Nonlinear connections and the problem of metrizability

By J. SZILASI (Debrecen) and Z. MUZSNAY (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

1. Introduction

- (1.1) A nonlinear connection in a vector bundle is nothing but a vector 1-form, which is a projector whose kernel is the vertical bundle. This paper is devoted to a study of some problems concerning such connections. Sections 2 and 3 are of preparatory nature: we briefly summarize the necessary tools of Frölicher-Nijenhuis formalism of vector valued forms and collect some fundamental facts concerning differential operators and their formal integrability ("Spencer-Quillen-Goldschmidt technique"). In section 4 we present some basic facts about nonlinear connections. We show that these can be characterized as quasi-scalar (nonlinear) differential operators and that their tension is in fact a generalization of the deflection known from Matsumoto's theory of Finsler connections. The homogeneity condition for nonlinear connections (which results in linear connections) is also expressed in a new, illuminating way. In section 5 we formulate the problem of metrizability and show that the question is the formal integrability of a first order linear differential operator arising from the connection. In section 6 we show that our operator is involutive, while in the concluding section 7 we demonstrate that in the flat case all of the conditions of the modern version of the Cartan-Kähler theorem are satisfied so that the metrizability problem always has a solution. Of course, the vanishing of the curvature is a very restrictive assumption, but we hope that this application of the Spencer-Quillen-Goldschmidt technique has enough interest and (possibly) the method used here may also be successful in more general and much more complicated cases.
- (1.2) Before we embark on the actual topic of the paper, we wish to review briefly the basic conventions and notations that will be used in the

sequel. — We shall always be working in the caterory of the finite dimensional, second countable, smooth manifolds. The tangent and cotangent bundle of a manifold M will be written as a triple $\tau_M = (TM, \tau, M)$ and $\tau_M^* = (T^*M, \tau^*, M)$, resp.; T is the tangent functor. $C^{\infty}(M)$ denotes the algebra of smooth functions on M; $\mathfrak{X}(M)$ is the $C^{\infty}(M)$ -module of vector fields on M; $\wedge(M)$ and S(M) are the exterior and the symmetric algebra over M. As usual, d is the operator of the exterior derivative, while $i_X : \wedge(M) \to \wedge(M)$ ($X \in \mathfrak{X}(M)$) is the substitution operator (or "interior product by X").

In coordinate calculations Einstein's summation convention will be used as appropriate.

2. Frölicher-Nijenhuis formalism

Let N be a manifold, $k \in \mathbb{N}$. A vector valued k-form (briefly a vector k-form) is a skew-symmetric $C^{\infty}(N)$ -multilinear mapping $K: \mathfrak{X}^k(N) \to \mathfrak{X}(N)$, with the agreement that the vector 0-forms are the elements of $\mathfrak{X}(N)$. Frölicher-Nijenhuis theory associates to any vector k-form K two derivations of the exterior algebra $\wedge(N)$: a derivation of degree k-1 which is denoted by i_K and a derivation of degree k, denoted by d_K . i_K and d_K reduce to the above substitution operator i_X and the Lie derivative d_X in case of vector 0-forms (i.e. vector fields), while in general they can be described as follows:

(i) Derivations i_K annihilate $C^{\infty}(N)$ and are determined by their actions on the (scalar) 1-forms:

(1)
$$\forall \omega \in \wedge^{1}(N), \quad X_{i} \in \mathfrak{X}(N) \quad (1 \leq i \leq k) :$$
$$i_{K}\omega(X_{1}, \dots, X_{k}) = \omega\left(K\left(X_{1}, \dots, X_{k}\right)\right).$$

(ii)
$$d_K = [i_K, d] := i_K \circ d + (-1)^k d \circ i_K$$
, so — in particular —

(2)
$$\forall f \in C^{\infty}(N) : d_K f = i_K df;$$

this last relation determines K uniquely. (In (i) and (ii) $k := \deg K$ is the degree of K.)

The bracket of two derivations d_K, d_L is introduced thus:

(3)
$$[d_K, d_L] = d_K \circ d_L - (-1)^{k\ell} d_L \circ d_K$$

 $(k=\deg K,\,\ell=\deg L).$ A fundamental result of the theory states that for each vector k-form K and vector ℓ -form L there exists a unique $k+\ell$ -form [K,L] such that

$$d_{[K,L]} = [d_K, d_L].$$

[K,L] is called the *Frölicher-Nijenhuis bracket*, briefly the *bracket* of K and L. In case of vector 0-forms it reduces to the usual bracket of vector fields. In the general case, the evaluation of [K,L] on vector fields is quite complicated, for an effective formula we refer to [10]. Fortunately, in this paper we shall have to evaluate brackets only in the following very simple situations:

(i) K is a vector 1-form, $L := Z \in \mathfrak{X}(N)$. Then

(4)
$$\forall X \in \mathfrak{X}(N) : [K, Z](X) = [K(X), Z] - K[X, Z].$$

(ii) Let K be a vector 1-form again. By (3) we get that $[d_K, d_K] = 2d_K \circ d_K = d_{[K,K]}$, so

(5)
$$d_K^2 = d_{\frac{1}{2}[K,K]}$$

Here $N_K := \frac{1}{2}[K, K]$ is called the *Nijenhuis torsion* of K. It can be characterized by the formula $N_K(X, Y) = [K(X), K(Y)] + K \circ K[X, Y] - K[K(X), Y] - K[X, K(Y)] \quad (X, Y \in \mathfrak{X}(N)).$

3. Differential operators and formal integrability

(3.1) Suppose that M is an n-dimensional manifold and consider a vector bundle $\xi = (E, p, M)$ of rank r over M. Let Sec ξ be the $C^{\infty}(M)$ -module of sections of ξ and JE be the 1-jet space of ξ , i.e.

$$JE = \{j_x \sigma \mid x \in M, \sigma \in \operatorname{Sec} \xi\},\,$$

where $j_x \sigma$ is the 1-jet of σ at x. We denote by π the target projection

$$JE \to E, \quad j_x \sigma \mapsto \sigma(x).$$

It is well-known that the sequence

$$0 \to T^*M \otimes E \stackrel{\varepsilon}{\longrightarrow} JE \stackrel{\pi}{\longrightarrow} E \to 0,$$

where

$$\varepsilon: df(x) \otimes \sigma(x) \longmapsto j_x \left[(f - f(x)) \sigma \right]$$

