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Framed (2M + 3)-dimensional manifolds endowed
with a vertical cyclic connection structure

By FILIP DEFEVER (Leuven) RADU ROSCA (Paris)

Abstract. Geometrical and structural properties are proved for a class of framed
manifolds which are equiped with a vertical cyclic connection structure.

1. Introduction

Framed manifolds and f -structures have been initiated by K. Yano

and M. Kon and have subsequently been studied intensively, see for ex-
ample [1], [19], [22], [18]. We recall that if M(φ, Ω, ξr, η

r, g) is a (2m + q)-
dimensional manifold of this kind, then the ξr, for (r = 2m+1, . . . , 2m+q),
are the Reeb vector fields (in the large sense) of the f -structure, and
ηr = ξr

[ their corresponding covectors. One has the following structure
equations:

(1) φ2 = − Id +
∑

ηr ⊗ ξr, φξr = 0, ηr ◦ φ = 0, ηs(ξr) = δs
r ,

where φ is a (1.1) tensor field. With respect to g, one has the following
relation

g(φZ,Z ′) + g(Z, φZ ′) = 0, Z, Z ′ ∈ Ξ(M),

(i.e. φ is skew-symmetric with respect to g). The 2-form Ω of rank 2m has
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the following properties

(2) Ω(Z,Z ′) = g(φZ, Z ′), Ωm ∧ η2m+1 ∧ · · · ∧ η2m+q 6= 0,

and is called the fundamental form of the framed manifold.
In the present paper we assume that r ∈ {2m + 1, 2m + 2, 2m + 3}

and for the indices a and b we have the following range a, b ∈ {1, . . . , 2m}.
Under these conditions and with reference to [18], we call θa

b , θr
a, and θr

s the
horizontal, the transversal, and the vertical connection forms respectively.
We will assume here that the θr

a vanish and that the θr
s are defined by a

cyclic permutation of the Reeb covectors ηr, which means that

(3) θr
s = fsη

r − frη
s, ∀ r̂, s, t

where the fr are scalar fields, called the principal scalars on M . In the
sequel we will call

(4) η = frη
r, and η] =

∑
frξr,

the principal pfaffian and the principal vector field of M respectively. Fur-
ther, let Dp

> = {ea} and Dp
⊥ = {ξr} be the horizontal, respectively

vertical, distribution on M .

In a first step, the following properties are proved.

(i) The manifold M under consideration may be viewed as the local Rie-
mannian product M = M> × M⊥, where M> is a 2m-dimensional
submanifold tangent to Dp

> and M⊥ is a 3-dimensional submanifold
tangent to Dp

⊥, and the immersion x : M> → M is totally geodesic;

(ii) the Ricci tensor field R of M⊥ is expressed by

R(ξ, Z) = −4‖ξ‖2g(ξ, Z), Z ∈ Ξ(M);

(iii) ξ is harmonic and if V is any vertical vector which has the property to
be a skew-symmetric Killing vector field having ξ as generative, then
V is an exterior concurrent vector field and by Bochner’s theorem
g(V, ξ) is closed;

(iv) the principal scalars fr define an isoparametric system [20];

(v) the gradients dfr
] = grad fr, define a commutative group.



Framed (2M + 3)-dimensional manifolds . . . 91

In a second step, and making use of E. Cartan’s structure equations in-
volving the curvature 2-forms, one finds that the vertical curvature 2-forms
Θs

r satisfy

Θs
r =

((
‖ξ‖2− ft

2

2

)
ηr + frftη

t

)
∧ ηs−

((
‖ξ‖2− ft

2

2

)
ηs + fsftη

t

)
∧ ηr,

∀ r̂, s, t,

and consequently, following [19] the above equations prove that M⊥is a
conformally flat submanifold of M .

Finally, the structure 2-form Ω of M is presymplectic. Then, if X

is any horizontal vector field and [X (= −iXΩ) means the symplectic
isomorphism, and in addition the 1-form [X is φ-closed, it follows that
Ω is invariant by X. In consequence of this, X is a 2-covariant recurrent
vector field, which in the case under consideration is expressed by

∇2X =
dλ

λ
⊗∇X, λ ∈ Λ0M.

