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On R. Baer’s generalized hyperbolic planes

By VICTOR PAMBUCCIAN (Phoenix)

To the 200th anniversary of János Bolyai’s birth

Abstract. We provide a first order axiomatization for Baer’s [2] generalized
hyperbolic planes, and state some open problems.

1. Introduction

R. Baer [2] described a generalized model of hyperbolic planes, de-
fined inside an arbitrary projective plane Π, whose lines will be denoted
by lowercase, and points by uppercase letters, in which there is:

(i) an involutory mapping (a polarity) π mapping every point in Π to a
line in Π, and every line in Π to a point in Π, for which P ∈ l if and only
if π(l) ∈ π(P ) (here ∈ stands for the point-line incidence relation);

(ii) a partition of the elements of Π into three classes: interior, absolute,
and exterior, satsifying the following conditions:

(a) P is absolute if and only if P ∈ π(P ); l is absolute if and only if
π(l) ∈ l;

(b) P is interior if and only if π(P ) is exterior;
(c) if P is interior and P ∈ l, then l is interior;
(d) If l and k are interior, and π(k) ∈ l, then l and k meet in an interior

point.
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The interior points and lines of such a projective plane Π form a
generalized hyperbolic plane.

The description presented above, which coincides with the definition
given by Baer, is not an axiomatics of generalized hyperbolic planes, but
rather a description of the models that will be called so.

The purpose of this note is to provide a first-order axiomatization of
Baer’s generalized hyperbolic planes, and to ask some questions whose an-
swer would illuminate the meaning of the main result obtained in Baer’s
paper. A like-minded description of a different class of generalized hyper-
bolic planes, which allows finite models as well, was presented in [1].

2. The axiom system

Our axiom system will be expressed in a two-sorted first-order lan-
guage L, with variables for points and lines (upper- and lower-case letters),
with two binary relations, ∈ and ⊥, with point-line, respectively line-line
arguments, with P ∈ l to be read “point P lies on line l”, and with g ⊥ h to
be read “line g is perpendicular to line h”, and a ternary relation with line
variables, α, with α(g, h, k) to be read as “g, h, k are three different lines,
that meet in an absolute point”. We shall use the following abbreviation

α(g, h, k) :↔ α(g, h, k) ∨ k = g ∨ k = h.

The axioms are (we have omitted the universal quantifiers in all axioms
that are universal):

A1. (∀PQ)(∃=1l)P 6= Q → P ∈ l ∧Q ∈ l,

A2. (∃ABC)(∀l)A 6= B ∧ ¬(A ∈ l ∧B ∈ l ∧ C ∈ l),

A3. α(g, h, k) → α(g, k, h) ∧ α(k, g, h),

A4. α(g, h, k) → g 6= h,

A5. α(g, h, k) ∧ P ∈ g → P /∈ h,

A6. α(g, h, k) ∧ α(g, h, l) ∧ k 6= l → α(g, k, l),

A7. α(g, h, k) → ¬(g ⊥ l ∧ h ⊥ l),

A8. h ⊥ k → k ⊥ h,
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A9. (∀g)(∀P )(∃=1h)P ∈ h ∧ h ⊥ g,

A10. (∀gh)(∃P ) g ⊥ h → P ∈ g ∧ P ∈ h,

A11. (∀gh)(∃k)(∃P )(∃l) g 6= h → [(P ∈ g ∧ P ∈ h) ∨ α(g, h, k)
∨ (l ⊥ g ∧ l ⊥ h)],

A12. g 6= h ∧ l ⊥ g ∧ l ⊥ h ∧ l′ ⊥ g ∧ l′ ⊥ h → l = l′,

A13. (∀abca′b′c′)(∃l)α(a, b, c) ∧ α(a′, b′, c′) → α(a, b, l) ∧ α(a′, b′, l),

A14. (∀abc)(∀P )(∃l) α(a, b, c) → α(a, b, l) ∧ P ∈ l,

A15. (∀abcl)(∃=1g) α(a, b, c) ∧ ¬α(a, b, l) → α(a, b, g) ∧ g ⊥ l.