 $(f \in C^{\infty}(M), \sigma \in \text{Sec } \xi, x \in M)$ is a short exact sequence of vector bundles. More generally (see e.g. [4], Ch. VI, §1), if $J_k E$ is the space of k-jets $(k \in \mathbb{N}^+)$,

$$\pi_k: J_k E \to J_{k-1} E, \quad j_k \sigma \longmapsto j_{k-1} \sigma$$

is the natural projection $(\pi_0 := \pi, j_0 \sigma := \sigma)$ and

$$\varepsilon: S^kTM \times E \to J_kE$$

is defined by

$$\varepsilon \left(df_1(x) \odot \cdots \odot df_k(x) \otimes \sigma(x) \right) := \left[j_k \left(f_1 \dots f_k \sigma \right) \right]_x$$

 $(f_i \in C^{\infty}(M), f_i(x) = 0, 1 \le i \le k; \odot \text{ is the symbol of symmetric product}), then the sequence$

$$0 \to S^k TM \otimes E \to J_k E \xrightarrow{\varepsilon} J_{k-1} E \xrightarrow{\pi_k} 0$$

is also a short exact sequence of vector bundles.

(3.2) Let $\eta = (F, \rho, M)$ be another vector bundle over M. — We recall that a mapping $P : \operatorname{Sec} \xi \to \operatorname{Sec} \eta$, $\sigma \mapsto P\sigma$ is said to be a *linear differential operator of order* $k \in \mathbb{N}^+$ if

$$\forall x \in M, \ \sigma \in \operatorname{Sec} \xi : (j_k \sigma)_x = 0 \implies P\sigma(x) = 0.$$

Any differential operator of order k can be identified with an M-morphism $\overline{P}: J_k E \to F$ such that $P = \overline{P}_* \circ j_k$, where $\overline{P}_*: \operatorname{Sec} J_k \xi \to \operatorname{Sec} \eta$ is induced by \overline{P} according to [6], p.63. We shall use this observation without any comment.

If rank \overline{P} is constant and $R_k := \text{Ker } \overline{P}$, then the sequence

$$0 \to R_k \xrightarrow{\mathrm{inc}} J_k E \xrightarrow{\overline{P}} F \to 0$$

is clearly exact (inc:= inclusion).

The ℓ -th prolongation $p_{\ell}(P)$ of P is defined as follows:

$$p_{\ell}(P): J_{k+\ell}E \to J_{\ell}F, \quad j_{k+\ell}(\sigma) \mapsto j_{\ell}(P\sigma).$$

Let $R_{k+\ell} := \operatorname{Ker} p_{\ell}(P)$. The natural projection $\pi_{k+\ell} : J_{k+\ell}E \to J_kE$ induces a mapping $R_{k+\ell} \to R_k$ by restriction, it will be denoted also by $\pi_{k+\ell}$. — Keeping these notations, we can formulate the following fundamental

Definition 1. A k-th order differential operator is said to be formally integrable if $\forall \ell \in \mathbb{N}^+ : \pi_{k+\ell} : R_{k+\ell} \to R_k$ is surjective.

Other key notions are explained in the next

Definition 2.

(i) The symbol of a differential operator $P: J_kE \to F$ is the mapping

$$s_0(P) := P \circ \varepsilon : S^k T^* M \otimes E \to F.$$

The symbol of the ℓ -th prolongation operator $p_{\ell}(P): J_{k+\ell}E \to J_{\ell}F$ is the mapping $s_{\ell}(P): S^{k+\ell}T^*M \otimes E \to S^{\ell}T^*M \otimes F$ introduced by the diagram

(ii) Suppose, in particular, that $P: \operatorname{Sec} \xi \to \operatorname{Sec} \eta$ is a first-order linear differential operator. Then

$$s_0(P): T_x^*M \otimes E_x \to E_x, \quad (df)_x \otimes \sigma(x) \mapsto P(f\sigma)(x)$$

(where f(x) = 0). Fixing an element of T_xM , we get a partial mapping $E_x \to E_x$. — P is said to be *quasi-scalar* if each of these mappings means multiplication by a scalar (cf. [12], def. 19.33).

The third important preparatory step is summarized in

Definition 3. Consider a linear differential operator $P: J_k E \to F$. Let $\forall \ell \in \mathbb{N}: g_\ell := \operatorname{Ker} s_\ell(P)$. A basis $(e_i)_{1 \leq i \leq n}$ of $T_x M$ is said to be quasi-regular if

$$\dim (g_1)_x = \dim (g_0)_x + \sum_{j=1}^{n-1} \dim (g_0)_{(e_1,\dots,e_j)},$$

where

$$(g_0)_{(e_1,\dots,e_j)} := \{ A \in g_0 \mid i_{e_1}A = \dots = i_{e_j}A = 0 \}$$
 $(1 \le j \le n-1).$

If for each $x \in M$ there exists a quasi-regular basis of T_xM then P is called *involutive*.

With the help of the terms introduced, the classical Cartan–Kähler theorem (see e.g. [3], Th. 18.13.8) can be translated into the following extremely compact and elegant form:

Cartan–Kähler–Goldschmidt theorem. Let $P: J_kE \to F$ be a k-th order linear differential operator. If

 1° P is involutive, and

$$2^{\circ} \pi_{k+1}: R_{k+1} \to R_k$$
 is surjective, then P is formally integrable. \square

For a comprehensive, but well—readable treatment of the subject we refer to [1] and [13]. A very good brief survey is presented in [5]; see also [2].