2. Preliminaries

Let (M, g) be a Riemannian C∞-manifold and let ∇ be the covariant
differential operator with respect to the metric tensor g. We assume that
M is oriented and ∇ is the Levi–Civita connection of g. Let ΓTM be the
set of sections of the tangent bundle, and

[ : TM
[−→ T ∗M and ] : TM

]←− T ∗M

the isomorphisms defined by g (i.e. [ is the index lowering operator, and
] is the index raising operator).

Following [14], we denote by

Aq(M, TM) = Γ Hom(ΛqTM, TM),

the set of vector valued q-forms (q < dim M), and we write for the covariant
derivative operator with respect to ∇

(5) d∇ : Aq(M, TM) → Aq+1(M,TM).
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It should be noticed that in general d∇
2

= d∇ ◦ d∇ 6= 0, unlike d2 =
d ◦ d = 0. If p ∈ M then the vector valued 1-form dp ∈ A1(M, TM) is the
canonical vector valued 1-form of M , and is also called the soldering form
of M [4]. Since ∇ is symmetric one has that d∇(dp) = 0.

A vector field Z which satisfies

(6) d∇(∇Z) = ∇2Z = π ∧ dp ∈ A2(M,TM), π ∈ Λ1M,

is defined to be an exterior concurrent vector field [16] (see also [13]). The
1-form π in (6) is called the concurrence form and is defined by

(7) π = λZ[, λ ∈ Λ0M.

In this case, if R is the Ricci tensor of ∇, one has

(8) R(Z, V ) = ε(n− 1)λg(Z, V )

(ε = ±1, V ∈ Ξ(M), n = dim M).
A function Rn → R is isoparametric [20] if ‖∇f‖2 and div(∇f) are

functions of f (∇f = grad f).
Let O = {eA | A = 1, . . . n} be a local field of orthonormal frames over

M and let O∗ = covect {ωA} be its associated coframe. Then E. Cartan’s
structure equations can be written in indexless manner as

∇e = θ ⊗ e,(9)

dω = −θ ∧ ω,(10)

dθ = −θ ∧ θ + Θ.(11)

In the above equations θ (resp. Θ) are the local connection forms in the
tangent bundle TM (resp. the curvature 2-forms on M).

3. The main theorem

Let M(φ, Ω, ξr, η
r, g) be a (2m + 3)-dimensional C∞-manifold with

soldering form dp and carrying an f -structure φ [22], that is a tensor field
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of type (1.1) of rank 2m which satisfies

φ3 + φ = 0,(12)

φ2 = − Id+
∑

ηr ⊗ ξr, φξr = 0, ηr ◦ φ = 0,(13)

g(Z, Z ′) = g(φZ, φZ ′) +
∑

ηr(Z)ηr(Z ′),(14)

where Id is the identity morphism of M .
If in addition the fundamental 2-form Ω of M satisfies

(15) Ω(Z, Z ′) = g(φZ,Z ′), Ωm ∧ η2m+1 ∧ η2m+2 ∧ η2m+3 6= 0,

then M is known [22] to be a framed f -manifold.
With respect to the cobasis O∗ = covect {ωa, ηr} of O = vect{ea, ξr}

(1 ≤ a ≤ 2m; 2m + 1 ≤ r ≤ 2m + 3), the 2-form Ω is expressed by the
standard form

(16) Ω =
m∑

i=1

ωi ∧ ωi∗ , i∗ = i + m.

Making use of (9) and (13), one finds the known Kaehlerian relations

(17) θi
j = θi∗

j∗ , θi∗
j = θj∗

i .

