this fact, the next result follows straightforwardly from the above proposition.

Corollary 1. Let B be a normed quadratic algebra over \mathbb{F}. Assume that there exists a positive constant M such that the inequality $\|y\| \leq$ $\operatorname{Mr}(B, y)$ holds for every y in B. Then all homomorphisms from complete normed algebras over \mathbb{F} into B are continuous.

To illustrate the field of applicability of Corollary 1 , let us recall some facts about smooth normed algebras. Smooth normed algebras over \mathbb{F} are defined as those normed algebras B over \mathbb{F} having a norm-one unit which is a smooth point of the closed unit ball of A. It is well-known that \mathbb{C} is the unique smooth normed complex algebra (see for example [10; Corollary 1.6]). In the real setting, things are not so easy. For instance, every non-zero real pre-Hilbert space H can be converted into a commutative smooth normed real algebra by fixing a norm-one element 1 in H, and defining the product by means of the equality $x y:=(x \mid \mathbf{1}) y+(y \mid \mathbf{1}) x-$ $(x \mid y) \mathbf{1}$ [10; Observation 1.3]. More generally, if H is any (possibly equal
to zero) real pre-Hilbert space, and if \wedge is an anticommutative product on H satisfying $\|\xi \wedge \eta\| \leq\|\xi\|\|\eta\|$ and $(\xi \wedge \eta \mid \vartheta)=(\xi \mid \eta \wedge \vartheta)$ for all ξ, η, ϑ in H, then the pre-Hilbert space $(\mathbb{R} \oplus H)_{\ell_{2}}$ becomes a smooth normed real algebra relative to the product

$$
(\lambda, \xi)(\mu, \eta):=(\lambda \mu-(\xi \mid \eta), \lambda \eta+\mu \xi+\xi \wedge \eta)
$$

[7; Proposition 24]. Moreover, all smooth normed real algebras come from the construction just described (see [2], [7; Theorem 27], and [8; Section 2]). It follows that, if B is a smooth normed algebra over \mathbb{F}, then B is quadratic, and the equality $\|y\|=r(B, y)$ holds for every y in B. In this way the next result is a particular case of Corollary 1.

Corollary 2 [3]. Homomorphisms from complete normed algebras over \mathbb{F} into smooth normed algebras over \mathbb{F} are continuous.

Another method to build normed quadratic real algebras from real pre-Hilbert spaces is the following. If H is a real pre-Hilbert space, then the normed space $B:=(\mathbb{R} \oplus H)_{\ell_{1}}$, endowed with the product

$$
(\lambda, \xi)(\mu, \eta):=(\lambda \mu+(\xi \mid \eta), \lambda \eta+\mu \xi)
$$

becomes a normed quadratic commutative real algebra whose elements y satisfy the equality $\|y\|=r(B, y)$. We note that, when H is actually a Hilbert space of dimension ≥ 2, the above procedure gives rise to the socalled spin $J B W$-factors [5; Chapter 6], which are of capital relevance in the structure theory of $J B$-algebras. Now Corollary 1 applies, leading the next result.

Corollary 3. Homomorphisms from complete normed real algebras into spin $J B W$-factors are continuous.

Spin $J B W$-factors, as well as smooth normed commutative algebras, are particular relevant cases of the so-called Jordan algebras of a bilinear form, whose construction is recalled in the sequel. Given a vector space X over \mathbb{F} and a symmetric bilinear form $f: X \times X \rightarrow \mathbb{F}$, we can consider the algebra over \mathbb{F} with vector space equal to $\mathbb{F} \oplus X$ and product given by

$$
(\lambda, \xi)(\mu, \eta):=(\lambda \mu+f(\xi, \eta), \lambda \eta+\mu \xi) .
$$

Such an algebra is commutative and quadratic, is called the Jordan algebra of the bilinear form f, and is denoted by $J(X, f)$. Jordan algebras of
bilinear forms are more than examples of quadratic commutative algebra. Indeed, it follows easily from the properties of the functions τ and n on quadratic algebras that every quadratic commutative algebra over \mathbb{F} is isomorphic to $J(X, f)$ for a suitable couple (X, f) as above.

Now we are ready to formulate and prove the main result of the paper.
Theorem 1. Let B be a complete normed quadratic algebra over \mathbb{F}. Then the following assertions are equivalent:

1. Homomorphisms from complete normed algebras over \mathbb{F} into B are continuous.
2. Homomorphisms from complete normed, associative, and commutative algebras over \mathbb{F} into B are continuous.
3. B has no isotropic element.

Proof. The implication $1 \Rightarrow 2$ is clear, whereas the one $2 \Rightarrow 3$ follows from Remark 1.

Assume that Assertion 3 holds. Then we claim that the mapping $y \rightarrow r(B, y)$ is a vector space norm on B. If $\mathbb{F}=\mathbb{C}$, then the claim is easily verified by keeping in mind Remark 2. If $\mathbb{F}=\mathbb{R}$, then, by passing to B^{+}, we can assume that B is commutative, and hence we have $B=J(X, f)$ for some real vector space X and some symmetric bilinear form f on X. Now, the absence of isotropic elements in B implies $f(\xi, \xi) \neq 0$ for every non-zero element ξ in X, and therefore f is of the form $\epsilon(. \mid$.$) , where$ $\epsilon= \pm 1$ and (.|.) is a suitable inner product on X. Then a straightforward computation shows that, for $y=(\lambda, \xi)$ in $B=J(X, f)$, we have

$$
r(B, y)=|\lambda|+(\xi \mid \xi)^{1 / 2}, \quad \text { if } \epsilon=1
$$

and

$$
r(B, y)=\left(|\lambda|^{2}+(\xi \mid \xi)\right)^{1 / 2}, \quad \text { if } \epsilon=-1
$$