(3.3) To conclude this section, we take a look at the nonlinear case. — A first order nonlinear differential operator, briefly differential operator from ξ to η is simply a mapping $P: \operatorname{Sec} \xi \to \operatorname{Sec} \eta$ which has a factorisation of the form $P = \overline{P}_* \circ j$, where $\overline{P}: JE \to F$ is just fibre-preserving. Taking Gâteaux-derivative, nonlinear differential operators can be linearized. Namely, if $P: \operatorname{Sec} \xi \to \operatorname{Sec} \eta$ is a nonlinear differential operator, $\sigma \in \operatorname{Sec} \xi$ is fixed and

$$P'_{\sigma}(\rho) := \frac{d}{dt} P(\sigma + t\rho)|_{t=0},$$

then P'_{σ} is a linear differential operator which is called the *linearized operator* of P along σ .

We show a simple but very useful example. — Let $X \in \mathfrak{X}(E)$ be a projectable vector field:

$$X \stackrel{P}{\sim} \overline{X}, \quad \overline{X} \in \mathfrak{X}(M).$$

Then the mapping

$$P_X : \operatorname{Sec} \xi \to \operatorname{Sec} \xi, \ \sigma \mapsto \alpha \circ (T\sigma \circ \overline{X} - X \circ \sigma)$$

 $(\alpha: VE \to E \text{ is the well-known canonical surjection; see e.g. [6], p.291) is a nonlinear differential operator. Its linearized operator along a section <math>\sigma$ acts as follows:

$$\forall \rho \in \operatorname{Sec} \xi : (P'_X)_{\sigma}(\rho) = \alpha \circ [X, \rho^v] \circ \sigma,$$

where $\rho^v := \alpha^{\sharp} \rho$ is the vertical lift of ρ (see [18], Lemma 3). As for the symbol of P_X , an easy calculation yields the formula

$$s_0 (P_X)'_{\sigma} (df \otimes \rho)_x = (\overline{X}f)^v \sigma(x) \rho(x)$$
$$((\overline{X}f)^v = \overline{X}f \circ p),$$

from which it follows at first sight that $(P_x)'_{\sigma}$ —and consequently P_X — is quasi-scalar.

4. Nonlinear connections

(4.1) Let the above vector bundle $\xi = (E, p, M)$ be given. We shall write its vertical bundle as the triple $V\xi = (T^vE, p_v, E)$; $\mathfrak{X}^vE := \operatorname{Sec} V\xi$ is the module of *vertical vector fields*.

Definition 4. A nonlinear connection, briefly a connection in ξ is a vector 1-form $h: \mathfrak{X}(E) \to \mathfrak{X}(E)$, satisfying the following conditions:

- $1^{\circ} h^2 = h$, i.e. h is a projector;
- 2° Ker $h = \mathfrak{X}^v E$.

Of course, this is only a possible one among the numerous definitions of a connection, which seems preferable to us only for practical reasons. — Let $\mathcal{H}(\xi)$ be the set of all connections in ξ . Then $\mathcal{H}(\xi)$ is an affine bundle ([14]), Def. 2.4.4) in a natural manner. Clearly, each $h \in \mathcal{H}(\xi)$ gives rise to direct decompositions $\mathfrak{X}(E) = \mathfrak{X}^v E \oplus \operatorname{Im} h$ (in the module sense) and $TE = T^v E \oplus H^v E$ (in the vector bundle sense), where $H\xi := (T^h E, p_h, E)$ is the so-called horizontal subbundle belonging to h, such that

$$\operatorname{Sec} H\xi = \operatorname{Im} h =: \mathfrak{X}^h E.$$

Elements of $\mathfrak{X}^h E$ are the horizontal vector fields of the connection. Finally, it is easy to show that there exists a unique mapping

$$\ell^h: \mathfrak{X}(M) \to \mathfrak{X}^h E, \quad X \mapsto X^h$$

characterized by the condition $X^h \stackrel{p}{\sim} X$; it is called horizontal lifting.

Proposition 1.

- (a) Let $h \in \mathcal{H}(\xi)$, $X \in \mathfrak{X}(M)$, $\nabla_X := P_{X^h}$ (see (3.3)). Then ∇_X is a quasi-scalar differential operator, said to be covariant derivative by X with respect to h.
- (b) Consider the bundle $V_M \xi := (T^v E, p \circ p_v, M)$ and suppose that a mapping $X \in \mathfrak{X}(M) \mapsto P_X$ is given, such that
 - (i) $\forall X \in \mathfrak{X}(M) : P_X : \operatorname{Sec} \xi \to \operatorname{Sec} V_M \xi$ is a quasi-scalar (nonlinear) differential operator,
 - (ii) $\forall \sigma \in \operatorname{Sec} \xi : p_v \circ P_X \sigma = \sigma$,

then there exists a unique connection $h \in \mathcal{H}(\xi)$ for which $\forall X \in \mathfrak{X}(M)$: $\nabla_X = \alpha \circ P_X$.

PROOF. (a) follows immediately by (3.3). We sketch, how one can get the converse statement (b). — Observe first that condition (i) is meaningful because P_X can be identified with the operator $\alpha \circ P_X : \operatorname{Sec} \xi \to \operatorname{Sec} \xi$ canonically. To become conscious of this, let us define the mapping

$$\ell^h: \mathfrak{X}(M) \to \mathfrak{X}(E), \quad X \mapsto \ell^h(X) =: X^h$$

as follows:

$$X^h(z) := T_x[X(x)] - (P_X\sigma)(x), \text{ if } z = \sigma(x), \sigma \in \operatorname{Sec} \xi.$$

Applying condition (i), one can check by a direct calculation that $X^h(z)$ does not depend on the section for which $z = \sigma(x)$, so $X^h \in \mathfrak{X}(E)$ is a well-defined vector field. Since $(P_X\sigma)(x) \in T^V_{\sigma(x)}E := \operatorname{Ker} T_{\sigma(x)}P$, $X^h \stackrel{p}{\sim} X$. Finally, the introduced mapping ℓ^h determines uniquely a connection $h \in \mathcal{H}(\xi)$ such that $\operatorname{Im} \ell^h = \mathfrak{X}^h E$ and $\forall X \in \mathfrak{X}(M) : \nabla_X = \alpha \circ P_X$.

Proposition 1 characterizes (nonlinear) connections as quasi-scalar (nonlinear) differential operators, extending the similar characterization of linear connections; cf. [11], $\S 9$.

