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Automatic continuity of homomorphisms
into normed quadratic algebras

By ANTON CEDILNIK (Ljubljana)

and ANGEL RODRÍGUEZ PALACIOS (Granada)

Abstract. Let B be a real or complex complete normed quadratic algebra. All
homomorphisms from arbitrary (possibly non associative) complete normed algebras
into B are continuous if and only if B has no non-zero element with zero square.

1. Introduction

A classical topic in the theory of automatic continuity is that of de-
termining those normed algebras B which satisfy Property ACHR which
follows.

ACHR (Automatic Continuity of Homomorphisms into the Right side
of the arrow). For every complete normed algebra A, each homomorphism

ϕ : A → B is continuous.

Usually, Property ACHR is considered in an associative context, so
that the normed algebra B is assumed to be associative, and Property
ACHR for B means that, for every associative complete normed algebra
A each homomorphism ϕ : A → B is continuous. For an approach to
results in this direction, the reader is referred to the survey paper of
H. G. Dales [4]. In this paper we are interested in the natural non-
associative meaning of Property ACHR. Then the normed algebra B can
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be or not associative, and, even if B is associative, Property ACHR for B

has the stronger sense that, for every possibly non associative complete
normed algebra A, each homomorphism ϕ : A → B is continuous. In
this new setting, we know that real or complex absolute-valued algebras,
as well as complete normed complex algebras with no non-zero one-sided
topological divisors of zero, have property ACHR (see [9] and [11], respec-
tively).

As main result, we show that real or complex complete normed quad-
ratic algebras have property ACHR if and only if they have no non-zero
element with zero square (Theorem 1). We note that quadratic algebras
are important not only from an algebraic point of view [12], but also in
connection with the analysis. For instance, the structure theory of JB-
algebras [5] would not be understood without the consideration of the
so-called spin JBW -factors, which are relevant examples of quadratic al-
gebras. We note also that smooth normed non-associative algebras and
normed non-commutative Jordan division algebras are quadratic algebras
(see [2] and [7], and [6], respectively). By the way, we remark that, as a
consequence of our results, spin JBW -factors, as well as smooth normed
algebras and complete normed non-commutative Jordan division algebras,
are ACHR-algebras.

2. The results

Algebras arising throughout this paper are not assumed to be asso-
ciative. Let B be an algebra. A (two-sided) ideal M of B is said to be
modular if there exists some element e in B such that y − ye ∈ M and
y − ey ∈ M for every y in B. The strong radical of B is defined as the
intersection of all modular maximal ideals of B. We say that B is strongly
semisimple whenever the strong radical of B is equal to zero. For y in
B, we define the sequence {yn}n≥1, of left powers of y, by y1 = y and
yn+1 = yyn. By F we mean the field of real or complex numbers. Our
argument begins with the following variant of [1; Proposition 25.10].

Lemma 1. Let A be a complete normed algebra over F, B a strongly

semisimple algebra over F, and ϕ : A → B a surjective homomorphism.

Then Ker(ϕ) is closed in A.

Proof. Take a modular maximal ideal M of B, and denote by π

the quotient mapping B → B/M . Since B/M is a simple algebra with
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a unit (say 1), and the homomorphism π ◦ ϕ : A → B/M is surjective,
(π◦ϕ)(Ker(ϕ)) must be equal to either B/M or zero. Assume that the first
possibility happens. Then we have 1 = (π ◦ ϕ)(x) for some x in Ker(ϕ).
Taking y in Ker(ϕ) with ‖x− y‖ < 1, putting z := x− y, and considering
the element t of A given by t :=

∑∞
n=1 zn, we obtain 1 = (π ◦ ϕ)(z) and

zt = t− z, leading the contradiction (π ◦ ϕ)(t) = (π ◦ ϕ)(t)− 1. It follows
(π ◦ ϕ)(Ker(ϕ)) = 0, or equivalently ϕ(Ker(ϕ)) ⊆ M . Since M is an
arbitrary modular maximal ideal of B, and B is strongly semisimple, we
finally deduce ϕ(Ker(ϕ)) = 0. ¤

The above proof actually shows that, if A is a complete normed alge-
bra over F, if B is any algebra over F, and if ϕ : A → B is a surjective
homomorphism, then ϕ(Ker(ϕ)) is contained in the strong radical of B.

