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Multiple solutions for semilinear hemivariational
inequalities at resonance

By LESZEK GASIŃSKI (Cracow) and
NIKOLAOS S. PAPAGEORGIOU (Athens)

Abstract. We consider semilinear eigenvalue problems for hemivariational in-
equalities at resonance. First we consider problems which are at resonance in a higher
eigenvalue λk (with k ≥ 1) and prove two multiplicity theorems asserting the existence
of at least k pairs of nontrivial solutions. Then we consider problems which are resonant
at the first eigenvalue λ1 > 0. For such problems we prove the existence of at least
three nontrivial solutions. Our approach is variational and is based on the nonsmooth
critical point theory of Chang, for locally Lipschitz functions.

1. Introduction

In a recent paper D. Goeleven, D. Motreanu and P. D. Pana-

giotopoulos [14] studied a class of eigenvalue problems for semilinear
hemivariational inequalities and obtained conditions for the existence
of multiple solutions. Extensions to quasilinear hemivariational inqual-
ities were established by L. Gasiński and N. S. Papageorgiou [13].
The resonant case was examined by D. Goeleven, D. Motreanu and
P. D. Panagiotopoulos in [15] (semilinear problems) and L. Gasiński

and N. S. Papageorgiou [12] (quasilinear problems). In both these pa-
pers, we find results on the existence of one solution, but no multiplicity
theorems. The purpose of this paper is to prove theorems on the exis-
tence of multiple solutions for semilinear hemivariational inequalities at
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resonance. This way we extend the work of D. Goeleven, D. Motre-

anu and P. D. Panagiotopoulos [14] to the resonant case (in fact at
the end of [14], the resonant case was mentioned as an open problem)
and also complete the other work of D. Goeleven, D. Motreanu and
P. D. Panagiotopoulos [15], which deals with resonant hemivariational
inequalities, but does not address the question of multiple solutions. Hemi-
variational inequalities are a new type of variational inequalities, where
the convex subdifferential is replaced by the subdifferential in the sense of
Clarke of a locally Lipschitz function. Such inequalities are motivated by
various problems in mechanics, where the lack of convexity does not per-
mit the use of the convex superpotential of J. J. Moreau [19]. Concrete
applications to problems of theoretical mechanics and engineering can be
found in the book of P. D. Panagiotopoulos [21] and Z. Naniewicz

and P. D. Panagiotopoulos [20]. Also the problems considered here
incorporate the case of elliptic boundary value problems with discontin-
uous right hand side, which have been studied using different methods,
by several researchers. We refer to the works of A. Ambrosetti and
M. Badiale [2], A. Ambrosetti and R. Tuner [3], K. C. Chang [9],
I. Massabo [18], C. Stuart [23] and the references therein.

Our approach is variational and is based on the critical point theory
for nonsmooth locally Lipschitz functionals due to K. C. Chang [9]. For
the convenience of the reader in the next section we recall some definitions
and facts from the theory and also from the relevant parts of nonsmooth
analysis.

2. Preliminaries

The nonsmooth critical point theory developed by K. C. Chang [9]
is based on the subdifferential theory for locally Lipschitz functionals due
to F. H. Clarke [10]. Let X be a Banach space and X∗ its topological
dual. A function f : X 7−→ R is said to be locally Lipschitz, if for every
x ∈ X we can find a neighbourhood U of x and a constant kU > 0, such
that |f(y) − f(z)| ≤ kU‖y − z‖ for every y, z ∈ U . It is well-known from
convex analysis that a proper, convex and lower semicontinuous function
g : X 7−→ R = R∪ {+∞} is locally Lipschitz in the interior of its effective
domain dom g = {x ∈ X : g(x) < +∞}. In analogy with the directional
derivative of a convex function, for a locally Lipschitz function f : X 7−→R,
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we can define the generalized directional derivative of f at x in the direction
h by

f0(x; h)
df
= lim sup

x′→x
t↘0

f(x′ + th)− f(x′)
t

.

It is easy to check that the function X 3 h 7−→ f0(x; h) ∈ R is sublinear
and continuous (in fact |f0(x; h)| ≤ k ‖h‖, hence f0(x; ·) is Lipschitz).
So, by a corollary to the Hahn–Banach theorem, f0(x; ·) is the support
function of a nonempty, closed, convex and bounded (hence w∗-compact)
subset of X∗, defined by

∂f(x)
df
= {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f0(x, h) for all h ∈ X},

(see F. H. Clarke [10], Proposition 2.1.2, p. 27). The set ∂f(x) is known
as the subdifferential of f at we see that when f is smooth, we recover
the classical (PS)-condition (see e.g. A. Ambrosetti [1] or P. H. Rabi-

nowitz [22]). Using this extension of the classical (PS)-condition,
K. C. Chang [9] was able to obtain a deformation theorem, which led
to variational minimax principles. As it was done in the smooth case
by P. Bartolo, V. Benci and D. Fortunato [6] (Theorem 1.3), we
can show using their proof (with minor modifications which involve Lem-
mas 3.1 up to 3.4 of K. C. Chang [9], instead of the corresponding smooth
auxiliary results employed by P. Bartolo, V. Benci and D. Fortuna-

to [6]), that we can still have the deformation theorem of K. C. Chang [9]
(Theorem 3.1), under the following weaker compactness condition: “From
any sequence {xn}n≥1 ⊆ X such that |R(xn)| ≤ M for all n ≥ 1 and
(1 + ‖xn‖)m(xn) −→ 0 as n → +∞, we can extract a strongly convergent
subsequence”. We call this condition, the “nonsmooth C-condition” (“C”
standing for G. Cerami [8], who introduced it). Evidently the nonsmooth
(PS)-condition implies the nonsmooth C-condition.

The following theorem is due to K. C. Chang [9] and is a nonsmooth
extension of the well-known “mountain pass theorem” due to A. Am-

brosetti and P. H. Rabinowitz [4].

Theorem 1. If X is a reflexive Banach space, R : X 7−→ R is a

locally Lipschitz functional which satisfies the nonsmooth C-condition and

for some r > 0 and y ∈ X with ‖y‖ > r we have

max{R(0), R(y)} < inf
‖x‖=r

R(x) = α,
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then R has a nontrivial critical point x∗ ∈ X with critical value c =
R(x∗) ≥ α, which is characterized by the following minimax principle

c = inf
γ∈Γ

max
τ∈[0,1]

R(γ(τ)),

where Γ
df
= {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = y}.

A slightly more general version of Theorem 1 will be needed in Sec-
tion 4. For this we need the following variation of the nonsmooth (PS)-
condition. We say that R satisfies the nonsmooth (PS)-condition at level
c ∈ R, if every sequence {xn}n≥1 ⊆ X such that R(xn) −→ c and
m(xn) −→ 0 as n → +∞, has a convergent subsequence. If this condition
holds at every level c ∈ R, then we recover the nonsmooth (PS)-condition
introduced earlier.