(4.2) Let $C: E \to T^v E$ be the Liouville vector field on E.

Definition 5. (cf. [7]) The tension of a connection $h \in \mathcal{H}(\xi)$ is the vector 1-form T := [h, C]. In case of T = 0 we say that h satisfies the homogeneity condition (HC) and speak of a linear connection.

Note that by (4)

$$(HC) \iff \forall X \in \mathfrak{X}(E) : [hX, C] - h[X, C] = 0$$

$$\iff \forall X \in \mathfrak{X}(M) : [X^h, C] = 0 \quad \text{(since } [X^h, C] \in \mathfrak{X}^v E).$$

Another characterization of the linear connections is given by the

Proposition 2.
$$(HC) \iff \forall X \in \mathfrak{X}(M), \ \sigma \in \operatorname{Sec} \xi : (\nabla_X \sigma)^v = [X^h, \sigma^v].$$

Proof.

(a) Observe first that the mapping

$$\mathfrak{X}(M) \times \operatorname{Sec} \xi \to \mathfrak{X}^v E, \quad (X, \sigma) \mapsto [X^h, \sigma^v]$$

has the following properties:

(i) it is \mathbb{R} -bilinear;

(ii)
$$\lceil (fC)^h, \sigma^v \rceil = (f \circ p) \lceil X^h, \sigma^v \rceil;$$

(iii)
$$[X^h, (f\sigma)^v] = (f \circ p)[X^h, \sigma^v] + (Xf \circ p)\sigma^v \ (f \in C^{\infty}(M)).$$

In fact, (i) is obvious since the mappings $X \mapsto X^h$ and $\sigma \mapsto \sigma^v$ are \mathbb{R} -linear, while (ii) and (iii) can be obtained by a straightforward calculation:

$$[(fX)^h, \sigma^v] = [(f \circ p)X^h, \sigma^v] = (f \circ p)[X^h, \sigma^v] + \sigma^v(f \circ p)X^h =$$
$$= (f \circ p)[X^h, \sigma^v]$$

(because $Z \in \mathfrak{X}^v E \iff \forall g \in C^{\infty}(M) : Z(g \circ p) = 0$); the verification of (iii) is similar.

(b) Now we suppose that

$$\forall X \in \mathfrak{X}(M), \sigma \in \operatorname{Sec} \xi : (\nabla_X \sigma)^v = [X^h, \sigma^v].$$

Applying (ii) we get:

$$\forall f \in C^{\infty}(M) : \left[\nabla_X (f\sigma)\right]^v = \left[X^h, (f\sigma)^v\right] = (f \circ p) \left[X^h, \sigma^v\right] + (Xf \circ p)\sigma^v = (f \circ p)(\nabla_X \sigma)^v + (Xf \circ p)\sigma^v = \left[fV_X + (Xf)\sigma\right]^v,$$

consequently $\nabla_X f \sigma = f \nabla_X \underline{\sigma} + (Xf) \underline{\sigma}$.

It means that the operators ∇_X satisfy the well-known Koszul-axioms of the linear connections, from which (HC) easily follows (see e.g. [16]).

(c) To verify the converse statement, fix a fibered chart for ξ , e.g. the chart $\left(p^{-1}(U), \left(x^i\right)_{i=1}^n, \left(y^\kappa\right)_{\kappa=1}^r\right)$ described in [18], p.1168. Then there exist unique functions

$$\Gamma_i^{\kappa}: p^{-1}(U) \to \mathbb{R}; \quad 1 \le i \le n, \quad 1 \le \kappa \le r$$

such that

$$h\left(\frac{\partial}{\partial x^i}\right) = \frac{\partial}{\partial x^i} - \Gamma_i^{\kappa} \frac{\partial}{\partial y^{\kappa}}, \quad h\left(\frac{\partial}{\partial y^{\kappa}}\right) = 0;$$

these are the "connection parameters" of h. Over $p^{-1}(U)$, we get:

$$T = \left(y^{\beta} \frac{\partial \Gamma_i^{\kappa}}{\partial y^{\beta}} - \Gamma_1^{\kappa} \right) dx^i \otimes \frac{\partial}{\partial y^{\kappa}}.$$

On the other hand, an easy calculation shows that (locally)

$$[X^h, \sigma^h] = (\nabla_X \sigma)^v \iff \Gamma_i^\kappa = y^\beta \frac{\Gamma_i^\kappa}{\partial y^\beta},$$

so (HC) implies the condition in question. \Box

Comparing the criterion just obtained with the result of the linearization process sketched in (3.3), we get the following "natural interpretation" of (HC):

Corollary. $h \in \mathcal{H}(\xi)$ satisfies (HC) iff the covariant derivatives belonging to h "essentially" (along sections and up to the canonical mapping α) coincide with their linearized operators.

(4.3) Suppose that $\nabla \in \mathcal{H}(V\xi)$ is a linear connection, interpreted as a mapping $\mathfrak{X}(E) \times \mathfrak{X}^v E \to \mathfrak{X}^v E$ satisfying the Koszul–axioms and let $h \in \mathcal{H}(\xi)$. Then the pair (∇, h) is called a *Matsumoto-pair* (see [17]). The deflection of (∇, h) is the vector 1-form

$$D(\nabla, h) : \mathfrak{X}(E) \to \mathfrak{X}(E), \quad X \mapsto \nabla_{hX}C,$$

where C is the Liouville vector field again. We see immediately that $D(\nabla, h)$ is semibasic. — In particular, choose by way of connection the Berwald connection ∇^B induced by h:

$$\nabla^B : \mathfrak{X}(E) \times \mathfrak{X}^v E \to \mathfrak{X}^v E, \quad (X, Y) \mapsto \nabla^i_{vX} Y + v[hX, Y],$$

where v := id - h and $\nabla^i : \mathfrak{X}^v E \times \mathfrak{X}^v E \to \mathfrak{X}^v E$ is a pseudoconnection characterized by the following condition:

$$\forall \sigma \in \operatorname{Sec} \xi, \ Z \in \mathfrak{X}^v E : \nabla_Z^i \sigma^v = 0$$

([18]), Lemma 5). Then $\forall X \in \mathfrak{X}(E)$:

$$\begin{split} D\left(\nabla^B,h\right)(X) &= \nabla^B_{hX}C = v[hX,C] = \\ &= v([hX,C] - h[X,C]) = vT(X) = T(X) \end{split}$$

(since T is also semibasic). It means that in this case deflection and tension coincide. Let us emphasize: deflection plays an important role in Matsumoto's theory of Finsler–connections; see the monograph [9].