Let B be an algebra over F. We say that B is algebraic (respec-
tively, power-associative) if every one-generated subalgebra of B is finite-
dimensional (respectively, associative). Assume that B is associative, and
let y be an element of B. We say that y is quasi-invertible in B if there
exists z in B satisfying yz = zy = y + z. It is easy to see that y is quasi-
invertible in B if an only if 1− y is invertible in the formal unital hull of
B. For F equal to C and R, we define the spectrum sp(B, y) of y relative
to B by the equalities

sp(B, y) := {0} ∪ {λ ∈ C\{0} : λ−1y is not quasi-invertible in B}
and

sp(B, y) := sp(BC, y) (where BC stands for the complexification of B),

respectively.

Now let B be an algebraic power-associative algebra over F, and y

an element of B. An elemental spectral calculus shows that, for ev-
ery associative subalgebra C of B containing y, sp(C, y) does not de-
pend on C. This allows us to define the spectrum of y relative to B,
sp(B, y), by means of the equality sp(B, y) := sp(C, y) for some C as
above. Actually sp(B, y) is nothing but the set of (possibly complex)
roots of a one-indeterminate polynomial p over F without constant term
and which has minimum degree among those satisfying p(y) = 0. We de-
fine the algebraic spectral radius r(B, y) of y relative to B by the equality
r(B, y) := max{|λ| : λ ∈ sp(B, y)}.
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Lemma 2. Let A be a complete normed algebra over F, B a strongly

semisimple algebraic power-associative algebra over F, and ϕ : A → B

a surjective homomorphism. Then, for every x in A, the inequality

r(B, ϕ(x)) ≤ ‖x‖ holds.

Proof. By Lemma 1, Ker(ϕ) is a closed ideal of A, and therefore
A/ Ker(ϕ) is a complete normed algebra over F in a natural way. Let φ :
A/ Ker(ϕ) → B be the unique surjective isomorphism such that φ ◦ π = ϕ

(where π : A → A/ Ker(ϕ) denotes quotient mapping). Then the function
y → |y| := ‖φ−1(y)‖ from B to R is an algebra norm on B. Since B is
algebraic, such a norm is complete on each one-generated subalgebra of B,
and therefore, by power-associativity and standard Banach algebra theory,
we have r(B, y) ≤ |y| for every y in B. Finally, for x in A we obtain

r(B, ϕ(x)) ≤ |ϕ(x)| = ‖φ−1(ϕ(x))‖ = ‖π(x)‖ ≤ ‖x‖. ¤

An element y of an algebra is said to be isotropic if y 6= 0 = y2. As we
show in the next remark, the presence of isotropic elements in a normed
algebra B becomes a serious handicap for the automatic continuity of
homomorphisms from normed algebras into B.

Remark 1. Let A be a normed algebra over F such that A2 is contained
in some non-closed hyperplan, and B a normed algebra over F possessing
isotropic elements. Then there exist discontinuous homomorphisms from
A into B. Indeed, we have A2 ⊆ Ker(ψ) for a suitable discontinuous linear
functional ψ on A, so that, by choosing an isotropic element z in B, the
mapping ϕ : x → ψ(x)z from A to B becomes a discontinuous homomor-
phism. We note that the normed algebra A above can be chosen complete,
associative, and commutative. Indeed, starting from an arbitrary infinite-
dimensional Banach space X over F, and considering the normed algebra
A over F whose vector space is F × X and whose product and norm are
given by (λ, ξ)(µ, η) := (λµ, 0) and ‖(λ, ξ)‖ := |λ| + ‖ξ‖, respectively, A

becomes a complete normed, associative, and commutative algebra with
A2 contained in some non closed hyperplan. In the case that B has a unit,
an alternative method, to construct discontinuous homomorphisms from
(better) complete normed associative and commutative algebras into B,
can be derived from [4; Proposition 6.6 and Example 6.5].

