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Framed (2M + 3)-dimensional manifolds endowed
with a vertical cyclic connection structure

By FILIP DEFEVER (Leuven) RADU ROSCA (Paris)

Abstract. Geometrical and structural properties are proved for a class of framed
manifolds which are equiped with a vertical cyclic connection structure.

1. Introduction

Framed manifolds and f-structures have been initiated by K. YANO
and M. KoN and have subsequently been studied intensively, see for ex-
ample [1], [19], [22], [18]. We recall that if M(4,,&.,1", g) is a (2m + q)-
dimensional manifold of this kind, then the &, for (r = 2m+1,...,2m+q),
are the Reeb vector fields (in the large sense) of the f-structure, and
n" = & their corresponding covectors. One has the following structure
equations:

1) ¢ =-1d+> 7 @&, ¢&=0, 7 op=0, 7°(&) =25,

where ¢ is a (1.1) tensor field. With respect to g, one has the following
relation

9(0Z, 2"+ g(Z,9Z") =0,  Z,Z' € E(M),

(i.e. ¢ is skew-symmetric with respect to g). The 2-form  of rank 2m has
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the following properties
(2) NZ,2")=g(¢Z,2Z"), Q™ APP"TEA - AP £ 0,

and is called the fundamental form of the framed manifold.

In the present paper we assume that r € {2m + 1,2m + 2,2m + 3}
and for the indices a and b we have the following range a,b € {1,...,2m}.
Under these conditions and with reference to [18], we call 85, 67, and 07 the
horizontal, the transversal, and the vertical connection forms respectively.
We will assume here that the 0 vanish and that the 0] are defined by a
cyclic permutation of the Reeb covectors 1", which means that

(3) engsnr_ans7 \V/T7S,t

where the f, are scalar fields, called the principal scalars on M. In the
sequel we will call

(4) n= frnrv and 77ﬂ = Zfr&“a

the principal pfaffian and the principal vector field of M respectively. Fur-
ther, let D, = {e,} and D,t = {&} be the horizontal, respectively
vertical, distribution on M.

In a first step, the following properties are proved.

(i) The manifold M under consideration may be viewed as the local Rie-
mannian product M = M T x M+, where M T is a 2m-dimensional
submanifold tangent to D]D—r and M+ is a 3-dimensional submanifold
tangent to D,~, and the immersion z : M — M is totally geodesic;

(i) the Ricci tensor field R of M= is expressed by

(iii) & is harmonic and if V' is any vertical vector which has the property to
be a skew-symmetric Killing vector field having £ as generative, then
V is an exterior concurrent vector field and by Bochner’s theorem
g(V, &) is closed;

(iv) the principal scalars f, define an isoparametric system [20];

(v) the gradients df,! = grad f,, define a commutative group.
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In a second step, and making use of E. Cartan’s structure equations in-
volving the curvature 2-forms, one finds that the vertical curvature 2-forms
O satisfy

2 2
@f:<<H§H2—f;> T—i—frft??t)/\ns— ((Hf”z—@) S—i—fsfmt)/\nr,

Vors,t,

and consequently, following [19] the above equations prove that M= is a
conformally flat submanifold of M.

Finally, the structure 2-form €2 of M is presymplectic. Then, if X
is any horizontal vector field and °X (= —ix) means the symplectic
isomorphism, and in addition the 1-form "X is ¢-closed, it follows that
Q is invariant by X. In consequence of this, X is a 2-covariant recurrent
vector field, which in the case under consideration is expressed by

dA

ViX = 5% ® VX, Ae A°M.

2. Preliminaries

Let (M, g) be a Riemannian C'*°-manifold and let V be the covariant
differential operator with respect to the metric tensor g. We assume that
M is oriented and V is the Levi—Civita connection of g. Let I'I'M be the
set of sections of the tangent bundle, and

b TM 2 T*M and 4:TM & TM

the isomorphisms defined by g (i.e. > is the index lowering operator, and
% is the index raising operator).
Following [14], we denote by

AY(M,TM) =T Hom(AYTM, TM),

the set of vector valued g-forms (¢ < dim M), and we write for the covariant
derivative operator with respect to V

(5) dV . AY M, TM) — AITY (M, TM).
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It should be noticed that in general dV’ = d¥ o dv # 0, unlike d®> =
dod=0. If p € M then the vector valued 1-form dp € A'(M,TM) is the
canonical vector valued 1-form of M, and is also called the soldering form
of M [4]. Since V is symmetric one has that dV (dp) = 0.