(4.4) To conclude our general view on connections, we recall a further basic concept.

Definition 6. The curvature of a connection $h \in \mathcal{H}(\xi)$ is the Nijenhuis torsion $R := N_h = \frac{1}{2}[h, h]$. h is called flat if R = 0.

It is easy to check that R is a semibasic 2-form:

$$\operatorname{Im} R \subset \mathfrak{X}^v E$$
 and $R(X,Y) = 0$, if $X \in \mathfrak{X}^v E$ or $Y \in \mathfrak{X}^v E$.

5. The problem of metrizability

(5.1) Now and in the sequel we turn our attention to the tangent bundle case, i.e. we suppose that $\xi := \tau_M = (TM, \tau, M)$ and $h \in \mathcal{H}(\tau_M)$. Then the notion of *parallel vector fields* along curves has meaning ([7], Def. I.26) and we can raise the following "problem of metrizability":

Find a criterion for the existence of a (smooth) function

(PM) $L:TM\to\mathbb{R}$ which (in Grifone's terminology) is conserved by parallel transports: for all smooth curve $c:I\to M$ and parallel vector field $X:I\to TM$, $L\circ X:I\to\mathbb{R}$ is constant.

As we have seen in section 2, the vector 1-form $h \in \mathcal{H}(\tau_M)$ determines a derivation d_h of $\wedge(M)$. The following observation is simple, but very useful:

Lemma 1. ([7]), Prop. I.28) A function $L:TM\to\mathbb{R}$ is conserved by parallelism if

$$(6) d_h L = 0.$$

In coordinates (6) yields the system of partial differential equations

(7)
$$\frac{\partial L}{\partial x^i} - \Gamma_i^k \frac{\partial L}{\partial y^k} = 0, \quad 1 \le i \le n;$$

where the Γ_i^k -s are the connection parameters of h. So our problem is to find the integrability conditions of the system (7). Well now, to attack (PM), we propose the *study of formal integrability of the 1st order linear differential operator* d_h (we shall see soon that d_h really has such an interpretation, in a natural manner).

(5.2) By the way, we indicate that (PM) is essentially equivalent with the inverse problem of the calculus of variations. To formulate the latter in modern language, consider a semispray (i.e. a second order differential equation) $S: TM \to TTM$.

Definition 7. ([8]), p.189) S is said to be variational if there exists a (regular) function $L: TM \to \mathbb{R}$ such that

$$i_S dd_J L = d(L - CL),$$

where $J: TTM \to TTM$ is the canonical almost tangent structure (or vertical endomorphism).

By a fundamental result of J. Grifone ([7], Prop. I.41) $h := \frac{1}{2}(id + [J, S])$ is a connection in τ_M . Now it can be shown (see [15]) that

$$S$$
 is variational \iff \exists (regular) $L:TM\to\mathbb{R}$ such that $d_hL=0,\ h=\frac{1}{2}(id+[J,S]).$

From this point of view, an excellent survey and discussion of the problem can be found in the paper [8] of J. Klein.

6. The involutivity of d_h

First we give the promised interpretation of d_h as a suitable differential operator.

— Since $\forall X \in \mathfrak{X}(M) : d_h L(X) = L(hX) \in C^{\infty}(TM), d_h \text{ maps } C^{\infty}(TM)$ into Sec τ_{TM}^* . Here $C^{\infty}(TM)$ can be identified with

Sec
$$\xi$$
, $\xi := (E, pr_2, TM)$, $E := \mathbb{R} \times TM$.

So, in fact, d_h can be considered as a 1st order linear differential operator from Sec ξ into Sec τ_{TM}^* .

Lemma 2.

- (i) The symbol of d_h is $s_0d_h = i_h$ (up to an obvious factor which will be omitted).
- (ii) At each point $v \in TM$ the null space $(g_0)_v := \operatorname{Ker}(s_0 d_h)_v$ is n-dimensional.

PROOF. (i) Consider an arbitrary function $f \in C^{\infty}(TM)$ with the condition f(v) = 0 and a section $\sigma \in \text{Sec } \xi \cong C^{\infty}(TM)$. According to Definition 2,

$$(s_0 d_h) (df(v), \sigma(v)) = d_h(f\sigma)(v) = [(d_h f) \sigma + f d_h \sigma](v) =$$
$$= \sigma(v) d_h f(v) \stackrel{(2)}{=} \sigma(v) i_h df(v),$$

which gives our assertion.

(ii) Let $\omega \in \mathfrak{X}^*TM$ be a 1-form. By (i),

$$\omega \in g_0 = \operatorname{Ker} s_0 d_h \iff i_h \omega = 0 \iff \forall X \in \mathfrak{X}(TM) : \omega(hX) = 0.$$

It means that $\operatorname{Ker} s_0 d_h$ is nothing but the annullator of $\mathfrak{X}^h TM$, hence $\dim g_0 = \dim \tau_{TM} - \dim \operatorname{Im} h = 2n - n = n$.

Lemma 3.

(i) The symbol of the first prolonged operator $p_1(d_h)$ is the mapping

$$s_1d_h: S^2T^*TM\otimes E\to T^*TM\otimes T^*TM,\quad A\mapsto (s_1d_h)\,A$$

given by

$$(s_1d_h) A(X,Y) = A(X,hY); X,Y \in \mathfrak{X}(TM).$$

(ii) $\forall v \in TM : \dim(g_1)_v = \frac{n(n+1)}{2}$.

PROOF. (i) follows immediately by Definition 2 again, part (i) of the previous Lemma and by (1).