Following [12; pp. 49–50], we say that a non-zero algebra B over F is
quadratic if it has a unit 1, and for each y in B there exist elements τ(y)
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and n(y) in F such that y2−2τ(y)y+n(y)1 = 0. Actually, in the definition
of [12] the fact that B 6= F1 is additionally required, but such a requirement
is unnecessary for our development. If B is a quadratic algebra over F,
then, for y in B\F1, the scalars τ(y) and n(y) are uniquely determined, so
that, choosing τ(α1) := α and n(α1) := α2 (α ∈ F), we obtain mappings
τ and n (called the trace form and the norm form, respectively) from B to
F, which are linear and quadratic, respectively (see again [12; pp. 49–50]).
We note that quadratic algebras are algebraic and power-associative.

Lemma 3. Let B be a quadratic algebra over F without isotropic

elements, and C a non-zero subalgebra of B. Then C is either simple with

a unit or isomorphic to F⊕ F.

Proof. First assume that C does not contain the unit 1 of B. Then

for every y in C we have y2 = 2τ(y)y and hence, since B has no isotropic

element, the restriction of τ to C is an injective linear from. It follows

C = Ff for some f in C satisfying 2τ(f) = 1, so that the mapping λ → λf

is an isomorphism from F onto C, and the proof is concluded in this case.

Now assume that 1 ∈ C. Then C is a quadratic algebra over F without

isotropic elements, so that there is no restriction in taking C = B. Assume

additionally that B is not simple. Then we can choose an ideal M of B

with 0 6= M and 1 /∈ M . By the first part of the proof, we have M = Ff for

some idempotent f in B with 0 6= f 6= 1: Let B = B1 ⊕B1/2 ⊕B0 be the

Peirce decomposition of B relative to f [12; pp. 130–131]. The definition

of B1 and B1/2, together with the fact that Ff is an ideal of B, directly

leads to B1 = Ff and B1/2 = 0, so that B = Ff ⊕ B0. By the definition

of B0, we have fB0 = 0, and hence 1 /∈ B0. But B0 is a subalgebra of the

algebra B+ obtained by symmetrization of the product of B (see again

[12; p. 131]). Since B+ has the same properties as B, it follows from the

first part of the proof that B0 = Fg for some non-zero idempotent g in B.

Now we have B = Ff ⊕ Fg with f and g non-zero idempotents satisfying

fg = gf = 0, and hence (λ, µ) → λf + µg is an isomorphism from F ⊕ F
onto B. ¤
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Remark 2. It is worth mentioning that, if F = C, then in fact the
algebra B in the above lemma is isomorphic to either C or C⊕C. Indeed,
if the dimension of B is ≥ 3, then the restriction of the norm form n of B

to Ker(τ) (where τ denotes the trace form on B) is a quadratic form on a
complex vector space of dimension ≥ 2, and hence there exists a non-zero
y ∈ Ker(τ) such that n(y) = 0, leading to the contradiction y 6= 0 = y2.

Now we are ready to formulate and prove the main tool in our argu-
ment.

Proposition 1. Let A be a complete normed algebra over F, B a

quadratic algebra over F without isotropic elements, and ϕ : A → B a

homomorphism. Then, for every x in A, the inequality r(B, ϕ(x)) ≤ ‖x‖
holds.

