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Right Bol loops with a finite dimensional
group of multiplications

By EKKEHART WINTERROTH (Erlangen)

Abstract. In this article we prove the existence of a large class of analytic right
Bol loops having a Lie group as the group generated by all multiplications. To achieve
this we define a particular type of analytic right Bol loop on the topological product of
two Lie groups N and G. These loops arise from a certain modification of the construc-
tion of the semidirect product of G by N . Our main result is that the loops defined in
this way have a Lie group as the group of multiplications if N is nilpotent.

1. Introduction

It is a commonly known fact that for a loop L multiplication with
a fixed element is a permutation of L and hence can be used to define
transformation groups: the group of left translations, generated by the
multiplications from the left λa(x) = a · x, the group of right translations,
generated by the multiplications from the right ρa(x) = x · a, and the
group of multiplications, generated by all multiplications. The loop is then
a homogeneous space of each of these groups having a section with certain
properties, which make it possible to express the loop multiplication in
terms of this section (see e.g. [1] p. 217–220 or [2]). A great deal of work
has been done to study the relation between loops and their multiplication
groups. Of special interest thereby is the question as to when – in the
case of topological/analytic loops – these groups are Lie groups. Two of
the most important general results in this direction are as follows: if in
a loop the right (left) Bol identity holds, then the group of right (left)
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translations is a Lie group (see e.g. [4] p. 418–430) and if the right and
the left Bol identity are satisfied1 (see e.g. [3] Theorem 1.1), then even the
group of multiplications is a Lie group. In previously known examples of
loops, in which a Bol identity was satisified only on one side, the group
of translations “on the other side”, i.e. for a right Bol loop the group
of left translations (and hence the group of multiplications), was always
infinite dimensional. Thus, it seemed natural to conjecture that there is
a very close connection between a loop satisfying certain weak forms of
associativity and having a Lie group as one of the above groups. In the
present paper, however, it will be shown that there exist (analytic) right
Bol loops, which do not satisfy the left Bol identity, but have a Lie group
as group of multiplications. Furthermore, these occur not only in a few
pathological examples, but there exists a very large class of them.

Definition 1. A loop is a set L equipped with three binary opera-
tions · , /, \ : L × L 7→ L and a distinguished element 1, such that
1 · a = a · 1 = a holds and the equations x · a = b and a · x = b have
the unique solutions b/a and a\b, i.e. b/a · a = b and a · a\b = b.

L is called topological respectively analytic, if all three operations are
continuous respectively analytic.

Definition 2. A loop L is a right Bol loop, if [(x · y)z]y = x[(y · z)y]
holds for all x, y, z ∈ L. A loop L is a left Bol loop, if x[y(x ·z)] = [x(y ·x)]z
holds for all x, y, z ∈ L.

To define the class of loops in question, we now adapt a construction
from [5] to our purposes.

Let G and N be Lie groups and let β : G 7→ AutN be a homomor-
phism. We define a loop structure on the manifold N × G: Let (1, 1) be
the distinguished element; for (m, g), (n, h) ∈ N ×G we set

(m, g) · (n, h) = (β(h)m · n, gh)

(n, h)/(m, g) = (β(g)−1(n ·m−1), hg−1)

(m, g)\(n, h) = (β(g−1h)m−1 · n, g−1h).

A simple calculation shows that this is consistent with the above definition
of a loop and it is obvious that the three operations are analytic. Hence,

1It is well known, that this is equivalent to the fact that a certain other identity, the
Moufang identity, is satisfied. But we will make no use of this.
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this construction defines a class of analytic loops. From now on we will
refer to it as the “twisted semidirect product of G by N”. Although this
construction looks very similiar to the ordinary semidirect product, these
loops are not in general groups. This can be seen from the following
equations:

((m, 1)(1, g))(1, h) = (β(g)m, g)(1, h) = (β(hg)m, gh)

(m, 1)((1, g)(1, h)) = (m, 1)(1, gh) = (β(gh)m, gh).

Now, if associativity holds, the left parts of both equations are equal and
we get β(gh) = β(hg). On the other hand, if we have β(gh) = β(hg), then
the right parts of both equations are equal and associativity holds. Thus,
associativity holds, if and only if β(gh) = β(hg) holds for all g, h ∈ G.