(ii) Let $(U, (u^i))$ be a chart for M, and let $(\tau^{-1}(U); (x^i), (y^i))$ be the induced chart for TM. Then

(8)
$$\frac{\delta}{\delta x^i} := \frac{\partial}{\partial x^i} - \Gamma_i^j \frac{\partial}{\partial y^j}, \quad \frac{\partial}{\partial y^i} \quad (1 \le i \le n)$$

(the Γ_i^j -s are the parameters of $h \in \mathcal{H}(\tau_M)$) is a local basis for $\mathfrak{X}(TM)$. Since $g_1 := \operatorname{Ker}(s_1 d_h)$,

$$A \in q_1 \iff \forall X, Y \in \mathfrak{X}(TM) : A(X, hY) = 0.$$

Using the basis (5), over $\tau^{-1}(U)$

$$X = X^{i} \frac{\delta}{\delta x^{i}} + X^{n+i} \frac{\partial}{\partial y^{i}}, \quad hY = Y^{i} \frac{\delta}{\delta x^{i}};$$

so we get:

(9)
$$A \in g_1 \iff \begin{cases} A\left(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j}\right) = 0 & (1 \le i, j \le n), \\ A\left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^j}\right) = 0 & (1 \le i, j \le n), \end{cases}$$

Since A is symmetric, (9) gives $\frac{n(n+1)}{2} + n^2$ relations for its components, therefore the number of the independent components is

$$\frac{2n(2n+1)}{2} - \frac{n(n+1)}{2} - n^2 = \frac{n(n+1)}{2}.$$

Clearly, this is just the dimension of g_1 .

Proposition 3. The operator d_h is involutive.

PROOF. Let $\left(\tau^{-1}(U);\left(x^{i}\right),\left(y^{i}\right)\right)$ be an induced chart for TM. First we note that

$$\delta y^i := \Gamma^i_j dx^j + dy^i, \quad dx^i \qquad (1 \le i \le n)$$

is the dual of the local basis (8), so (over $\tau^{-1}(U)$)

$$\forall \omega \in \mathfrak{X}^*TM : \omega = \omega_i \delta y^i + \omega_{n+i} dx^i.$$

In particular, if $\omega \in g_0$, then (as we have seen) ω annihilates \mathfrak{X}^hTM , hence

$$\forall \ 1 \le i \le n : \ 0 = \omega \left(\frac{\delta}{\delta x^i} \right) = \omega_{n+j} dx^j \left(\frac{\delta}{\delta x^i} \right) = \omega_{n+i},$$

i.e.

$$\omega \in g_0 \iff \omega = \omega_i \delta y^i.$$

Now we are going to show that $\forall v \in \tau^{-1}(U)$:

$$\left(\left(\frac{\partial}{\partial y^i}\right)_v, \left(\frac{\delta}{\delta x^i}\right)_v\right) \quad 1 \le i \le n$$

is a quasi-regular basis. In fact, using the preceding remark,

$$(g_0)_{\frac{\partial}{\partial u^1}} \stackrel{\text{Def.3}}{=} \left\{ \omega \in g_0 \mid i_{\frac{\partial}{\partial u^1}} \omega = 0 \right\} = \left\{ \omega = \omega_i \delta y^i \in g_0 \mid \omega_1 = 0 \right\},\,$$

which means that

$$\dim (g_0)_{\frac{\partial}{\partial u^1}} = n - 1.$$

Similarly,

$$(g_0)_{\left(\frac{\partial}{\partial y^1}, \frac{\partial}{\partial y^2}\right)} = \left\{\omega = \omega_i y^i \in g_0 \mid \omega_1 = \omega_2 = 0\right\} \Rightarrow$$
$$\dim\left(g_0\right)_{\left(\frac{\partial}{\partial y^1}, \frac{\partial}{\partial y^2}\right)} = n - 2.$$

Proceeding in the same way, finally we get:

$$\dim (g_0)_{\left(\frac{\partial}{\partial u^1}, \dots, \frac{\partial}{\partial u^{n-1}}\right)} = 1.$$

By these

$$\sum_{j=1}^{n-1} \dim (g_0)_{\left(\frac{\partial}{\partial y^1}, \dots, \frac{\partial}{\partial y^j}\right)} = \sum_{j=1}^{n-1} (n-j) = \frac{n(n-1)}{2},$$

consequently

$$\dim(g_0) + \sum_{j=1}^{2n} \dim(g_0)_{(e_1,\dots,e_j)} \stackrel{\text{Lemma } 2}{=} n + \frac{n(n-1)}{2} =$$

$$= \frac{n(n+1)}{2} \stackrel{\text{Lemma } 3}{=} \dim(g_1)$$

$$\left(e_1 := \frac{\partial}{\partial y^i}, e_{n+i} := \frac{\delta}{\delta x^i}; \quad 1 \le i \le n\right),$$

which means the involutivity of d_h .

7. The surjectivity of π_2

Keeping the previous notations and conventions, consider the following diagram:

$$S^{2}T^{*}TM \otimes E \xrightarrow{s_{1}d_{h}} T^{*}TM \otimes T^{*}TM \xrightarrow{\tau} K \longrightarrow 0$$

$$\downarrow \varepsilon \downarrow \qquad \qquad \downarrow \zeta \downarrow \uparrow \nabla$$

$$R_{2} \longrightarrow J_{2}E \xrightarrow{p_{1}d_{h}} J(T^{*}TM)$$

$$\downarrow \pi_{2} \qquad \qquad \qquad \downarrow \pi_{1} \downarrow$$

$$R_{1} \longrightarrow J_{1}E \xrightarrow{d_{h}} T^{*}TM$$

$$\downarrow \zeta_{s_{0}d_{h}}$$

$$\uparrow T^{*}TM \otimes E$$

Here $K := \frac{T^*TM \otimes T^*TM}{\operatorname{Im} s_1 d_h}$ is said to be the space of *obstructions*. By the "algorithm" sketched in [2], in order to verify the surjectivity of $\pi_2 : R_2 \to R_1$ one has to

- (i) give a "good interpretation" for the space of obstructions and construct a mapping τ which makes the diagram commutative;
- (ii) define a linear connection ∇ in τ_{TM}^* such that

$$\forall v \in TM, \ \sigma \in \operatorname{Sec} \xi : d_h \sigma(v) = 0 \Rightarrow \tau (\nabla d_h \sigma)_v = 0.$$

(To realize (ii), it is sufficient to give a suitable connection in τ_{TM} since it induces the desired connection in τ_{TM}^* .)