Theorem 2. If X is a reflexive Banach space, R : X 7−→ R is a locally

Lipschitz functional, there exist r > 0 and y ∈ X with ‖y‖ > r such that

max{R(0), R(y)} < inf
‖x‖=r

R(x),

and

c
df
= inf

γ∈Γ
max

τ∈[0,1]
R(γ(τ)),

where Γ
df
= {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = y} and R satisfies the

nonsmooth (PS)-condition at level c, then

c ≥ inf
‖x‖=r

R(x)

and there exists x∗ ∈ X such that 0 ∈ ∂R(x∗) and R(x∗) = c.

The next result on the existence of multiple critical points in the
presence of some kind of splitting, was first proved by Szulkin (see [24],
Theorem 4.4) for functions R = Φ + ψ, where Φ ∈ C1(X) and ψ :
X 7−→ R = R ∪ {+∞} is proper, convex and lower semicontinuous.
By modifying the proof of Szulkin and using the deformation theorem of
K. C. Chang [9], Goeleven–Motreanu–Panagiotopoulos extended
the result of Szulkin to the case of a locally Lipschitz functionals R (see [14],
Theorem 2.1). So we have the following theorem on the existence of mul-
tiple nontrivial critical points.
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Theorem 3. If X is a reflexive Banach space and R : X 7−→ R is

an even, locally Lipschitz functional satisfying the nonsmooth C-condition

and also

(i) R(0) = 0;

(ii) there exists a subspace Y ⊆ X of finite codimension and numbers

β, r > 0 such that inf {R(x) : x ∈ Y ∩ ∂Br(0)} ≥ β where Br = {x ∈
X : ‖x‖ < r} and ∂Br = {x ∈ X : ‖x‖ = r};

(iii) there is a finite dimensional subspace V of X with dim V > codim Y

such that R(y) −→ −∞, as ‖y‖ → +∞, for y ∈ V ,

then R has at least dim V − codim Y pairs of nontrivial critical points.

Finally let us recall the Ekeland variational principle (compare
D. De Figueiredo [11], S. Hu and N. S. Papageorgiou [16], p. 519 or
F. H. Clarke [10], Chapter 7.5).

Theorem 4. If (Y, d) is a complete metric space and R : Y 7−→ R =
R∪ {+∞} is lower semicontinuous and bounded from below, then for any

ε > 0 there exists yε ∈ Y such that





R(yε) ≤ inf
y∈Y

R(y) + ε,

R(yε) < R(y) + εd(y, yε) ∀y ∈ Y, y ∈ yε.

Using the eigenfunction expansion theory for self-adjoint compact op-
erators, we know that (−∆,H1

0 (Z)) has a sequence of eigenvalues {λk}k≥1

such that 0 < λ1 < λ2 ≤ λ3 ≤ . . . , λk −→ +∞ as k → +∞ and the
corresponding eigenfunctions {wk}k≥1 form an ortonormal basis of L2(Z).

In what follows, we will denote Vk
df
= span{w1, w2, . . . , wk} for k ≥ 1.

3. Resonant problems at λk

Let Z ⊆ RN (N ≥ 2) be a bounded domain with a C1-boundary Γ.
In this section we study the following resonant at λk hemivariational in-
equality:

(RHIk)
{ −∆x(z)− λkx(z) ∈ ∂j(z, x(z)) a.e. on Z,

x|Γ = 0.
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Our hypotheses on the function j are the following:

H(j)1 j : Z × R 7−→ R is an even locally Lipschitz integrand (which
means that for all ζ ∈ R : Z 3 z 7−→ j(z, ζ) ∈ R is measurable
and for almost all z ∈ Z : R 3 ζ 7−→ j(z, ζ) ∈ R is even and
locally Lipschitz), such that:

(i) for almost all z ∈ Z, all ζ ∈ R and all v(z, ζ) ∈ ∂j(z, ζ), we
have |v(z, ζ)| ≤ a1(z) + c1|ζ| with a1 ∈ L∞(Z) and c1 > 0;

(ii) j(·, 0) ∈ L∞(Z);

(iii) lim inf |ζ|→+∞
2j(z,ζ)

ζ2 > 0 uniformly for almost all z ∈ Z;

(iv) lim supζ→0
2j(z,ζ)

ζ2 ≤ −λk uniformly for almost all z ∈ Z;

(v) there exists 0 < µ < 2 such that lim sup|ζ|→+∞×
v(z,ζ)ζ−2j(z,ζ)

|ζ|µ < 0 uniformly for almost all z ∈ Z and all
v(z, ζ) ∈ ∂j(z, ζ), with v(·, ζ) ∈ L2(Z).

Now we can prove the following multiplicity result for (RHIk).

Theorem 5. If hypotheses H(j)1 hold and k ≥ 1, then problem

(RHIk) has at least k-pairs {±xi}k
i=1 of nontrivial solutions.

Proof. Let Rk : H1
0 (Z) 7−→ R be the energy function defined by

Rk(x)
df
=

1
2
‖∇x‖22 −

λk

2
‖x‖22 −

∫

Z

j(z, x(z)) dz.

From Theorem 2.7.5, p. 83 of F. H. Clarke [10], we know that Rk is a
locally Lipschitz functional.

Claim #1 : Rk satisfies C-condition.
Let {xn}n≥1 ⊆ H1

0 (Z) be a sequence such that |Rk(xn)| ≤M1 for n≥ 1
and (1 + ‖xn‖)m(xn) −→ 0 as n → +∞. We have to produce a strongly
convergent subsequence. To this end let x∗n ∈ ∂Rk(xn), for n ≥ 1, be such
that m(xn) = ‖x∗n‖∗. Its existence follows from the fact that ∂Rk(xn) is
weakly compact and the norm functional is weakly lower semicontinuous
(so we can apply the theorem of Weierstrass and obtain such x∗n). Let
A ∈ L(H1

0 (Z),H−1(Z)) be the self-adjoint, monotone operator defined by

〈Ax, y〉 =
∫

Z

(∇x,∇y)RN dz for all x, y ∈ H1
0 (Z).
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Here by 〈·, ·〉 we denote the duality brackets for the pair (H1
0 (Z),H−1(Z)).

For every n ≥ 1, we have x∗n = Axn−λkxn−u∗n, with u∗n ∈ ∂ψ(xn), where

ψ : H1
0 (Z) 7−→ R is defined by ψ(x)

df
=

∫
Z

j(z, x(z)) dz. It is well known
(see e.g. F. H. Clarke [10] Theorem 2.7.3, p. 80 or J. P. Aubin and
F. H. Clarke [5] Theorem 2) that u∗n(z) ∈ ∂j(z, xn(z)) for almost all
z ∈ Z and that u∗n ∈ L2(Z) (see e.g. K. C. Chang [9], Theorem 2.2).
From the choice of the sequence {xn}n≥1, we have −2Rk(xn) ≤ 2M1, for
n ≥ 1, and so

(1) −‖∇xn‖22 + λk‖xn‖22 + 2
∫

Z

j(z, x(z)) dz ≤ 2M1.