Proposition 1. The twisted semidirect product of Lie groups is a right

Bol loop. If it is also a left Bol loop, then it is a group.

Proof. We will check the identities.

(k, f)[[(m, g)(n, h)](m, g)] = (k, f)[(β(h)m · n, gh)(m, g)]

= (k, f)(β(gh)m · β(g)n ·m, ghg)

= (β(ghg)k · β(gh)m · β(g)n ·m, fghg)

= (β(hg)k · β(h)m · n, fgh)(m, g)

= [(β(g)k ·m, fg)(n, h)](m, g)

= [[(k, f)(m, g)](n, h)](m, g).

Hence the right Bol identity holds.
Now consider

(1, g)[(m, 1)[(1, g)(1, h)]] = (1, g)[(m, 1)(1, gh)]

= (1, g)(β(gh)m, gh) = (β(gh)m, g2h)

and

[(1, g)[(m, 1)(1, g)]](1, h) = [(1, g)(β(g)m, g)](1, h)

= (β(g)m, g2)(1, h) = (β(hg)m, g2h).

Thus, if the left Bol identity holds, we have β(gh) = β(hg) and the twisted
semidirect product is a group. ¤
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2. The main results

From now on all Lie groups, Lie algebras and vector spaces are either
real or complex.

Definition 3. Let L be a loop. The group of left translations of L is the
transformation group of L generated by the left multiplications λa : L 7→ L

λa(x) = a · x, a ∈ L.
The group of right translations of L is the transformation group of L

generated by the right multiplications ρa : L 7→ L ρa(x) = x ·a, a ∈ L. The
group of multiplications of L is the group generated by all multiplications.

Now we will state our results.

Theorem 1. Let N be a nilpotent and G be an arbitrary Lie group,

then the group of left translations of any twisted semidirect product of G

by N is itself a Lie group.

Theorem 2. Let N and G be as in Theorem 1, then the group of

multiplications of any twisted semidirect product of G by N is a Lie group.

In order to prove Theorem 1, we have to do some preparation. First
we show that the group of left translations is isomorphic to a semidirect
product of G by L, where L is a group of mappings G 7→ N (Section 2.1).
Thus, it is clear that it suffices to show that this group of mappings is a Lie
group. The first step in this direction is to find a suitable criterion for when
a Lie algebra of mappings from a vector space into a nilpotent Lie algebra
is finite dimensional. By combining these results with the special property
of nilpotent Lie algebras to carry also the structure of a “polynomial”
Lie group, we can show that a certain group of mappings is a Lie group
(Section 2.2). Thus, the proof of Theorem 1 is reduced to showing that
L is isomorphic to a subgroup of a group of this type. Theorem 2 follows
from Theorem 1, since it can be shown that for right Bol loops the group
of multiplications is a factor group of a semidirect product of the group of
right translations by the group of left translations (Proposition 7).

2.1. The algebraic structure of the group of left translations

In this section, we show how the group of left translations decomposes
as a semidirect product and that its normal subgroup (with respect to this
decomposition) is isomorphic to a group of mappings from G to N . Though



Right Bol loops with a finite dimensional group of multiplications 165

we use them only as an intermediate step in proving Theorem 1 & 2, the
results of this section are, of course, of independent interest.

Before we proceed, we will introduce some notation. Denote by λ(m,g)

the left multiplication with the element (m, g), i.e.

λ(m,g)(x, y) = (m, g)(x, y) = (β(y)m · x, g · y).

Furthermore, let G be the group generated by the translations λ(1,g) and
L the group generated by the elements λ(1,g−1)λ(m,1)λ(1,g).

Theorem 3. The group of left translations is a semidirect product of

the subgroup G by the subgroup L. The group G is isomorphic to G.

Proof. In order to prove this theorem, three properties need to be
explicated: that the group of left translations is isomorphic to GL, i.e. that
every element can be described as αγ with α ∈ G and γ ∈ L, that L is a
normal subgroup and that G ∩ L = 1.

We will begin with some algebraic properties of the multiplication of
left translations.

Since λ(m,g)(x, y) = (m, g)(x, y) = (β(y)m · x, g · y), it follows from
λ(1,g)(x, y) = (1, g)(x, y) = (x, g · y), that λ(1,g−1) = λ−1

(1,g)(I) and
λ(1,g)λ(1,h) = λ(1,gh)(II).