Of course, in our case the surjectivity of π_2 does not hold without further assumptions. In what follows, we are going to prove this only under the quite restrictive condition $N_h = 0$.

Lemma 4. Let v := id - h, as above. The mapping $v : TTM \to TTM$ induces a pull-back map $v^* : \wedge^2 TM \to \wedge^2 TM$. — The space of obstructions is (pointwise) isomorphic to the space

$$\operatorname{Ker} v^* \oplus \tau_2^0 \left(T^v T M \right)$$

 $(\tau_2^0(T^vTM) \text{ is the space of } (0,2) \text{ tensors } \mathfrak{X}^vTM \times \mathfrak{X}^vTM \to C^\infty(TM)).$

PROOF. On the one hand, we have:

$$\dim K = \dim (T^*TM \otimes T^*TM) - \operatorname{rank} s_1 d_h =$$

$$= (2n)^2 - \left(\dim S^2 T^*TM - \dim g_1\right) \stackrel{\text{Lemma } 3}{=}$$

$$= 4n^2 - \frac{2n(2n+1)}{2} + \frac{n(n+1)}{2} = \left(n^2 + \frac{n(n-1)}{2}\right) + n^2.$$

On the other hand,

$$\dim \operatorname{Ker} v^* = \dim \wedge^2 TM - \dim \operatorname{Im} v^* = \frac{2n(2n-1)}{2} - \frac{n(n-1)}{2} =$$

$$= n^2 + \frac{n(n-1)}{2},$$

while dim $\tau_2^0 (T^v TM) = n^2$, from which the assertion follows.

Proposition 4. Let the mappings

$$au_1: T^*TM \otimes T^*TM \to \operatorname{Ker} v^*$$
 and $au_2: T^*TM \otimes T^*TM \to au_2^0 \left(T^vTM\right)$

be defined as follows:

$$\forall B \in T^*TM \otimes T^*TM :$$

$$\tau_1 B(X,Y) := B(hX,Y) - B(hY,X) \quad (X,Y \in \mathfrak{X}(TM)),$$

$$\tau_2 B(U,V) := B(U,V) \quad (U,V \in \mathfrak{X}^vTM).$$

Then the sequence

$$S^2T^*TM \xrightarrow{s_1d_h} T^*TM \otimes T^*TM \xrightarrow{\tau := \tau_1 \oplus \tau_2} \operatorname{Ker} v^* \oplus \mathcal{T}_2^0 \left(T^vTM \right) \to 0$$
 is exact

PROOF. (a) We show that $\text{Im} s_1 d_h \subset \text{Ker } \tau$. In fact,

$$\forall B \in S^{2}T^{*}TM; \quad \forall X, Y \in \mathfrak{X}(TM):$$

$$[(\tau_{1} \circ s_{1}d_{h}) B](X, Y) = s_{1}d_{h}(B)(hX, Y) - s_{1}d_{h}(B)(hY, X) =$$

$$\stackrel{\text{Lemma } 3, \text{ (i)}}{=} B(hX, hY) - B(hY, hX) = 0;$$

$$[(\tau_{2} \circ s_{1}d_{h}) B](vX, vY) = s_{1}d_{h}(B)(vX, vY) = B(vX, h \ vY) = 0.$$

(b) $A \in \operatorname{Ker} \tau \iff A \in \operatorname{Ker} \tau_1 \wedge A \in \operatorname{Ker} \tau_2$. Condition $A \in \operatorname{Ker} \tau_1$ means that

$$A\left(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j}\right) = A\left(\frac{\delta}{\delta x^j}, \frac{\delta}{\delta x^i}\right) \wedge A\left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^j}\right) = 0 \quad (1 \le i, j \le n),$$

while $A \in \operatorname{Ker} \tau_2 \iff A\left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}\right) = 0 \quad (1 \leq i, j \leq n)$. Hence the elements of $\operatorname{Ker} \tau$ can be characterized by $n^2 + \frac{n(n+1)}{2}$ independent components with respect to the local basis (8), consequently $\dim \operatorname{Ker} \tau = n^2 + \frac{n(n+1)}{2}$. But

$$\operatorname{rank} s_1 d_h = \dim S^2 T^* T M - \dim \operatorname{Ker} s_1 d_h \stackrel{\operatorname{Lemma}}{=}^{3, \text{ (ii)}} n^2 + \frac{n(n+1)}{2}.$$

Combining these with (a), we get: $\operatorname{Im} s_1 d_h = \operatorname{Ker} \tau$.

(c) Finally, since

$$\operatorname{rank} \tau = \dim \left(T^*TM \otimes T^*TM \right) - \dim \operatorname{Ker} \tau \stackrel{\text{(b)}}{=} (2n)^2 - \left(n^2 + \frac{n(n+1)}{2} \right) =$$

$$= 2n^2 + \frac{n(n-1)}{2} \stackrel{\text{Lemma 4}}{=} \dim K = \dim \operatorname{Ker} V + \dim \mathcal{T}_2^0 T^v TM,$$

 τ is also surjective, which concludes the proof.