Proof. We can assume ϕ 6= 0, so that ϕ(A) is a non-zero subalgebra
of B. By Lemma 3, ϕ(A) is strongly semisimple. Therefore we can see
ϕ as a homomorphism from A onto ϕ(A), and apply Lemma 2 to obtain
r(ϕ(A), ϕ(x)) ≤ ‖x‖ for every x in A. Finally note that, for y in ϕ(A), the
equality r(ϕ(A), y) = r(B, y) holds. ¤

We note that, if B is an algebraic power-associative algebra over F,
and if r(B, y) 6= 0 for every non-zero y ∈ B, then B has no isotropic ele-
ment. Keeping in mind this fact, the next result follows straightforwardly
from the above proposition.

Corollary 1. Let B be a normed quadratic algebra over F. Assume

that there exists a positive constant M such that the inequality ‖y‖ ≤
Mr(B, y) holds for every y in B. Then all homomorphisms from complete

normed algebras over F into B are continuous.

To illustrate the field of applicability of Corollary 1, let us recall some
facts about smooth normed algebras. Smooth normed algebras over F are
defined as those normed algebras B over F having a norm-one unit which
is a smooth point of the closed unit ball of A. It is well-known that C is
the unique smooth normed complex algebra (see for example [10; Corol-
lary 1.6]). In the real setting, things are not so easy. For instance, every
non-zero real pre-Hilbert space H can be converted into a commutative
smooth normed real algebra by fixing a norm-one element 1 in H, and
defining the product by means of the equality xy := (x |1)y + (y |1)x −
(x | y)1 [10; Observation 1.3]. More generally, if H is any (possibly equal
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to zero) real pre-Hilbert space, and if ∧ is an anticommutative product on
H satisfying ‖ξ ∧ η‖ ≤ ‖ξ‖ ‖η‖ and (ξ ∧ η | ϑ) = (ξ | η ∧ ϑ) for all ξ, η,
ϑ in H, then the pre-Hilbert space (R ⊕H)`2 becomes a smooth normed
real algebra relative to the product

(λ, ξ)(µ, η) := (λµ− (ξ | η), λη + µξ + ξ ∧ η)

[7; Proposition 24]. Moreover, all smooth normed real algebras come from
the construction just described (see [2], [7; Theorem 27], and [8; Section 2]).
It follows that, if B is a smooth normed algebra over F, then B is quadratic,
and the equality ‖y‖ = r(B, y) holds for every y in B. In this way the
next result is a particular case of Corollary 1.

Corollary 2 [3]. Homomorphisms from complete normed algebras

over F into smooth normed algebras over F are continuous.

Another method to build normed quadratic real algebras from real
pre-Hilbert spaces is the following. If H is a real pre-Hilbert space, then
the normed space B := (R⊕H)`1 , endowed with the product

(λ, ξ)(µ, η) := (λµ + (ξ | η), λη + µξ),

becomes a normed quadratic commutative real algebra whose elements y

satisfy the equality ‖y‖ = r(B, y). We note that, when H is actually a
Hilbert space of dimension ≥ 2, the above procedure gives rise to the so-
called spin JBW -factors [5; Chapter 6], which are of capital relevance in
the structure theory of JB-algebras. Now Corollary 1 applies, leading the
next result.

Corollary 3. Homomorphisms from complete normed real algebras

into spin JBW -factors are continuous.

Spin JBW -factors, as well as smooth normed commutative algebras,
are particular relevant cases of the so-called Jordan algebras of a bilinear
form, whose construction is recalled in the sequel. Given a vector space X

over F and a symmetric bilinear form f : X ×X → F, we can consider the
algebra over F with vector space equal to F⊕X and product given by

(λ, ξ)(µ, η) := (λµ + f(ξ, η), λη + µξ).

Such an algebra is commutative and quadratic, is called the Jordan algebra
of the bilinear form f , and is denoted by J(X, f). Jordan algebras of
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bilinear forms are more than examples of quadratic commutative algebra.
Indeed, it follows easily from the properties of the functions τ and n on
quadratic algebras that every quadratic commutative algebra over F is
isomorphic to J(X, f) for a suitable couple (X, f) as above.