And because we have (1, g)(m, 1) = (m, g) and λ−1
(m,1) = λ(m−1,1),

it follows that λ(1,g)λ(m,1) = λ(m,g)(III) and λ−1
(m,g) = λ−1

(m,1)λ
−1
(1,g) =

λ(m−1,1)λ(1,g−1)(IV ) hold.
To show that the group of left translations is isomorphic to GL we

will proceed by induction over word length. From (III) it is clear that
for the generators there is nothing to show. But since λ−1

(m,1)λ
−1
(1,g) =

λ(1,g−1)λ(1,g)λ(m−1,1)λ(1,g−1), from (IV ) it follows, that λ−1
(m,g) = αγ with

α = λ(1,g−1) and γ = λ(1,g)λ(m−1,1)λ(1,g−1).
Now let us assume that we can find suitable α and γ for any word of

length k.
From (I) and (II) it is clear, that there is a h ∈ G such that α = λ(1,h).

Then we have

λ(m,g)αγ = λ(m,g)λ(1,h)γ = λ(1,g)λ(m,1)λ(1,h)γ

= λ(1,g)λ(1,h)λ(1,h−1)λ(m,1)λ(1,h)γ,
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but λ(1,g)λ(1,h) = λ(1,g)α lies in G and λ(1,h−1)λ(m,1)λ(1,h)γ lies in L. Fur-
thermore, we get

λ−1
(m,g)αγ = λ(m−1,1)λ(1,g−1)λ(1,h)γ

= λ(1,g−1)λ(1,h)λ(1,h−1)λ(1,g)λ(m−1,1)λ(1,g−1)λ(1,h)γ,

with λ(1,g−1)λ(1,h) λ(1,g−1)α in G and λ(1,h−1)λ(1,g)λ(m−1,1)λ(1,g−1)λ(1,h)γ

in L. Since any word of length k + 1 can be generated by multiplying a
word of length one from the left to a word of length k, the first part of the
proof is finished.

To show that L is normal we have to show that αγα−1 lies in L for
arbitrary elements α ∈ G and γ ∈ L.

Since conjugation with a group element is an automorphism, it suffices
to show αγα−1 ∈ L only for the generators of L. From (I) and (II) it is
clear that for any α ∈ G there exists a h ∈ G, such that α = λ(1,h). Thus,
we have to show only that λ(1,h)λ(1,g−1)λ(m,1)λ(1,g)λ(1,h−1) lies in L. This
is, however, obvious, since λ(1,h)λ(1,g−1)λ(m,1)λ(1,g)λ(1,h−1) =
λ(1,hg−1)λ(m,1)λ(1,gh−1) by (II).

Thus, it remains to be shown that the neutral element is the only one
both subgroups have in common. This is done by considering their action
on N × G. We have λ(m,g)(x, y) = (m, g)(x, y) = (β(y)m · x, g · y) by
definition. So λ(1,g)(x, y) = (1, g)(x, y) = (x, g · y) holds and by a simple
calculation we get

λ(1,g−1)λ(m,1)λ(1,g)(x, y) = ((1, g−1)((m, 1)((1, g)(x, y))))

= (β(gy)m · x, y).

But this means that L acts only on the first and G only on the second
factor of the product N ×G, so their only common element is the neutral
element. And from λ(1,g)(x, y) = (1, g)(x, y) = (x, g · y) it is also obvious
that G is isomorphic to G. ¤

Let X be a set, let U be a group and let SX 7→U be a set of mappings
X 7→ U . For two mappings f, g ∈ SX 7→U one can define their product
mapping by taking the pointwise product, i.e. fg(x) = f(x)g(x) and the
multiplication defined in this way is obviously associative. Also each such
mapping has a well defined multiplicative inverse ι(f)(x) = f(x)−1. Hence,
any set of mappings into a group generates a group of mappings.
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Proposition 2. Let L(G,N) be the group generated by the set of

mappings Q := {fg,m : G 7→ N ; fg,m(y) = β(gy)m; g ∈ G, m ∈ N};
L(G,N) is isomorphic to L.

Proof. First we show that for every γ ∈ L there exists a mapping
f : G 7→ N , such that γ(x, y) = (f(y) ·x, y). We do this again by induction
over the word length.