Because (1 + ‖xn‖)‖x∗n‖∗ = (1 + ‖xn‖)m(xn) −→ 0 as n → +∞, so also

(2) 〈x∗n, xn〉 −→ 0 as n → +∞,

and in particular the sequence {〈x∗n, xn〉}n≥1 is bounded. This implies
that there exists M2 > 0, such that

〈Axn, xn〉 − λk‖xn‖22 −
∫

Z

u∗n(z)xn(z) dz ≤ M2,

and so

(3) ‖∇xn‖22 − λk‖xn‖22 −
∫

Z

u∗n(z)xn(z) dz ≤ M2.

Adding (1) and (2), we obtain

(4)
∫

Z

(
2j(z, xn(z))− u∗n(z)xn(z)

)
dz ≤ 2M1 + M2.

By virtue of hypothesis H(j)1(v), we know that there exists c2 > 0, such
that lim sup|ζ|→+∞

v(z,ζ)ζ−2j(z,ζ)
|ζ|µ ≤ −2c2 (with 0 < µ < 2) uniformly for

almost all z ∈ Z and all v(z, ζ) ∈ ∂j(z, ζ), with v(·, ζ) ∈ L2(Z). So we
can find M3 = M3(c2) > 0 such that for almost all z ∈ Z, all ζ such that
|ζ| ≥ M3 and all v(z, ζ) ∈ ∂j(z, ζ), we have

v(z, ζ)ζ − 2j(z, ζ)
|ζ|µ ≤ −c2 < 0,
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and so
v(z, ζ)ζ − 2j(z, ζ) ≤ −c2|ζ|µ.

On the other hand, from the Lebourg mean value theorem
(see e.g. F. H. Clarke [10], Theorem 2.3.7, p. 41), for almost all z ∈ Z
and all ζ ∈ R, we have

|j(z, ζ)− j(z, 0)| ≤ |v1(z, ξ)||ζ|,
for some v1 ∈ ∂j(z, ξ) with ξ = tζ, 0 < t < 1, and so using H(j)1(i), we
get

(5) |j(z, ζ)| ≤ |j(z, 0)|+ a1(z)|ζ|+ c1|ζ|2.
Then, for almost all z ∈ Z and all ζ such that |ζ| < M3, we have

|j(z, ζ)| ≤ c3,

where c3
df
= ‖j(·, 0)‖L∞(Z)+M3‖a1‖L∞(Z)+c1M

2
3 , and again from H(j)1(i),

we have
|v(z, ζ)ζ| ≤ c4,

where c4
df
= M3‖a1‖L∞(Z) +c1M

2
3 (see hypotheses H(j)1(i) and H(j)1(ii)).

Therefore, it follows that for almost all z ∈ Z, all ζ ∈ R and all v(z, ζ) ∈
∂j(z, ζ), we have

v(z, ζ)ζ − 2j(z, ζ) ≤ −c2|ζ|µ + c5,

with c5
df
= c4 + 2c3 + c2M

µ
3 . Using this inequality in (4), we obtain

∫

Z

c2|xn(z)|µ dz − c5|Z| ≤ 2M1 + M2,

so, for all n ≥ 1, we also have

(6) ‖xn‖µ ≤ c6,

with c6
df
=

(
2M1+M2+c5|Z|

c2

) 1
µ

. Let us choose q such that

2 < q < min
{

2∗, 2N+µ
N

}
, where

2∗
df
=





2N

N − 2
if N > 2,

+∞ if N = 2.
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From (5) it follows, that for almost all z ∈ Z and all ζ ∈ R, we have

(7) j(z, ζ) ≤ c7 + c8|ζ|q,

with c7
df
= ‖j(·, 0)‖L∞(Z) + ‖a1‖L∞(Z) + c1 and c8

df
= ‖a1‖L∞(Z) + c1. Let

ϑ
df
=





2∗(q − µ)
q(2∗ − µ)

if N > 2,

1− µ
q if N = 2.

Using the interpolation inequality (see e.g. H. Brezis [7], Remarque 2,
p. 57, and note that 0 < ϑ < 1 is chosen such that 1

q is the “convex
combination” of 1

µ and 1
2∗ , namely 1

q = 1−ϑ
µ + ϑ

2∗ ), inequality (6) and the
Sobolev embedding theorem, for n ≥ 1, we have

(8) ‖xn‖q ≤ ‖xn‖1−ϑ
µ ‖xn‖ϑ

2∗ ≤ c1−ϑ
6 ‖xn‖ϑ

2∗ ≤ c9‖xn‖ϑ,

with some c9 > 0. Then, as for all n ≥ 1 we have Rk(xn) ≤ M1, so using
also (7) and (8), we have that

1
2
‖∇xn‖22 ≤

λk

2
‖xn‖22 +

∫

Z

j(z, xn(z)) dz + M1

≤ λk

2
‖xn‖22 + c7|Z|+ c8‖xn‖q

q + M1

≤ λk

2
|Z| q−2

q ‖xn‖2q + c8‖xn‖q
q + c7|Z|+ M1

≤ c10‖xn‖q
q + c11 ≤ c10c

q
9‖xn‖ϑq + c11,

where c10
df
= λk

2 |Z|
q−2

q + c8 and c11
df
= λk

2 |Z|
q−2
2 + c7|Z| + M1. Using the

Poincaré inequality, we obtain

(9)
1
2
‖∇xn‖22 ≤ c12‖∇xn‖ϑq

2 + c11,

with some c12 > 0 depending on λk. Let us calculate ϑq. In case N > 2,
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from the choice of q, we have 2µ + 2N > Nq, so

ϑq = 2∗
q − µ

2∗ − µ
=

2N

N − 2
· (q − µ)(N − 2)
2N + 2µ− µN

<
2N

N − 2
· (q − µ)(N − 2)

Nq −Nµ
= 2.

In case N = 2, we have 2∗ = +∞ and as µ < 2 < q, so

ϑq =
(

1− µ

q

)
q = q − µ < 2.

Thus, we always have ϑq < 2. Therefore from (9), we infer that {xn}n≥1 ⊆
H1

0 (Z) is bounded. By passing to a subsequence if necessary and using
compactness of the embedding H1

0 (Z) ⊆ L2(Z), we may assume that

xn −→ x weakly in H1
0 (Z),

xn −→ x in L2(Z),

xn(z) −→ x(z) a.e. on Z as n → +∞,

and |xn(z)| ≤ h(z) a.e. on Z for all n ≥ 1 with h ∈ L2(Z) (see e.g.
H. Brezis [7], Theorem IV.9, p. 58). Then we have λkxn −→ λkx

in L2(Z). Also u∗n ∈ ∂ψ(xn), for n ≥ 1, and from Theorem 2.2 of
K. C. Chang [9], we know that ∂ψ(xn) ⊆ L2(Z). Moreover, by virtue of
hypothesis H(j)1(i), we have that {u∗n}n≥1 ⊆ L2(Z) is bounded. Then, if
by (·, ·)2 we denote the inner product in L2(Z), we have

〈x∗n, xn − x〉 = 〈Axn, xn − x〉 − λk(xn, xn − x)2 − (u∗n, xn − x)2

so, using also (2), we get

lim sup
n→+∞

〈Axn, xn − x〉 ≤ 0.