We recall [18] that one may split the tangent space Tp(M) of M at every
point p ∈ M as

(18) Tp(M) = Dp
> ⊕Dp

⊥,

where Dp
> = {ea | a ∈ {1, . . . , 2m}} and Dp

⊥ = {ξr} are two comple-
mentary orthogonal distributions, called the horizontal and the vertical
distribution respectively. As a consequence of this decomposition, one
may write the soldering form as

(19) dp = dp> ⊕ dp⊥,

where dp> = dp |D> and dp⊥ = dp |D⊥ . By reference to [18] (see also
[12]), the connection forms θa

b , θr
s , and θa

r are called the horizontal, the
vertical, and the transversal connection forms respectively. In the present
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paper we assume that the θa
r vanish and that the vertical connection forms

are defined by a cyclic permutation of the Reeb covectors ηr, that is:

(20) θr
s = fsη

r − frη
s, ∀ r̂, s, t (cyclic).

In the above relations, the fr are scalar fields, called the principal scalars
on M , and setting

(21) η = frη
r, η] = ξ =

∑
frξr,

η and ξ are called the principal pfaffian and the principal vector field
respectively. Taking into account that

(22) θa
r = 0,

one derives by (10) and (20) that

(23) dηr = η ∧ ηr.

This shows that the Reeb covectors are ηr exterior recurrent forms [3].
In addition, exterior differentiation of (23) and taking into account (21),
yields

(24) dfr = frη,

which expresses that η is an exact form. Since one has that

(dηr) 6= 0, ηr ∧ dηr = 0,

it follows according to a known definition [6] that in the case under dis-
cussion the Reeb covectors are of class 2. Let now

ϕ⊥ = η2m+1 ∧ η2m+2 ∧ η2m+3(25)
and

ϕ> = ω1 ∧ · · · ∧ ω2m(26)

be the simple unit forms which correspond to the distributions Dp
⊥ and

Dp
> respectively. Taking the exterior derivative of (25) and (26), and in

view of (20) and (22), one derives that

dϕ⊥ = 0(27)
and

dϕ> = 0.(28)



Framed (2M + 3)-dimensional manifolds . . . 95

Hence, in terms of well known terminology [9], the above equations show
that ϕ⊥ and ϕ> are integral invariants of Dp

⊥ and Dp
> respectively.

Therefore, by the theorem of Frobenius, we conclude that the manifold M

under consideration may be viewed as the local Riemannian product

(29) M = M> ×M⊥,

where M> is a 2m-dimensional manifold tangent to D> and M⊥ is a
3-dimensional manifold tangent to D⊥ (= {ξr}).

Remark 3.1. As the tangent space Tp(M), the soldering form dp may
be split as

dp = dp> + dp⊥,

where dp> and dp⊥ are the horizontal and the vertical components of dp

respectively. In the case under discussion, operating on dp> and dp⊥ by
the exterior covariant derivative operator d∇, one finds

(30) d∇(dp⊥) = 0, d∇(dp>) = 0,

which, since ∇ is the Levi–Civita connection, leads to

d∇(dp) = 0.

Using (20), (21), and (22), one gets

(31) ∇ξr = frdp⊥ − ηr ⊗ ξ,

and one derives

(32) [ξr, ξs] = fsξr − frξs.

In view of (24), the covariant differential of [ξr, ξs] can be expressed as

(33) ∇[ξr, ξs] = η ⊗ [ξr, ξs]− [ξr, ξs][ ⊗ ξ,

with which one can check Jacobi’s identity
∑
r,s,t

[
ξr, [ξs, ξt]

]
= 0, ∀ r̂, s, t.
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Next, operating on (21) with ∇, and using (20) and (21), one derives that

(34) ∇ξ = ‖ξ‖2dp⊥;

consequently, following a well known definition [2] one may consider ξ as
a concurrent vector field on M⊥. This implies [15] (see also [13]) that ξ is
an exterior concurrent vector field on M⊥. Since ‖ξ‖2 =

∑
f 2

r , one gets
at once by (24) that

(35) d‖ξ‖2 = 2‖ξ‖2η.

Therefore, since d∇(dp⊥) = 0, operating on (34) by d∇ yields

(36) d∇(∇ξ) = ∇2ξ = 2‖ξ‖2η ∧ dp⊥.

Hence, by reference to [13], the Ricci tensor field R of M⊥ is expressed by

(37) R(ξ, Z) = −4‖ξ‖2g(ξ, Z), Z ∈ Ξ(M).