The axioms may be given the following intuitive interpretation:
A1 states that every pair of distinct points can be joined by a unique line;
A2 states that there are three non-collinear points (note that, by A1 there
is a line l joining A and B, which are different, thus C must be different
from both A and B); A3 states that the relation α is symmetric; A4 states
that if three lines are in the relation α, then they are all (by symmetry)
different; A5 states that lines that are in the relation α do not intersect; A6
expresses a certain transitivity of α; A7 states that if three lines meet at
an absolute point, then no two have a common peprpendicular; A8 states
the symmetry of the perpendicularity relation; A9 states the existence and
uniqueness of the perpendicular from a given point to a given line; A10
states that perpendicular lines intersect; A11 states that any two differ-
ent lines either have an (inner) point in common, or meet at an absolute
point, or have a common perpendicular; A12 states that two different lines
may have at most one common perpendicular; A13 states that absolute
points can be connected by an (interior) line; A14 states that an abso-
lute point and an (interior) point can be joined by a line; A15 states that
there is exactly one perpendicular passing through an absolute point and
perpendicular to a line that does not go through that absolute point.

To see that all models of this axiom system are precisely the general-
ized hyperbolic planes of Baer, we define, in any model M of our axiom
system, new points and new lines, which together with the points and
lines of M form a projective plane, in which we can define a polarity π

that satisfies the conditions (i) and (ii) above.
Let M be a model of Σ = {A1–A15}. Lines and points that will be

referred to in the sequel are in M. We shall denote by l ∩ l′ the point
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of intersection of two lines l and l′ whenever these intersect, by ϕ(A,B)
the line, which exists and is unique by A1, that passes through the points
A and B, whenever A 6= B, by γ(A, l) the perpendicular through A to l

(which exists and is unique by A9), and by ψ(A, l) the point γ(A, l) ∩ l,
which exists by A10. So far we know that γ(A, l) 6= l only if A /∈ l, so we
know ψ(A, l) is well defined in this case. However

Lemma 1. For all lines l, we have ¬(l ⊥ l).

Proof. Let l be a line with l ⊥ l, and let P be a point not on l

(which must exist by A2). Let Q = ψ(P, l). Then l and γ(P, l) are two
different perpendiculars to l, which have the point Q in common. This
contradicts A9. ¤

Thus, since γ(A, l) 6= l for all A and l, ψ(A, l) is well defined for all A

and l.

Lemma 2. There are four points, no three of which are collinear. For

any line l there are at least three points on l.

Proof. Let l be an arbitrary line, and let P be a point not on l and
Q := ψ(P, l). There must exist such a point P by A2. There must also
exist a point R not on γ(P, l). R is either on l, and thus different from Q, or
is not on l. If it is not on l, then ψ(R, l) is a point on l that is different from
Q. Thus, there are always points P, R, such that P is not on l, R is on l, but
different from Q := ψ(P, l). In this situation S := ψ(Q,ϕ(P, R)) is different
from both P and Q, for, by using the symmetry of the perpendicularity
relation, if S were P , then ϕ(R, P ) and ϕ(R,Q) would be two different
perpendiculars from R to γ(P, l), contradicting A9, if S were R, then
ϕ(P, R) and ϕ(P, Q) would be two different perpendiculars from P to l.
Thus:

(a) there are four points, no three of which are collinear. They are P , Q,
S, ψ(S, l), where l is an arbitrary line (a line does exist, since there are, by
A2 two different points, so there is a line joining them by A1); and that

(b) every line contains at least three points, namely Q, R, ψ(S, l). ¤

We now proceed to extend M to a projective plane and to define the
polarity π satisfying the desired conditions.

The set
P (l) := {g | g ⊥ l}
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will be called an exterior point. Notice that P (l) contains at least three
elements, since there are three distinct points on l, and we may raise
perpendiculars on each to l by A9.

If l1, l2 are such that l1 does not intersect l2 and such that no line is
perpendicular on both l1 and l2, then

P (l1, l2) := {g | g = l1 or g = l2 or α(l1, l2, g)}

will be called an absolute point. Note that different pairs (l1, l2) may
define the same set of lines P (l1, l2), and that this set contains at least
three elements, for, by A11 there is a line g for which α(l1, l2, g) holds.

We introduce new lines by associating to every interior point Q an
exterior line κ(Q), and to every absolute point P (l1, l2) an absolute line
λ(l1, l2).

We are now ready to define the incidence structure of the extended
plane. The points and lines in M will be called interior.

1. Interior points are not on absolute or exterior lines.

2. Absolute points are not on exterior lines.

3. An absolute point P (l1, l2) is on an interior line l if and only if
α(l1, l2, l).

4. The absolute point P (l1, l2) is on the absolute line λ(g, h) if and only
if P (l1, l2) = P (g, h).

5. An exterior point P (l) is on an interior line g if and only if g ⊥ l.

6. An exterior point P (l) is on an exterior line κ(Q) if and only if Q ∈ l

(thus κ(Q) = κ(Q′) ⇔ Q = Q′).