From the monotonicity of A ∈ L(H1
0 (Z),H−1(Z)), we have

〈Axn, xn〉 −→ 〈Ax, x〉 as n → +∞,

so

‖∇xn‖2 −→ ‖∇x‖2 as n → +∞.
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But we also have ∇xn −→ ∇x weakly in L2(Z,RN ) as n → +∞. Thus,
from Kadec–Klee property, we infer that ∇xn −→ ∇x in L2(Z,RN ) as
n → +∞. So finally xn −→ x in H1

0 (Z) as n → +∞. This proves
Claim #1.

Recall that Vk
df
= span{wi}k

i=1, where {wi}i≥1 are the eigenfunctions
corresponding to the eigenvalues {λi}i≥1 of (−∆,H1

0 (Z)). So dim Vk = k.

Claim #2 : Rk(x) −→ −∞ as ‖x‖ → +∞ and x ∈ Vk.
From hypothesis H(j)1(iii) it follows that there exists c13 > 0, such

that lim inf |ζ|→+∞
2j(z,ζ)

ζ2 > 4c13, uniformly for almost all z ∈ Z. So we
can find M4 > 0 such that, for almost all z ∈ Z and all ζ such that
|ζ| ≥ M4, we have

j(z, ζ) ≥ c13ζ
2.

On the other hand, from (5), we see that for almost all z ∈ Z and all ζ

such that |ζ| ≤ M4, we have

j(z, ζ) ≥ −c14,

with c14
df
= ‖j(·, 0)‖L∞(Z) + M4‖a1‖L∞(Z) + c1M

2
4 . So for almost all z ∈ Z

and all ζ ∈ R, we can write that

(10) j(z, ζ) ≥ c13|ζ|2 − c15,

with c15
df
= c14 + c13M

2
4 . For x ∈ Vk, we have that ‖∇x‖22 ≤ λk‖x‖22

(see e.g. S. Kesavan [17], Theorem 3.6.2, p. 149). So using also (10), for
x ∈ Vk, we have

Rk(x) =
1
2
‖∇x‖22 −

λk

2
‖x‖22 −

∫

Z

j(z, x(z)) dz ≤ −c13‖x‖22 + c15|Z|.

Thus finally Rk(x) −→ −∞ as ‖x‖ → +∞ for x ∈ Vk (recall that Vk is fi-
nite dimensional, so all norms of Vk are equivalent). This proves Claim #2.

Claim #3 : There exists r > 0 such that inf{Rk(x) : x ∈ ∂Br(0)} > 0.
By virtue of hypothesis H(j)1(iv), we can find δ > 0 such that for

almost all z ∈ Z and all |ζ| ≤ δ, we have j(z, ζ) ≤ (−λk + λ1
2

)
ζ2

2 . On the
other hand, form (5) we see that for almost all z ∈ Z and all |ζ| ≥ δ, we
have

j(z, ζ) ≤ c16|ζ|η
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with c16 =
(‖j(·, 0)‖L∞(Z) + 1

4‖a1‖L∞(Z) + (‖a1‖L∞(Z) + c1)δ2
)
δ−η and

2 < η ≤ 2∗. Thus finally for almost all z ∈ Z and all ζ ∈ R, we have

j(z, ζ) ≤
(
−λk +

λ1

2

)
ζ2

2
+ c17|ζ|η,

with c17 = c16 +
(
λk − λ1

2

)
δ2−η

2 . Using the fact that ‖∇x‖22 ≥ λ1‖x‖22 for
all x ∈ H1

0 (Z) (see e.g. S. Kesavan [17], Theorem 3.6.2, p. 149) and the
Sobolev embedding theorem, for all x ∈ H1

0 (Z), we have

Rk(x) =
1
2
‖∇x‖22 −

λk

2
‖x‖22 −

∫

Z

j(z, x(z)) dz

≥ 1
2
‖∇x‖22 −

λk

2
‖x‖22 +

(
λk

2
− λ1

4

)
‖x‖22 − c17‖x‖η

η

≥ 1
4
‖∇x‖22 − c17‖x‖η

η ≥
1
4
‖∇x‖22 − c17‖x‖η.

Since ‖∇x‖2 is an equivalent norm on H1
0 (Z), we see that for all x ∈

H1
0 (Z), we have

Rk(x) ≥ c18‖x‖2 − c17‖x‖η

with some c18 > 0. Since 2 < η, from the last inequality, we see that

choosing 0 < r <
(

c18
c17

) 1
η−2

, we will have inf{Rk(x) : x ∈ ∂Br(0)} > 0.
This proves Claim #3.

Now since Rk is even and because of Claims #1, #2 and #3, we can
apply Theorem 3, with V = Vk (dimVk = k) and Y =H1

0 (Z) (codim Y =0)
and deduce that Rk has k pairs {±xi}k

i=1 of nontrivial critical points. It
is easy to see that these are solutions of (RHIk). So problem (RHIk) has
k pairs of nontrivial solutions. ¤

We can have another such a multiplicity result, under a new set of
hypotheses that involve a Landesman–Lazer type condition (see hypothesis
H(j)2(iv)). Our new set of hypotheses on the integrand j is the following

H(j)2 j : Z×R 7−→ R is an even locally Lipschitz integrand (see H(j)1),
such that:

(i) for almost all z ∈ Z, all ζ ∈ R and all v(z, ζ) ∈ ∂j(z, ζ), we
have |v(z, ζ)| ≤ a(z) with a ∈ L∞(Z);

(ii) j(·, 0) ∈ L∞ and ∂j(z, 0) = {0} for almost all z ∈ Z;
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(iii) there exist v−, v+ : Z 7−→ R measurable functions, such
that for almost all z ∈ Z, we have v(z, ζ) −→ v−(z) as
ζ → −∞ and v(z, ζ) −→ v+(z) as ζ → +∞, uniformly for
all v(z, ζ) ∈ ∂j(z, ζ) with v(·, ζ) ∈ L2(Z);

(iv)
∫

Z

(
v−(z)u−k (z)− v+(z)u+

k (z)
)

dz 6= 0 for all eigenfunctions
uk corresponding to the eigenvalue λk;

(v) lim supζ→0
2j(z,ζ)

ζ2 ≤ −λk uniformly for almost all z ∈ Z.

Theorem 6. If hypotheses H(j)2 hold and k ≥ 2, then problem

(RHIk) has at least k − 1 pairs {±xi}k−1
i=1 of nontrivial solutions.