Next, by (24) one may write

(38) (dfr)] = frξr, (dfr)] = grad fr,

and after further elaboration, one derives that

(39)
[
(dfr)], (dfs)]

]
= 0, ∀ r̂, s, t.

Accordingly we may say that the vector fields (dfr)], (dfs)], and (dft)]

define a commutative group.
Next, by (24) one has that

‖ grad fr‖2 = ‖ξ‖2f 2
r ,

and since
div Z = tr∇Z, Z ∈ Ξ(M),

one derives that

div grad fr = f 3
r + ‖ξ‖2f 2

r , ‖ξ‖2 =
∑

fr
2.

Hence, noticing that [grad fr, grad fr] = 0 and on behalf of [20], we con-
clude from the above relations that the scalars fr define an isoparametric
system.
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In another perspective, we recall that the star operator ∗ on an ori-
ented n-dimensional Riemannian manifold (M, g) is an isometric bundle
isomorphism between ΛT ∗M and itself, and maps ΛqT ∗M isomorphically
to Λn−qT ∗M (see also [14]).

Coming back to the case under consideration, one has

(40) ΛqT ∗M → Λ2m+3−qTM.

With the usual notation, we denote the codifferential of a p-form by δ =
(−1)p ∗−1 d∗, where ∗−1 = (−1)n(n−p) (p is the degree of the form, n is
the dimension of the manifold, thus δω is of degree p − 1; see also [14]).
Then, in the case under consideration, one deduces that

(40) dδη = 0.

Since η is a closed pfaffian, there follows at once that

(42) ∆η = 0.

This shows that η is a harmonic pfaffian (and consequently η] is a harmonic
vector field). Finally, consider the immersion x : M> → M . As it is well
known, the second quadratic forms lr associated with x are defined by

(43) lr = −〈dp>,∇ξr〉.

Then, by reference to (31), it can be seen that the lr vanish, and conse-
quently the immersion x : M> → M is totally geodesic.

Summarizing, we can formulate the following

Theorem 3.1. Let M(φ, Ω, ξr, η
r, fr, g) be a (2m + 3)-dimensional

manifold endowed with a vertical cyclic connection structure and with van-

ishing transversal connection forms. Let η, ξ(= η]), and fr be the principal

pfaffian, the principal vector field, and the principal scalars on M ; and let

Dp
> and Dp

⊥ = {ξr} be the horizontal and the vertical distributions

respectively on M .

Then any such manifold may be viewed as the local Riemannian prod-

uct M = M> ×M⊥, where M> is a 2m-dimensional presymplectic sub-

manifold tangent to Dp
> and M⊥ is a 3-dimensional submanifold tangent

to Dp
⊥.

The following properties are proved.
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(i) The immersion x : M> → M is totally geodesic;

(ii) the principal vector field ξ is an exterior concurrent vector field on
M⊥, i.e.

∇2ξ = 2‖ξ‖2η ∧ dp⊥,

and this implies

R(ξ, Z) = −4‖ξ‖2g(ξ, Z), Z ∈ Ξ(M),

where R denotes the Ricci tensor field of M⊥;

(iii) the principal pfaffian η is harmonic;

(iv) the vector fields dfr
] define a commutative group, and the scalars fr

define an isoparametric system.

4. Corollaries

Making use of E. Cartan’s structure equations, involving the curvature
2-forms (11), one derives by (20), (23), and (24) that the vertical curvature
forms Θs

r satisfy

Θs
r =

((
‖ξ‖2 − ft

2

2

)
ηr + frftη

t

)
∧ ηs(44)

−
((

‖ξ‖2 − ft
2

2

)
ηs + fsftη

t

)
∧ ηr, ∀ r̂, s, t.