A vector field Z which satisfies

(6) d¥(VZ)=V?Z =nANdpec A2 (M, TM), w¢cA'M,

is defined to be an exterior concurrent vector field [16] (see also [13]). The
1-form 7 in (6) is called the concurrence form and is defined by

(7) T=MA2Z", A€ A°M.
In this case, if R is the Ricci tensor of V, one has
(8) R(Z.V) = (n - 1)\g(Z, V)

(e =+1, V € Z(M), n=dim M).

A function R™ — R is isoparametric [20] if ||V f||? and div(Vf) are
functions of f (Vf = grad f).

Let O ={ea | A=1,...n} be alocal field of orthonormal frames over
M and let O* = covect {w“} be its associated coframe. Then E. Cartan’s

structure equations can be written in indexless manner as

9) Ve=0®Re,
(10) dw = -0 Nw,
(11) dfd =—-0N6+ 0.

In the above equations 6 (resp. ©) are the local connection forms in the
tangent bundle T'M (resp. the curvature 2-forms on M).

3. The main theorem

Let M(¢,8,&.,1n",g) be a (2m + 3)-dimensional C°°-manifold with
soldering form dp and carrying an f-structure ¢ [22], that is a tensor field
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of type (1.1) of rank 2m which satisfies

(12) ¢°+¢=0,
(13) P =—1d+> 0" @&, ¢& =0, 7 0p=0,
(14) 9(Z,2') = g(6Z,6Z') + > _n"(Z)n"(Z"),

where Id is the identity morphism of M.
If in addition the fundamental 2-form Q of M satisfies

(15) NZ,Z"=g(¢p2,7"), Q™A 772m+1 A 772m+2 A ,'72m+3 £ 0,

then M is known [22] to be a framed f-manifold.

With respect to the cobasis O* = covect {w®,n"} of O = vect{e,, &, }
(I1<a<?2m; 2m+1<r <2m+ 3), the 2-form  is expressed by the
standard form

(16) Q= > w AW, *=i+m.

Making use of (9) and (13), one finds the known Kaehlerian relations

Lk Sk

(17) 0=, 6 =6l

J )

We recall [18] that one may split the tangent space T,(M) of M at every
point p € M as

(18> TP(M) - Dp—r ® DpJ_v

where D," = {e, | a € {1,...,2m}} and D,* = {£.} are two comple-
mentary orthogonal distributions, called the horizontal and the vertical
distribution respectively. As a consequence of this decomposition, one
may write the soldering form as

(19) dp=dp" @ dp,

where dp" = dp |pr and dpt = dp |p.. By reference to [18] (see also
[12]), the connection forms 67, 67, and 67 are called the horizontal, the
vertical, and the transversal connection forms respectively. In the present
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paper we assume that the ¢ vanish and that the vertical connection forms
are defined by a cyclic permutation of the Reeb covectors 1", that is:

(20) 00 = far — fon®, Vst (cyclic).

In the above relations, the f,. are scalar fields, called the principal scalars
on M, and setting

(21) n:frnr7 ﬁﬁ 25221‘}&,

n and & are called the principal pfaffian and the principal vector field
respectively. Taking into account that

(22) e =0,

one derives by (10) and (20) that
(23) dn"=nAn".

This shows that the Reeb covectors are n” exterior recurrent forms [3].
In addition, exterior differentiation of (23) and taking into account (21),
yields

(24) dfr = frm),
which expresses that 1 is an exact form. Since one has that
(dn") #0, 0" Adn" =0,

it follows according to a known definition [6] that in the case under dis-
cussion the Reeb covectors are of class 2. Let now

(25) SDL — 772m+1 A 7,,2m-‘,—2 A ,,72m+3
and
(26) el =W A AW

be the simple unit forms which correspond to the distributions DpL and

D, " respectively. Taking the exterior derivative of (25) and (26), and in
view of (20) and (22), one derives that

(27) de* =0

and

(28) de" =0.
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Hence, in terms of well known terminology [9], the above equations show
that ¢+ and ¢ are integral invariants of Dpl and DpT respectively.
Therefore, by the theorem of Frobenius, we conclude that the manifold M
under consideration may be viewed as the local Riemannian product

(29) M=M"xM*,

where M T is a 2m-dimensional manifold tangent to DT and M* is a
3-dimensional manifold tangent to D+ (= {,}).