Proof. As before let Rk : H1
0 (Z) 7−→ R be the energy functional

defined by

Rk(x)
df
=

1
2
‖∇x‖22 −

λk

2
‖x‖22 − ψ(x),

where ψ : H1
0 (Z) 3 x 7−→ ∫

Z
j(z, x(z)) dz ∈ R. We know that Rk is locally

Lipschitz.

Claim #1 : Rk satisfies the nonsmooth (PS)-condition.
Let {xn}n≥1 ⊆ H1

0 (Z) be such that |Rk(xn)| ≤ M1 for all n ≥ 1 and
let m(xn) −→ 0 as n → +∞. We will show that {xn}n≥1 ⊆ H1

0 (Z) is
bounded. Suppose this is not true. Then, by passing to a subsequence if
necessary, we may assume that ‖xn‖ −→ +∞ as n → +∞. Let us set
yn = xn

‖xn‖ for n ≥ 1. Then ‖yn‖ = 1 and so we may assume that

yn −→ y weakly in H1
0 (Z),

yn −→ y in L2(Z),

yn(z) −→ y(z) a.e. on Z as n → +∞,

and |yn(z)| ≤ h(z) a.e. on Z with h ∈ L2(Z). We know that we can find
x∗n ∈ ∂Rk(xn) such that ‖x∗n‖∗ = m(xn), for n ≥ 1, and

x∗n = Axn − λkxn − u∗n,

where A ∈ L (
H1

0 (Z),H−1(Z)
)

is defined by 〈Ax, y〉 =
∫

Z
(∇x,∇y)RN dz

for all x, y ∈ H1
0 (Z) and u∗n ∈ ∂ψ(xn). Dividing the last equality by ‖xn‖,

we obtain

(11) Ayn − λkyn − u∗n
‖xn‖ =

x∗n
‖xn‖ .
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Since u∗n ∈ ∂ψ(xn), we have u∗n(z) ∈ ∂j(z, xn(z)) for almost all z ∈ Z

(see F. H. Clarke [10], Theorem 2.7.5, p. 83) and u∗n ∈ L2(Z) (see
K. C. Chang [9], Theorem 2.2). From hypothesis H(j)2(i), we get
‖u∗n‖2 ≤ ‖a‖2, so the sequence {u∗n}n≥1 is also bounded in H−1(Z). Also
from the choice of the sequence {xn}n≥1, we have that x∗n −→ 0 in H−1(Z)
as n → +∞. Hence, by passing to the limit in (11), as n → +∞, we obtain

Ay = λky,

and so { −∆x(z)− λky(z) = 0 a.e. on Z

y|Γ = 0.

Now, we will show that y 6= 0. Suppose this is not true. Then, using the
Poincaré inequality, we have

Rk(xn)
‖xn‖2 =

1
2
‖∇yn‖22 −

λk

2
‖yn‖22 −

∫

Z

j(z, xn(z))
‖xn‖2 dz

≥ c1‖yn‖2 − λk

2
‖yn‖22 −

∫

Z

j(z, xn(z))
‖xn‖2 dz

= c1 − λk

2
‖yn‖22 −

∫

Z

j(z, xn(z))
‖xn‖2 dz,

with some c1 > 0. Note that Rk(xn)
‖xn‖2 −→ 0 as n → +∞. Also, as before, via

the Lebourg mean value theorem and using hypothesis H(j)2(i), we can
check that

∫
Z

j(z,xn(z))
‖xn‖2 dz −→ 0 as n → +∞. But we also have ‖yn‖22 −→

‖y‖22 = 0 as n → +∞. So, passing to the limit in last inequality, we obtain
c1 ≤ 0 and we reach a contradiction to the fact that c1 > 0. Therefore
y 6= 0 and this combined with (12) implies that y is an eigenfunction
corresponding to the eigenvalue λk. We have

xn −→ +∞ a.e. on {y > 0} and

xn −→ −∞ a.e. on {y < 0}.

From the choice of the sequence {xn}n≥1, for n ≥ 1, we have

|Rk(xn)| ≤ M1
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and, by passing to a subsequence if necessary, we have

|〈x∗n, u〉| ≤ εn‖u‖,

for all u ∈ H1
0 (Z) with εn ↘ 0. Putting u = xn ∈ H1

0 (Z) in the last two
inequalities we have

− 2M1 ≤ ‖∇xn‖22 − λk‖xn‖22 − 2
∫

Z

j(z, xn(z)) dz ≤ 2M1

and

− εn‖xn‖ ≤ −‖∇xn‖22 + λk‖xn‖22 +
∫

Z

u∗n(z)xn(z) dz ≤ εn‖xn‖.

Adding the last two inequalities, we obtain

−2M1 − ε‖xn‖ ≤
∫

Z

(u∗n(z)xn(z)− 2j(z, xn(z))) dz ≤ 2M1 + εn‖xn‖.

Dividing by ‖xn‖, we have

(13) − 2M1

‖xn‖ − εn ≤
∫

Z

(
u∗n(z)yn(z)− 2j(z, xn(z))

‖xn‖
)

dz ≤ 2M1

‖xn‖ + εn.

By virtue of hypothesis H(j)2(iii) and (i), we have

u∗n(z)yn(z) −→ v+(z)y(z) a.e. on {y > 0},
u∗n(z)yn(z) −→ v−(z)y(z) a.e. on {y < 0},
u∗n(z)yn(z) −→ 0 a.e. on {y = 0}.

Next, let N be the Lebesgue-null subset of Z1
df
= {y 6= 0}, outside of

which we have xn −→ ±∞ and u∗n −→ v± as n → +∞. Fix z ∈ Z1 \ N

and assume xn(z) −→ +∞, u∗n(z) −→ v+(z) as n → +∞ (the analysis of
the other case is similar). For a given 0 < ε < 1, via the Lebourg mean
value theorem, we have

j(z, xn(z)) = j(z, εxn(z)) + vn(z)(1− ε)xn(z),

where vn(z) ∈ ∂j(z, wn(z)) and wn(z) = (1 − tn)xn(z) + tnεxn(z), for
0 < tn < 1 and n ≥ 1. Note that for n ≥ 1 large enough, we have xn(z) > 0
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and so wn(z) = xn(z) − tn(1 − ε)xn(z) ≥ xn(z) − (1 − ε)xn(z) = εxn(z).
Therefore wn(z) −→ +∞ as n → +∞ and so, by virtue of hypothesis
H(j)2(iii), we have vn(z) −→ v+(z) as n → +∞. Let n0 = n0(ε, z) ≥ 1 be
such that, for n ≥ n0, we have xn(z) > 0 and |vn(z)− v+(z)| < ε. So for
n ≥ n0, we have

2j(z, xn(z))
xn(z)

=
2j(z, εxn(z))

xn(z)
+

2vn(z)(1− ε)xn(z)
xn(z)

.