Then, by reference to [19], the above expressions for Θs
r affirm that the

vertical submanifold M⊥ of M is a conformally flat submanifold of M .
In another perspective, let

(45) V = V rξr, r ∈ {2m + 1, 2m + 2, 2m + 3},

be any vertical vector field on M⊥, and assume that V is a skew-symmetric
Killing vector field, having ξ as generative [16] (see also [12]), thus

(46) ∇V = V ∧ ξ,

where ∧ denotes the wedge product of vector fields

V ∧ ξ = η ⊗ V − V [ ⊗ ξ.
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Since by (31) one gets

(47) ∇V = dV r ⊗ ξr + g(V, ξ)dp⊥ − V [ ⊗ ξ,

then comparison of (46) and (47) gives

(48) dV [ = η ∧ V [,

which by (48) is in agreement by Rosca’s lemma [16], [17] (see also [12]).
Moreover, since V is a Killing vector field and the vector field ξ(= η]), is
harmonic, one finds by (21) that

(49) dg(V, ξ) = 0,

and (49) is in agreement with Bochner’s theorem [21], and thus yields a
confirmation for the correctness of our computations. In addition, by (34)
and (46), one calculates that

(50) [V, ξ] = g(V, ξ)ξ,

and the above equation means that V defines an infinitesimal conformal
transformation of ξ. Operating now on (46) by the operator d∇ and in
view of (34), one gets

d∇(∇V ) = ∇2V = ‖ξ‖2V [ ∧ dp⊥,

which shows that V is an exterior concurrent vector field on M⊥ with ‖ξ‖2
as concurrent scalar, and by (6) one may write

R(V,Z) = −2‖ξ‖2g(V, Z).

On the other hand, by (17) and (22), one finds that

(51) dΩ = 0.

Since Ω has constant rank, this means that Ω is a presymplectic form on M .
We notice that in this case Ker(Ω) coincides with the vertical distribution
Dp

⊥ = {ξr} of M , which is also called the characteristic distribution of Ω.
Denote now with the usual notation

(52) Ω[ : TM → T ∗M : Z → −iZΩ = [Z,
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the symplectic isomorphism defined by Ω [8]. Since Ω is closed, any vec-
tor field X with the property that [X is closed, defines an infinitesimal
automorphism of Ω, i.e.

(53) LXΩ = 0.

Assume that X is a horizontal vector field on M , i.e.

X = Xaea, a ∈ {1, . . . , 2m}.

Then, by (52) one has

(54) [X =
∑

(Xi∗ωi −Xiωi∗), i ∈ {1, . . . ,m}, i∗ = i + m,

and by the structure equations (10) one gets by exterior differentiation
of [X

(55) d [X = −(dXi∗ + Xaθi∗
a ) ∧ ωi − (dXi + Xaθi

a) ∧ ωi∗ .

Hence, in order for [X to be a φ-closed form [16], one must write

(56)
{

dXi + Xaθi
a = −λωi∗ ,

dXi∗ + Xaθi∗
a = λωi,

where λ is a scalar. Taking now the covariant differential of the vector
field X, one deduces by (56) and the structure equations (9) that

(57) ∇X = λφdp.

This shows that X is a φ-concurrent vector field. Further, operating on
the vector valued 1-form φdp by the operator d∇, one calculates that

d∇(φdp) = 0,

and therefore it follows from (57) that

(58) ∇2X =
dλ

λ
⊗∇X.

Hence, the above equation proves that the vector field X is, according
to well known terminology [10], a 2-covariant recurrent vector field with
closed recurrence form.

Summarizing, we proved the following
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Theorem 4.1. The vertical submanifold M⊥ of the manifold M under

consideration is conformally flat, and the vertical skew-symmetric Killing

vector field V is an exterior concurrent vector field which morover also

defines an infinitesimal conformal transformation of the principal vector

field ξ. The structure 2-form Ω of M is presymplectic, and if X is any

horizontal vector field for which in addition [X(= −iXΩ) is φ-closed, then

Ω is invariant by X, i.e. LXΩ = 0; moreover, X also has the following 2

properties:

a) X is a φ-concurrent vector field, i.e.

∇X = λφdp;

b) X is a 2-covariant recurrent vector field with closed recurrence form,

i.e.

∇2X =
dλ

λ
⊗∇X.
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