7. An exterior point P (l) is on an absolute line λ(g, h) if and only if
l ∈ P (g, h) (i.e. if and only if α(g, h, l)).

Lemma 3. The extended plane is a projective plane.

Proof. For any two interior points there is exactly one line joining
them by A1. An interior point A and an exterior point P (l) have also
exactly one line joinig them, namely γ(A, l). Two exterior points P (l) and
P (l′) have exactly one line joining them, which is:

(α) an exterior line, κ(Q), in case l and l′ have a common (interior) point Q,
(β) an interior line k if k is perpendicular to l, l′;
(γ) the absolute line λ(l, l′) if there is a line g such that α(l, l′, g).



108 Victor Pambuccian

By A11 one and only one of (α), (β), (γ) must hold.
An interior point A and an absolute point P (g, h) have a unique line

joining them. Existence is implied by A14 and uniqueness by A5.
Two absolute points also have a unique line joining them. Existence

is given by A13, and uniqueness follows from A6 and A3.
An exterior point P (l) and an absolute point P (g, h) can be joined by

a unique line, which is the absolute line λ(g, h) if α(g, h, l), and which is
the interior line m which satsifies α(g, h, m) and is perpendicular to l (its
existence and uniqueness follow from A15), otherwise.

Thus all pairs of distinct points have a unique joining line.
Two internal lines always intersect by A11. An internal line l and

an external line κ(A) meet in P (γ(A, l)). Two external lines κ(A) and
κ(A′), meet in P (ϕ(A,A′)). Two absolute lines λ(a, b) and λ(a′, b′) meet
in P (m), where m is the line joining P (a, b) and P (a′, b′). An absolute line
λ(a, b) and an exterior line κ(Q) meet in P (l), where l is the line joining Q

and P (a, b), which exists by A14. An absolute line λ(a, b) and an interior
line l meet either in P (a, b), if α(a, b, l), or in P (g), where g is the line
through P (a, b) which is perpendicular to l (its existence and uniqueness
being implied by A15). ¤

The polarity π can now be defined on the extended plane constructed
from M as follows: For an interior line l, π(l) := P (l); for an interior
point A, π(A) := κ(A); for an absolute point P (g, h), we let π(P (g, h)) :=
λ(g, h), and vice-versa π(λ(g, h)) := P (g, h); for an exterior point P (l),
we let π(P (l)) := l, and for an exterior line κ(Q) we let π(κ(Q)) := Q.
We have made sure through our axioms and through the way we have
defined the equality of the points and lines we have added to M that these
definitions do not depend on representatives. It is now plain that π does
satsify the conditions (i) and (ii). We have thus proved

Theorem. Σ is an axiom system for Baer’s generalized hyperbolic

planes.

Notice that, if we add three individual point-constants A, B, C to our
language, we may rephrase Σ such that all axioms are universal-existential
statements.

There are two natural questions that one would ask of the axiom
system Σ. The first one is
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Open Question 1. Is every primitive notion of the language L inde-
pendent of the others? In other words, is none of them definable from the
others, the definition being valid in all models of Σ?

We conjecture that the answer is yes, none of the primitive notions
we have used is redundant. This is in stark contrast to plane elementary
hyperbolic geometry, which is axiomatizable by means of incidence (∈)
alone, as pointed out by K. Menger in [3] (a beautiful axiom system
based on incidence alone was provided by H. L. Skala in [4]).

Another natural question, related to this possibility of axiomatizating
hyperbolic geometry in terms of incidence alone, is

Open Question 2. What is the incidence theory of Baer’s general-
ized hyperbolic planes, i.e. what is Cn(Σ)∩S∈ (where Cn stands for the set
of all logical consequences and S∈ for the two-sorted first order language
with ∈ as its only non-logical primitive notion)?

We conjecture that the answer was provided by the theorems proved
by Baer about generalized hyperbolic planes. They state that there are
infinitely many interior points as well as infinitely many exterior points
on every interior line. If we denote by θn the statement that every line
contains n different points, and by ωn the statement that for any line l and
any point P not on it there are n different lines through P not intersecting l,
then we conjecture that Cn(Σ) ∩ S∈ = Cn(A1, A2, {θn, ωn | n ∈ N}).
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