From the Lebourg mean value theorem, we also get |j(z, εxn(z))| ≤ c2 +
c3|xn(z)| for some c2, c3 > 0 (see hypotheses H(j)2(i) and (ii)). Since for
n ≥ n0 we have −ε + v+(z) ≤ vn(z) ≤ ε + v+(z) and xn(z) > 0, so we can
write

−2c2 − 2c3εxn(z)
xn(z)

+
2(−ε + v+(z))(1− ε)xn(z)

xn(z)
≤ 2j(z, xn(z))

xn(z)

≤ 2c2 + 2c3εxn(z)
xn(z)

+
2(ε + v+(z))(1− ε)xn(z)

xn(z)
.

Since xn(z) −→ +∞ as n → +∞ and 0 < ε < 1 was arbitrary, we infer
that

2j(z, xn(z))
xn(z)

−→ 2v+(z) a.e. on {y > 0}.

As we already mentioned, in a similar way we can show that

2j(z, xn(z))
xn(z)

−→ 2v−(z) a.e. on {y < 0}.

Finally for almost all z ∈ {y = 0} we have
∣∣∣∣
2j(z, xn(z))

‖xn‖

∣∣∣∣ ≤
2c2 + c3|xn(z)|

‖xn‖ −→ 0, as n → +∞.

Therefore, by passing to the limit in (13), we obtain
∫

Z

[
v+(z)χ{y>0}(z) + v−(z)χ{y<0}(z)

−2v+(z)χ{y>0}(z)− 2v−(z)χ{y<0}(z)
]
y(z) dz = 0

so ∫

Z

(
v+(z)χ{y>0}(z) + v−(z)χ{y<0}(z)

)
y(z) dz = 0
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and ∫

Z

(
v+(z)y+(z)− v−(z)y−(z)

)
dz = 0,

so we get a contradiction to hypothesis H(j)2(iv). Thus {xn}n≥1 is bound-
ed in H1

0 (Z) and so we may assume that xn −→ x weakly in H1
0 (Z) as

n → +∞. Using the Kadec–Klee property and proceeding as in the proof
of Theorem 5 (see Claim #1), we can have that xn −→ x in H1

0 (Z). This
proves Claim #1.

Claim #2 : Rk(x) −→ −∞ as ‖x‖ → +∞ and x ∈ Vk−1.
For every x ∈ Vk−1, we know that ‖∇x‖22 ≤ λk−1‖x‖22 and so we have

Rk(x) =
1
2
‖∇x‖22 −

λk

2
‖x‖22 −

∫

Z

j(z, x(z)) dz

≤ 1
2

(
1− λk

λk−1

)
‖∇x‖22 + c4‖∇x‖2 + c5,

for some c4, c5 > 0 (see hypothesis H(j)2(i)). Since 1 − λk

λk−1
< 0, we

deduce that Rk(x) −→ −∞ as ‖x‖ → +∞ for x ∈ Vk−1. This proves the
Claim #2.

Claim #3 : There exists r > 0 such that inf{Rk(x) : x ∈ ∂Br(0)} > 0.
This follows from hypothesis H(j)2(v) as in the proof of Theorem 4

(see Claim #3).
Since Rk is even, Claims #1, #2 and #3 permit the use of Theorem 3

with V = Vk−1 (dim V = k − 1) and Y = H1
0 (Z) (codim Y = 0), which

gives us k − 1 pairs {±xi}k−1
i=1 of nontrivial critical points of Rk. We can

easily check that these functions solve (RHIk). ¤

4. Resonant problems at λ1

In this section we consider semilinear hemivariational inequalities at
resonance at λ1 > 0. So we deal with the following problem

(RHI1)
{ −∆x(z)− λ1x(z) ∈ ∂j(z, x(z)) a.e. on Z,

x|Γ = 0.

We will show that problem (RHI1) has at least three nontrivial solu-
tions, when we assume that the potential j(z, ζ) has a finite limit for
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almost all z ∈ Z as ζ → ±∞. Such problems were called by Bartolo–
Benci–Fortunato “strongly resonant” (see [6]). Besides Bartolo–Benci–
Fortunato, such “smooth” strongly resonant problems were also studied
by K. Thews [25] and J. Ward [26]. In all these papers we have exis-
tence but no multiplicity results.

Our hypotheses on j are the following

H(j)3 j : Z × R 7−→ R is a locally Lipschitz integrand, such that:

(i) for almost all z ∈ Z, all ζ ∈ R and all v(z, ζ) ∈ ∂j(z, ζ), we
have |v(z, ζ)| ≤ a(z) with a ∈ L∞(Z);

(ii) j(·, 0) ∈ L∞(Z) and
∫

Z
j(z, 0) dz ≥ 0;

(iii) j(z, ζ) −→ j±(z) as ζ → ±∞ uniformly for almost all z ∈ Z,
j± ∈ L∞(Z),

∫
Z

j±(z) dz > 0 and v(z, ζ) −→ 0 as |ζ| →
+∞, for almost all z ∈ Z and all v(z, ζ) ∈ ∂j(z, ζ), with
v(·, ζ) ∈ L2(Z);

(iv) there exist ϑ− < 0 < ϑ+ such that
∫

Z
j(z, ϑ±w1(z))dz >∫

Z
j±(z)dz (here w1 is the first eigenfunction corresponding

to the first eigenvalue λ1 > 0; recall w1(z) > 0 for all z ∈ Z),
and there exists ϑ 6= 0, such that

∫
Z

j(z, ϑw1(z)) dz ≤ 0;

(v) there exists µ > λ1 such that lim supζ→0
2j(z,ζ)

ζ2 < −µ uni-
formly for almost all z ∈ Z;

(vi) for almost all z ∈ Z and all ζ ∈ R, we have 2j(z, ζ) ≤
(λ2 − λ1)ζ2.

Theorem 7. If hypotheses H(j)3 hold, then problem (RHI1) has at

least three nontrivial solutions.

Proof. We introduce the energy functional R1 : H1
0 (Z) 7−→ R de-

fined by

R1(x) =
1
2
‖∇x‖22 −

λ1

2
‖x‖22 −

∫

Z

j(z, x(z)) dz.

Claim #1 : R1 is bounded below.
By virtue of hypothesis H(j)3(iii), we can find M1 > 0 such that for

almost all z ∈ Z, we have

|j(z, ζ)− j−(z)| ≤ 1 for all ζ ≤ −M1 and

j(z, ζ)− j+(z)| ≤ 1 for all ζ ≥ M1.
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Also from hypotheses H(j)3(i) and (ii) and the Lebourg mean value the-
orem, for almost all z ∈ Z and all ζ such that |ζ| < M1, we get that
|j(z, ζ)|≤a1(z), where a1∈L∞(Z), namely a1(z)=M1a(z)+‖j(·, 0)‖L∞(Z).
Then for all x ∈ H1

0 (Z), we have

R1(x) =
1
2
‖∇x‖22 −

λ1

2
‖x‖22 −

∫

{|x|<M1}
j(z, x(z)) dz

−
∫

{x≤−M1}
j(z, x(z)) dz −

∫

{x≥M1}
j(z, x(z)) dz

≥ −‖a1‖1 − ‖j+‖1 − ‖j−‖1 − 2|Z|

(recall ‖∇x‖22 ≥ λ1‖x‖22 for all x ∈ H1
0 (Z)). This proves Claim #1.