Remark 3.1. As the tangent space T),(M ), the soldering form dp may
be split as
dp = dp" + dp*,

where dp' and dpt are the horizontal and the vertical components of dp
respectively. In the case under discussion, operating on dp' and dp* by
the exterior covariant derivative operator dV, one finds

(30) d¥(dp*) =0, d¥(dp")=0,
which, since V is the Levi-Civita connection, leads to
d¥ (dp) = 0.
Using (20), (21), and (22), one gets

(31> Vgr = frdpJ_ - 77r ® €7

and one derives

(32) Kmfs] = fsér - frfs-

In view of (24), the covariant differential of [, {;] can be expressed as

(33> v[§T7§S] =n® [57“758] - [frags]b ® ¢,

with which one can check Jacobi’s identity

Z [67’7 [gsaft]] = 0, A @

r,8,t
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Next, operating on (21) with V, and using (20) and (21), one derives that
(34) VE = [|€]Pdp;

consequently, following a well known definition [2] one may consider & as
a concurrent vector field on M. This implies [15] (see also [13]) that & is
an exterior concurrent vector field on M=+. Since €2 = 3 £,2, one gets
at once by (24) that

(35) dlig]l* = 2[i¢]1*n.

Therefore, since d¥ (dp*) = 0, operating on (34) by dV yields

(36) d¥(VE) = V€ = 2|[¢|*n A dp™.

Hence, by reference to [13], the Ricci tensor field R of M~ is expressed by
(37) R(& Z2) = —4|élP9(&. 2),  Z € E(M).

Next, by (24) one may write

(38) (df ) = fr&,  (df;)" = grad [,

and after further elaboration, one derives that

(39) [(df.)f (df)F] =0, Vst

Accordingly we may say that the vector fields (df,.)%, (dfs)*, and (df;)*
define a commutative group.
Next, by (24) one has that

lgrad f,]1* = ll¢]1* .2,

and since

divZ =trVZ, Z e Z(M),
one derives that
divgrad fr = £.2 + 1252, €1 =D 2

Hence, noticing that [grad f,,grad f,] = 0 and on behalf of [20], we con-
clude from the above relations that the scalars f, define an isoparametric
system.
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In another perspective, we recall that the star operator * on an ori-
ented n-dimensional Riemannian manifold (M, g) is an isometric bundle
isomorphism between AT*M and itself, and maps AYT* M isomorphically
to A"IT*M (see also [14]).

Coming back to the case under consideration, one has

(40) AIT*M — A*™T379T M,

With the usual notation, we denote the codifferential of a p-form by § =
(=1)? +~1 dx, where x~! = (=1)™("=P) (p is the degree of the form, n is
the dimension of the manifold, thus dw is of degree p — 1; see also [14]).
Then, in the case under consideration, one deduces that

(40) dén = 0.
Since 7 is a closed pfaffian, there follows at once that
(42) An=0.

This shows that 7 is a harmonic pfaffian (and consequently 7* is a harmonic
vector field). Finally, consider the immersion = : M T — M. As it is well
known, the second quadratic forms [, associated with x are defined by

(43) L = —{dp", V&)

Then, by reference to (31), it can be seen that the [, vanish, and conse-
quently the immersion z : M T — M is totally geodesic.
Summarizing, we can formulate the following

Theorem 3.1. Let M(¢,Q,&.,n", fr,g) be a (2m + 3)-dimensional
manifold endowed with a vertical cyclic connection structure and with van-
ishing transversal connection forms. Letn, £(=n*), and f, be the principal
pfaffian, the principal vector field, and the principal scalars on M ; and let
D," and D,* = {&.} be the horizontal and the vertical distributions
respectively on M.

Then any such manifold may be viewed as the local Riemannian prod-
uct M = M" x M+, where M is a 2m-dimensional presymplectic sub-
manifold tangent to DpT and M~ is a 3-dimensional submanifold tangent
to DpL.

The following properties are proved.
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(i) The immersion x : M — M is totally geodesic;

(ii) the principal vector field £ is an exterior concurrent vector field on
M+t ie.
V2e = 2l¢lPn A dp™,

and this implies

where R denotes the Ricci tensor field of M*;

(iii) the principal pfaffian 7 is harmonic;

(iv) the vector fields df,* define a commutative group, and the scalars f,
define an isoparametric system.