Now that the claim is proved, we show that Assertion 1 holds by means of a standard closed graph argument. Let A be a complete normed algebra over \mathbb{F}, and $\varphi: A \rightarrow B$ a homomorphisms. If $x_{n} \rightarrow 0$ in A with $\varphi\left(x_{n}\right) \rightarrow y \in B$, then, by the claim and Proposition 1, we have

$$
r(B, y) \leq r\left(B, y-\varphi\left(x_{n}\right)\right)+r\left(B, \varphi\left(x_{n}\right)\right) \leq\left\|y-\varphi\left(x_{n}\right)\right\|+\left\|x_{n}\right\| \rightarrow 0
$$

and hence $y=0$.

Remark 3. i) We show, by means of an easy example, that the assumption of completeness of B in Theorem 1 cannot be removed. Take A equal to an arbitrary infinite-dimensional spin $J B W$-factor (i.e., $A=J(X, f)$, where X is an infinite-dimensional real Hilbert space and f is the inner product (. |.) of X, with norm defined by $\|(\lambda, \xi)\|:=|\lambda|+(\xi \mid \xi)^{1 / 2}$. Now, choose a discontinuous linear functional h on X, and consider $B=J(X, f)$ with the norm $\|$.$\| given by$

$$
\|(\lambda, \xi)\|:=\|(\lambda, \xi)\|+|h(\xi)| .
$$

Then A is a complete normed algebra, B is a normed quadratic algebra without isotropic elements, and the identity mapping $A \rightarrow B$ is a discontinuous homomorphism.
ii) Let B be a normed quadratic algebra. Consider the condition on B given by:
(*) There exists $M>0$ satisfying $\|y\| \leq M r(B, y)$ for every y in B.
Corollary 1 shows that Condition $(*)$ is sufficient to ensure that B is an $A C H R$-algebra. On the other hand, we have seen in the proof of Theorem 1 that, if B has no isotropic element, then the function $r(B,$.$) is a norm$ on B. It follows from Remark 1 that, if B is finite-dimensional, then Condition (*) is also necessary for B to enjoy Property $A C H R$. Now we can realize that, in general, Condition (*) need not be necessary for B to have Property $A C H R$. Take $B=J(X, f)$, where X is the Banach space of all real-valued continuous functions on the closed real interval [0,1], and f is the symmetric bilinear form on X defined by

$$
f(\xi, \eta):=\int_{0}^{1} \xi(t) \eta(t) d t
$$

and endow B with the norm

$$
\|(\lambda, \xi)\|:=|\lambda|+\max \{|\xi(t)|: t \in[0,1]\} .
$$

Then B is a complete normed quadratic algebra without isotropic elements, and hence, by Theorem 1, has Property $A C H R$. However, it is easily seen that, for such a choice of B, there is no positive constant M satisfying $\|y\| \leq \operatorname{Mr}(B, y)$ for every y in B.

References

[1] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin, 1973.
[2] A.Cedilnik, Banach quadratic algebras, Ph.D. Thesis, University of Ljubljana, Ljubljana, 1981.
[3] A. Cedilnik, Automatic continuity of homomorphisms into smooth normed algebras (preprint).
[4] H. G. Dales, Automatic continuity, a survey, Bull. London. Math. Soc. 10 (1978), 129-183.
[5] H. Hanche-Olsen and E. Stormer, Jordan operator algebras, Monographs Stud. Math. 21; Pitman, Boston-London-Melbourne, 1984.
[6] A. Kaidi, Structure des algèbres de Jordan-Banach non commutatives réelles de division, Ann. Sci. Univ. Clermont-Ferrand II Math. 27 (1991), 119-124.
[7] A. Rodriguez, Nonassociative normed algebras spanned by hermitian elements, Proc. London Math. Soc. 47 (1983), 258-274.
[8] A. Rodriguez, An approach to Jordan-Banach algebras from the theory of nonassociative complete normed algebras, Ann. Sci. Univ. Clermont-Ferrand II Math. 27 (1991), 1-57.
[9] A. Rodriguez, One-sided division absolute valued algebras, Publ. Mat. 36 (1992), 925-954.
[10] A. Rodriguez, Multiplicative characterization of Hilbert spaces and other interesting classes of Banach spaces, Rev. Mat. Univ. Complutense Madrid 9 (1996), 149-189.
[11] A. Rodriguez, Continuity of homomorphisms into normed algebras without topological divisors of zero, Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid (to appear).
[12] R. D. Schafer, An introduction to nonassociative algebras, Academic Press, New York, 1966.

```
ANTON CEDILNIK
INSTITUTE OF MATHEMATICS, PHYSICS, AND MECHANICS
UNIVERSITY OF LJUBLJANA
1111 LJUBLJANA, JADRANSKA 19
SLOVENIA
E-mail: anton.cedilnik@uni-lj.si
ANGEL RODRÍGUEZ PALACIOS
UNIVERSIDAD DE GRANADA
FACULTAD DE CIENCIAS
DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
18071 GRANADA
SPAIN
E-mail: apalacio@goliat.ugr.es
```

(Received April 25, 2000; file obtained October 12, 2000)

[^0]: Mathematics Subject Classification: 17A05, 17A45, 46H40, 46H70.
 Key words and phrases: algebraic power-associative algebra, isotropic element, nonassociative normed algebra, smooth algebra, spectral radius, spin JBW-factor, strong radical.