Next consider the following splitting for H1
0 (Z). Let H1

0 (Z) = Vw1 ⊕
Yw1 , with Vw1 = span{w1} and Yw1 = V ⊥

w1
.

Claim #2 : R1(v) ≥ 0 for all v ∈ Yw1 .

Let v ∈ Yw1 . Using hypothesis H(j)3(vi), we obtain

R1(v) =
1
2
‖∇v‖22 −

λ1

2
‖v‖22 −

∫

Z

j(z, v(z)) dz

≥ 1
2
‖∇v‖22 −

λ1

2
‖v‖22 −

1
2
(λ2 − λ1)‖v‖22

≥ 1
2
‖∇v‖22 −

λ1

2
‖v‖22 −

1
2
‖∇v‖22 +

λ1

2
‖v‖22 = 0,

(recall that ‖∇v‖22 ≥ λ2‖v‖22 for all v ∈ Yw1), which proves the Claim #2.

Claim #3 : R1 satisfies the nonsmooth (PS)-condition at level
c 6= − ∫

Z
j±(z) dz.

Let {xn}n≥1 ⊆ H1
0 (Z) be a sequence such that R1(xn) −→ c with c 6=

− ∫
Z

j±(z) dz and m(xn) −→ 0 as n → +∞. We will show that {xn}n≥1

is bounded in H1
0 (Z). Suppose that it is not true. Then, passing to a

subsequence if necessary, we may assume that ‖xn‖ −→ +∞ as n → +∞.

Let us set yn = xn

‖xn‖ for n ≥ 1. By passing to a subsequence if necessary,
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we may assume that

yn −→ y weakly in H1
0 (Z),

yn −→ y in L2(Z),

yn(z) −→ y(z) a.e. on Z as n → +∞,

and |yn(z)| ≤ h(z) a.e. on Z with h ∈ L2(Z). From the choice of the
sequence {xn}n≥1, we know that there exists M2 > 0, such that

|R1(xn)| ≤ M2,

so

−M2 ≤ 1
2
‖∇xn‖22 −

λ1

2
‖xn‖22 −

∫

Z

j(z, xn(z)) dz ≤ M2

and so

− M2

‖xn‖2 ≤
1
2
‖∇yn‖22 −

λ1

2
‖yn‖22−

∫

Z

j(z, xn(z))
‖xn‖2 dz≤ M2

‖xn‖2 .(14)

Using hypothesis H(j)3(i) and the Lebourg mean value theorem, it follows
that

∫
Z

j(z,xn(z))
‖xn‖2 dz −→ 0 as n → +∞. Passing to the limit in (14) as

n → +∞, we obtain

(15) lim
n→+∞

‖∇yn‖22 = λ1‖y‖22,

so from the weak lower semicontinuity of the norm functional, we get

‖∇y‖22 ≤ lim inf
n→+∞

‖∇yn‖22 = λ1‖y‖22.

But from the Rayleigh quotient, we know that ‖∇y‖22 ≥ λ1‖y‖22, so finally,
we have that

(16) ‖∇y‖22 = λ1‖y‖22.

Moreover, from (15) and (16), we get that ‖∇yn‖2 −→ ‖∇y‖2, so, using
Kadec–Klee property, we also have yn −→ y in H1

0 (Z) as n → +∞, and
so y 6= 0. Thus, from (16), we deduce that y = ±w1. Without any
loss of generality we may assume that y = w1 (the analysis is similar if
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y = −w1). Since w1(z) > 0 for all z ∈ Z, we have that xn(z) −→ +∞, for

all z ∈ Z, as n → +∞. For n ≥ 1, let x∗n ∈ ∂R1(xn) be such that m(xn) =

‖x∗n‖∗. We know that x∗n = Axn−λ1xn−u∗n with A ∈ L(H1
0 (Z),H−1(Z))

being defined by 〈Ax, y〉 =
∫

Z
(∇x(z),∇y(z))RN dz for x, y ∈ H1

0 (Z) and

u∗n ∈ ∂ψ(xn), where in this case ψ : H1
0 (Z) 7−→ R is defined by ψ(x) =∫

Z
j(z, x(x)) dz. So u∗n(z) ∈ ∂j(z, xn(z)) a.e. on Z. In particular we have

that

|〈x∗n, v〉| ≤ εn‖v‖ ∀v ∈ H1
0 (Z) with εn ↘ 0,

so ∣∣∣〈Axn, v〉 − λ1(xn, v)−
∫

Z

u∗n(z)v(z) dz
∣∣∣ ≤ εn‖v‖

for all v ∈ H1
0 (Z), with εn ↘ 0. Let xn = tnw1 + vn with tn ∈ R (i.e.

tnw1 ∈ Vw1) and vn ∈ V ⊥
w1

= Yw1 . Taking v = vn, we have

‖∇vn‖22 − λ1‖vn‖22 −
∫

Z

u∗n(z)vn(z) dz ≤ εn‖vn‖,

so (
1− λ1

λ2

)
‖∇vn‖22 − c3‖u∗n‖∞‖∇vn‖2 ≤ ε′n‖∇vn‖2

for some c3 > 0 and with ε′n ↘ 0 (recall that ‖∇v‖22 ≥ λ2‖v‖22 for all

v ∈ Yw1).

Note that by virtue of hypothesis H(j)3(iii) and the fact that xn(z)−→
+∞ as n → +∞ for all z ∈ Z, we have u∗n(z) −→ 0 for almost all z ∈ Z

as n → +∞. This, together with hypothesis H(j)3(i) and the Lebesgue

dominated convergence theorem, implies that ‖u∗n‖∞ −→ 0 as n → +∞.

Thus we have (
1− λ1

λ2

)
‖∇vn‖2 ≤ ε′′n,

with ε′′n ↘ 0 (namely ε′′n = ε′n + c3‖u∗n‖∞). So we have that vn −→ 0 in

H1
0 (Z) as n → +∞. Using this convergence, we see that for a given ε > 0,
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we can find n0 = n0(ε) such that for n ≥ n0 we have

R1(xn) =
1
2
‖∇xn‖22 −

λ1

2
‖xn‖22 −

∫

Z

j(z, xn(z)) dz

=
1
2
t2n‖∇w1‖22 +

1
2
‖∇vn‖22 −

λ1

2
t2n‖w1‖22 −

λ1

2
‖vn‖22

−
∫

Z

j(z, xn(z)) dz

=
1
2
‖∇vn‖22 −

λ1

2
‖vn‖22 −

∫

Z

j(z, xn(z)) dz

≤ ε−
∫

Z

j(z, xn(z)) dz,

so from Fatou lemma, we have

(17) lim sup
n→+∞

R1(xn) ≤ ε−
∫

Z

j+(z) dz.