4. Corollaries

Making use of E. Cartan’s structure equations, involving the curvature
2-forms (11), one derives by (20), (23), and (24) that the vertical curvature
forms ©; satisfy

2
(44) 0, = ((II&H2 - f;) "+ frfmt> An’®

2
- <<|£||2_f;> 8+fsftnt> /\nrv V’I",S,t.

Then, by reference to [19], the above expressions for ©F affirm that the
vertical submanifold M+ of M is a conformally flat submanifold of M.
In another perspective, let

(45) V=V"¢, re{2m+1,2m+2,2m+3},

be any vertical vector field on M+, and assume that V is a skew-symmetric
Killing vector field, having £ as generative [16] (see also [12]), thus

(46) VV =V AE,
where A denotes the wedge product of vector fields

VAE=nQV -V’ ®¢.
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Since by (31) one gets
(47) VV =dV" @& +g(V.dpt - V' @,
then comparison of (46) and (47) gives
(48) AV’ =n AV,

which by (48) is in agreement by ROSCA’s lemma [16], [17] (see also [12]).
Moreover, since V is a Killing vector field and the vector field £(= n?), is
harmonic, one finds by (21) that

(49) dg(V,€) =0,

and (49) is in agreement with Bochner’s theorem [21], and thus yields a
confirmation for the correctness of our computations. In addition, by (34)
and (46), one calculates that

(50) [V, €] = g(V, )¢,

and the above equation means that V' defines an infinitesimal conformal
transformation of £&. Operating now on (46) by the operator d¥ and in
view of (34), one gets

d¥ (VV) = V2V = [|¢€]*V’ Adp™,

which shows that V' is an exterior concurrent vector field on M+ with ||£]|2
as concurrent scalar, and by (6) one may write

R(V,Z) = =2||¢|*9(V, Z).
On the other hand, by (17) and (22), one finds that
(51) dQ = 0.

Since €2 has constant rank, this means that € is a presymplectic form on M.

We notice that in this case Ker(2) coincides with the vertical distribution

D,t = {&,} of M, which is also called the characteristic distribution of €.
Denote now with the usual notation

(52) QC: TM—-TM: Z——-izQ="2Z,
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the symplectic isomorphism defined by € [8]. Since 2 is closed, any vec-
tor field X with the property that *X is closed, defines an infinitesimal
automorphism of €2, i.e.

(53) LxQ=0.
Assume that X is a horizontal vector field on M, i.e.
X = X%,, a€c{l,...,2m}.
Then, by (52) one has
(54) X =) (XU - XW),  de{l...m}, i =itm,

and by the structure equations (10) one gets by exterior differentiation
of "X
(55) d°X = —(dX" + X0 ) Aw' — (dX'+ X0L) AW’
Hence, in order for °X to be a ¢-closed form [16], one must write
dX' + X0 = - w",
(56) . " .
dX' 4+ X0, = ',

where A is a scalar. Taking now the covariant differential of the vector
field X, one deduces by (56) and the structure equations (9) that

(57) VX = \pdp.

This shows that X is a ¢-concurrent vector field. Further, operating on
the vector valued 1-form ¢dp by the operator dV, one calculates that

d¥ (¢dp) = 0,
and therefore it follows from (57) that
dA
(58) VX = S evx

Hence, the above equation proves that the vector field X is, according
to well known terminology [10], a 2-covariant recurrent vector field with
closed recurrence form.

Summarizing, we proved the following
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Theorem 4.1. The vertical submanifold M~ of the manifold M under
consideration is conformally flat, and the vertical skew-symmetric Killing
vector field V' is an exterior concurrent vector field which morover also
defines an infinitesimal conformal transformation of the principal vector
field £&. The structure 2-form 2 of M is presymplectic, and if X is any
horizontal vector field for which in addition * X (= —ix Q) is ¢-closed, then
Q is invariant by X, i.e. Lx€) = 0; moreover, X also has the following 2
properties:

a) X is a ¢-concurrent vector field, i.e.
VX = \pdp;

b) X is a 2-covariant recurrent vector field with closed recurrence form,
ie.

VX = d—; ®VX.
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