Now we are ready to formulate and prove the main result of the paper.

Theorem 1. Let B be a complete normed quadratic algebra over F.

Then the following assertions are equivalent:

1. Homomorphisms from complete normed algebras over F into B are

continuous.

2. Homomorphisms from complete normed, associative, and commuta-

tive algebras over F into B are continuous.

3. B has no isotropic element.

Proof. The implication 1 ⇒ 2 is clear, whereas the one 2 ⇒ 3 follows
from Remark 1.

Assume that Assertion 3 holds. Then we claim that the mapping
y → r(B, y) is a vector space norm on B. If F = C, then the claim is easily
verified by keeping in mind Remark 2. If F = R, then, by passing to B+,
we can assume that B is commutative, and hence we have B = J(X, f)
for some real vector space X and some symmetric bilinear form f on X.
Now, the absence of isotropic elements in B implies f(ξ, ξ) 6= 0 for every
non-zero element ξ in X, and therefore f is of the form ε( . | . ), where
ε = ±1 and ( . | . ) is a suitable inner product on X. Then a straightforward
computation shows that, for y = (λ, ξ) in B = J(X, f), we have

r(B, y) = |λ|+ (ξ | ξ)1/2, if ε = 1,

and

r(B, y) = (|λ|2 + (ξ | ξ))1/2, if ε = −1.

Now that the claim is proved, we show that Assertion 1 holds by means of a
standard closed graph argument. Let A be a complete normed algebra over
F, and ϕ : A → B a homomorphisms. If xn → 0 in A with ϕ(xn) → y ∈ B,
then, by the claim and Proposition 1, we have

r(B, y) ≤ r(B, y − ϕ(xn)) + r(B,ϕ(xn)) ≤ ‖y − ϕ(xn)‖+ ‖xn‖ → 0,

and hence y = 0. ¤
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Remark 3. i) We show, by means of an easy example, that the assump-
tion of completeness of B in Theorem 1 cannot be removed. Take A equal
to an arbitrary infinite-dimensional spin JBW -factor (i.e., A = J(X, f),
where X is an infinite-dimensional real Hilbert space and f is the inner
product (. | .) of X, with norm defined by ‖(λ, ξ)‖ := |λ|+(ξ | ξ)1/2. Now,
choose a discontinuous linear functional h on X, and consider B = J(X, f)
with the norm |||.||| given by

|||(λ, ξ)||| := ‖(λ, ξ)‖+ |h(ξ)|.

Then A is a complete normed algebra, B is a normed quadratic algebra
without isotropic elements, and the identity mapping A → B is a discon-
tinuous homomorphism.

ii) Let B be a normed quadratic algebra. Consider the condition on
B given by:

(∗) There exists M > 0 satisfying ‖y‖ ≤ Mr(B, y) for every y in B.

Corollary 1 shows that Condition (∗) is sufficient to ensure that B is an
ACHR-algebra. On the other hand, we have seen in the proof of Theorem 1
that, if B has no isotropic element, then the function r(B, . ) is a norm
on B. It follows from Remark 1 that, if B is finite-dimensional, then
Condition (∗) is also necessary for B to enjoy Property ACHR. Now we
can realize that, in general, Condition (∗) need not be necessary for B to
have Property ACHR. Take B = J(X, f), where X is the Banach space of
all real-valued continuous functions on the closed real interval [0, 1], and
f is the symmetric bilinear form on X defined by

f(ξ, η) :=
∫ 1

0

ξ(t)η(t)dt,

and endow B with the norm

‖(λ, ξ)‖ := |λ|+ max
{|ξ(t)| : t ∈ [0, 1]

}
.

Then B is a complete normed quadratic algebra without isotropic elements,
and hence, by Theorem 1, has Property ACHR. However, it is easily seen
that, for such a choice of B, there is no positive constant M satisfying
‖y‖ ≤ Mr(B, y) for every y in B.
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