On the other hand, since ‖∇xn‖22 ≥ λ1‖xn‖22, we have

(18) lim sup
n→+∞

R1(xn) ≥ −
∫

Z

j+(z) dz.

From (17), (18) and since ε > 0 was arbitrary, we infer that

lim sup
n→+∞

R1(xn) = −
∫

Z

j+(z) dz,

which is a contradiction to our assumption. This proves that the sequence
{xn}n≥1 ⊆ H1

0 (Z) is bounded. Then, as in the proof of Theorem 5,
Claim #1, via the Kadec–Klee property, we can show that xn −→ x in
H1

0 (Z), which proves Claim #3.

Claim #4 : There exists r0 > 0 such that inf{R1(x) : x ∈ ∂Br(0)} > 0 for
all r ∈ (0, r0).

From hypothesis H(j)(v), we can find δ > 0 such that for almost all
z ∈ Z and all ζ such that |ζ| ≤ δ, we have

j(z, ζ) ≤ 1
2

(
−µ + λ1

2

)
|ζ|2
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(recall that µ > λ1 and so −µ+λ1
2 > −µ). On the other hand, from the

hypothesis H(j)3(i) and the Lebourg mean value theorem, for almost all
z ∈ Z and all ζ such that |ζ| > δ, we obtain

|j(z, ζ)| ≤ c4 + c5|ζ|,

with some c4, c5 > 0. Thus for almost all z ∈ Z and all ζ ∈ R, we have

j(z, ζ) ≤ 1
2

(
−µ + λ1

2

)
|ζ|2 + c6|ζ|ϑ,

with c6 = (c4 + c5δ)δ−ϑ + 1
2

(
−µ+λ1

2

)
δ2−ϑ and 2 < ϑ ≤ 2∗ = 2N

N−2 . Using
this we obtain that

R1(x) =
1
2
‖∇x‖22 −

λ1

p
‖x‖22 −

∫

Z

j(z, x(z)) dz

≥ 1
2
‖∇x‖22 −

λ1

2
‖x‖22 +

1
2

(
µ + λ1

2

)
‖x‖22 − c6‖x‖ϑ

ϑ

=
1
2
‖∇x‖22 +

µ− λ1

4
‖x‖22 − c6‖x‖ϑ

ϑ ≥
1
2
‖∇x‖22 − c6‖x‖ϑ

ϑ.

From the Sobolev embedding theorem, we have that H1
0 (Z) is embedded

continuously in Lϑ(Z). So using the Poincaré inequality, it follows that

R1(x) ≥ c7‖x‖2 − c8‖x‖ϑ,

with some c7, c8 > 0 and all x ∈ H1
0 (Z), and so

R1(x) ≥ c7‖x‖2
(

1− c8

c7
‖x‖ϑ−2

)
.

Let r0
df
=

(
c8
c7

) 1
ϑ−2

. Now, for r ∈ (0, r0), we have

inf
‖x‖=r

R1(x) > 0,

and this proves Claim #4.

Now, let U± df
= {x ∈ H1

0 (Z) : x = ±tw1 + v, t > 0, v ∈ Yw1}. We will
show that R1 attains its infimum on both open sets U+ and U−. To this
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end let m+
df
= inf{R1(x) : x ∈ U+}. Since R1 is locally Lipschitz, we have

that m+ = inf{R1(x) : x ∈ U+}. Let

R+
1

df
=

{
R1(x) if x ∈ U+,

+∞ otherwise.

Evidently R1 is lower semicontinuous and bounded below (see Claim #1).
Thus we can apply the Ekeland variational principle (see Theorem 4) and
obtain a sequence {xn}n≥1 ⊆ U+ such that R1(xn) ↘ m+ as n → +∞
and

R+
1 (xn) < R+

1 (y) + εn‖xn − y‖,
for all y ∈ H1

0 (Z), y 6= xn, with εn ↘ 0. So

R1(xn) < R1(y) + εn‖xn − y‖

for all y ∈ U+, y 6= xn. This means that xn ∈ U+ minimizes the functional
y −→ R1(y)+εn‖y−xn‖ on U+. Since U+ is open, we have 0 ∈ ∂R1(xn)+

εnB
∗
1, where B

∗
1

df
= {x∗ ∈ H−1(Z) : ‖x∗‖∗ ≤ 1} (recall that ∂‖ · ‖ = B

∗
1;

see e.g. S. Hu and N. S. Papageorgiou [16]). Hence, we can find x∗n ∈
∂R1(xn) such that ‖x∗n‖∗ ≤ εn for n ≥ 1. If follows that m(xn) ≤ ‖x∗n‖∗ ≤
εn −→ 0. Using hypothesis H(j)3(iv), we obtain

m+ = inf
x∈U+

R1(x) ≤ R1(ϑ+w1)

= −
∫

Z

j(z, ϑ+w1(z)) dz < −
∫

Z

j+(z) dz.

Since R1(xn) −→ m+ 6= − ∫
Z

j+(z) dz, so from Claim #3, we infer that,
by passing to a subsequence if necessary, we may assume that xn −→ y1

in H1
0 (Z) with y1 ∈ U+. We will show that y1 ∈ U+. Let us assume

that y1 ∈ ∂U+ = Yw1 . Then from Claim #2, we have 0 ≤ R1(y1). On
the other hand, from hypotheses H(j)3(iv) and (iii), we get m+ < 0. But
R1(y1) = m+, so we get a contradiction. Hence y1 ∈ U+, y1 6= 0 and
0 ∈ ∂R1(y1). Similarly we obtain y2 ∈ U−, y2 6= 0 such that 0 ∈ ∂R1(y2).
Clearly y1 6= y2.

Finally from Claim #4, we know that we can find 0 < r < min{r0, |ϑ|}
(compare hypothesis H(j)3(iv)) such that inf{R1(x) : x ∈ ∂Br(0)} > 0.
From hypothesis H(j)3(iv), we also have that max{R1(0), R1(ϑw1)} ≤ 0.
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These facts combined with Claim #3, permit the use of Theorem 2, with
y = w (note that c 6= − ∫

Z
j±(z) dz, because

c = inf
γ∈Γ

max
τ∈[0,1]

R1(γ(τ)) ≥ R1(0) = 0 > −
∫

Z

j±(z) dz),

which gives us y3 ∈ H1
0 (Z) such that 0 ∈ ∂R1(y3) and

R1(y3) = c > −
∫

Z

j±(z) dz > m±,

so clearly y3 6= 0 and y3 6= y1, y3 6= y2. Finally we can easily check that
y1, y2, y3 satisfy (RHI1) and so are three different, nontrivial solutions.

¤

Remark. It will be interesting to have such mutliplicity result for
quasilinear hemivariational inequalities, like the one studied by L. Gasińs-

ki and N. S. Papageorgiou [12].
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