Lemma 5. Let ∇ be a linear connection in τ_{TM} with torsion T. Then for each 1-form $\omega \in \wedge^1 TM$, we have:

$$\tau_1(\nabla \omega)(X,Y) = d_h \omega(X,Y) - \omega (\nabla_Y hX - \nabla_X hY + T(hX,Y) + T(X,hY) + h[X,Y]).$$

PROOF. Using the rules of Frölicher–Nijenhuis calculus, the covariant differentiation and the definition of T, we get:

$$\begin{split} d_h\omega(X,Y) &= \left[\left(i_h \circ d - d \circ i_h \right) \omega \right] (X,Y) = \left[\left(i_h d\omega \right) (X,Y) - d \left(i_h \omega \right) \right] (X,Y) = \\ &= d\omega(hX,Y) + d\omega(X,hY) - X \left(i_h \omega \right) (Y) + \\ &+ Y \left(i_h \omega \right) (X) + \omega \left(h[X,Y] \right) = \\ &= hX\omega(Y) - hY\omega(X) - \omega([hX,Y] + [X,hY] - h[X,Y]) = \\ &= hX\omega(Y) - hY\omega(X) - \omega \left(\nabla_{hX}Y - \nabla_{Y}hX - T(hX,Y) + \right. \\ &+ \left. \nabla_X hX - \nabla_{hY}X - T(X,hY) - h[X,Y] \right) = \\ &= \nabla \omega(hX,Y) - \nabla \omega(hY,X) + \\ &+ \omega \left(\nabla_Y hX - \nabla_X hY + T(hX,Y) + T(X,hY) + h[X,Y] \right). \end{split}$$

Since $\nabla \omega(hX,Y) - \nabla \omega(hY,X) = [\tau_1(\nabla \omega)](X,Y)$, we have the desired formula. \Box

Corollary. If
$$\omega_v = 0$$
, then $\forall v \in TM : \tau_1(\nabla \omega)_v = (d_h \omega)_v$.

Lemma 6. Let ∇ be a linear connection in τ_{TM} . If $f \in C^{\infty}(TM)$ ($\cong \operatorname{Sec} \xi$) and $(d_h f)_x = 0$ ($x \in TM$), then $\tau_2 (\nabla d_h f)_x = 0$.

PROOF.
$$\forall U, V \in \mathfrak{X}^{V}TM : \tau_{2}\left(\nabla d_{h}f\right)\left(U,V\right) := \nabla d_{h}f\left(U,V\right) = \left(\nabla_{U}d_{h}f\right)\left(V\right) = U\left[d_{h}f\left(V\right)\right] - d_{h}f\left(\nabla_{U}V\right).$$
 Since $(d_{h}f)_{x} = 0$, it follows that

$$[\tau_2(d_h f)]_x(U_x, V_x) = [U(d_h f(V))]_x \stackrel{(2)}{=} U_x[i_h df(V)] = U_x[df(hV)].$$

But $V \in \mathfrak{X}^v TM \Rightarrow hV = 0$, so $\tau_2(d_h f)_x = 0$. \square

Piecing together our previous findings, we arrive at the main result of the paper. **Theorem.** If $h \in \mathcal{H}(\tau_{TM})$ is a flat (nonlinear) connection, then the differential operator d_h is formally integrable.

PROOF. We have already known that d_h is involutive (Proposition 3). If ∇ is a linear connection in τ_{TM} and $(d_h f)_x = 0$, then in view of the Corollary of Lemma 5,

$$\tau_1 (d_h f)_x = (d_h d_h f)_x = (d_h^2 f)_x \stackrel{(5)}{=} 0,$$

since [h, h] = 0 by the flatness. Combining this with Lemma 6, we get that $\tau (d_h f)_x = 0$. By our above remarks this guarantees that condition 2° of the Cartan–Kähler–Goldschmidt theorem is also satisfied.

Acknowledgements. We wish to thank J. Grifone for his valuable suggestions and stimulating discussions.

References

- [1] R.L. BRYANT, S.S. CHERN, R.B. GARDNER, H.L. GOLDSCHMIDT and P.A. GRIFFITHS, Exterior Differential Systems, *Springer-Verlag*, *Berlin*, 1991.
- [2] P. Cabau, J. Grifone and M. Mehdi, Existence de lois de conservation dans le cas cyclique, *Ann. Inst. Henri Poincaré* **55** (1991), 789–803.
- [3] J. DIEUDONNÉ, Treatise on Analysis, Vol. 4, Academic Press, New York, 1974.
- [4] A. Fujimoto, Theory of G-structures (Publications of the Study Group of Geometry, Vol. 1), Japan, 1972.
- [5] J. Gasqui, Formal Integrability of Systems of Partial Differential Equations, in Nonlinear Equations in Classical and Quantum Field Theory ed. by N. Sanchez, Lecture Notes in Physics, Vol 226 (1985), 21–36, Springer-Verlag, Berlin.
- [6] W. Greub, S. Halperin and R. Vanstone, Connections, Curvature, and Cohomology, Vol.1, *Academic Press*, *New York*, 1972.
- [7] J. Grifone, Structure presque-tangente et connexions I, Annales de l'Institut Fourier, Grenoble XXII (1) (1972), 287–334.
- [8] J. Klein, Geometry of Sprays. Lagrangian Case. Principle of Least Curvature, *IUTAM-ISIMM Symposium on Analytical Mechanics* (1982), 177–196, *Torino*.
- [9] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, 1982.
- [10] P. MICHOR, Remarks on the Frölicher-Nijenhuis bracket, Proceedings of the Conference on Differential Geometry and its Applications (Brno 1986), (1987), D. Reidel
- [11] R.S. PALAIS, Differential operators on vector bundles, Seminar on the Atiyah-Singer index theorem (1965), 51–93, Ann. of Math. Studies, Princeton.
- [12] R.S. PALAIS, Foundations of Global Non-Linear Analysis, W.A. Benjamin, Inc., New York, 1968.
- [13] J.F. POMMARET, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978.
- [14] D.J. SAUNDERS, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, 1989.
- [15] J. SZENTHE, On a basic property of Lagrangians (to appear in this Journal).
- [16] J. SZILASI, Horizontal maps with homogeneity condition, Suppl. Rend. Circ. Mat. Palermo, Ser. II 403, 307–320.
- [17] J. SZILASI, On Finsler Connections, Colloquia Math. Soc. János Bolyai 56, 649-661.

[18] J. SZILASI and Z. KOVÁCS, Pseudoconnections and Finsler-type connections, *Colloquia Math. Soc. János Bolyai* 46, 1165–1184.

J. SZILASI and Z. MUZSNAY MATHEMATICAL INSTITUTE OF KOSSUTH LAJOS UNIVERSITY DEBRECEN, H-4010 P.O. BOX 12

(Received September 30, 1992)