For words of length one it follows from

λ(1,g−1)λ(m,1)λ(1,g)(x, y) = ((1, g−1)((m, 1)((1, g)(x, y))))

= (β(gy)m · x, y)

and the fact that

(λ(1,g−1)λ(m,1)λ(1,g))−1 = λ−1
(1,g)λ

−1
(m,1)λ

−1
(1,g−1) = λ(1,g−1)λ(m−1,1)λ(1,g)

holds.
Now assume we have found a suitable mapping f for every word of

length k and let δ be a word of length k. Any word of length k + 1 is of
the form λ(1,g−1)λ(m,1)λ(1,g) · δ. Then

λ(1,g−1)λ(m,1)λ(1,g) · δ(x, y) = λ(1,g−1)λ(m,1)λ(1,g)(δ(x, y))

= λ(1,g−1)λ(m,1)λ(1,g)(f(y) · x, y) = (β(gy)m · f(y) · x, y)

holds. But since y 7→ β(gy)m · f(y) again defines a mapping G 7→ N , we
have reached our goal.

Now for γ ∈ L let fγ be the corresponding mapping. Since γ ·δ(x, y) =
γ(fδ(y) · x, y) = (fγ(y) · fδ(y) · x, y), there exists a corresponding group of
mappings and because

λ(1,g−1)λ(m,1)λ(1,g)(x, y) = ((1, g−1)((m, 1)((1, g)(x, y))))

= (β(gy)m · x, y)

holds, it follows that it is generated by the set

{fg,m : G 7→ N ; fg,m(y) = β(gy)m; g ∈ G, m ∈ N} ¤
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2.2. Lie algebras of mappings

In this section we develop some results showing when a Lie group/Lie
algebra of mappings from a vector space into a nilpotent Lie algebra is
finite dimensional. This construction is the very heart of the proof of the
main results. The question of how it can be applied to show that the group
of mappings discovered in the previous section is a Lie group will be dealt
with in the next section.

Let V be a finite dimensional vector space and let N be a finite di-
mensional Lie algebra. As is generally known, NV , the set of all mappings
V 7→ N , carries (with addition and scalar multiplication defined pointwise)
the structure of an infinite dimensional vector space. It also carries in a
natural way (with the Lie bracket again defined pointwise) the structure
of a nilpotent, infinite dimensional Lie algebra, which is nilpotent of the
same degree as N . We will call this Lie algebra M(V, N).

Yet, we are not interested in M(V,N) as a whole, but in a subalgebra
generated by a certain subspace. We want to show this Lie algebra to be
finite dimensional.

Proposition 3. Let W be a subspace of a (possibly infinite dimen-

sional) Lie algebra H and let l(W ) be the subalgebra generated by W ,

then we have l(W ) =
∑∞

i=1 W i, where W 1 = W and W i = [W i−1,W ] for

i ≥ 2.

Proof. By definition l(W ) consists of all linear combinations of ele-
ments of W and finitely iterated brackets with entries from W . Hence the
proposition is true if [W i,W j ] ⊆ W i+j . But this is a generally known fact
(see e.g. [6] p. 25, Proposition 5). ¤

Unlike the previous one, the next proposition is completely trivial, if
the Lie algebra H is itself finite dimensional.

Proposition 4. If W is finite dimensional and H nilpotent, then l(W )
is finite dimensional and nilpotent.

Proof. Every subalgebra of a nilpotent Lie algebra is nilpotent.
Hence, it remains only to show that l(W ) is finite dimensional.

Since H is nilpotent, there is a k such that Hi = 0 for i ≥ k. Thus,
also W i vanishes for i ≥ k. By the previous proposition it therefore suffices
to show that W i is finite dimensional for all i.
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This is done by induction over i. W is finite dimensional, so for i = 1
the assumption is true. Now assume that W i is finite dimensional, then it
has a finite base eµ. Since W is finite dimensional, it has a finite base fν .
So the vector space W i+1 is generated by the set of all brackets [eµ, fν ].
But since both bases are finite, this is a finite set of vectors generating
W i+1. Hence, W i+1 is finite dimensional. ¤

L(V, N), the space of all linear mappings V 7→ N , is obviously a finite
dimensional subspace of M(V,N). By the previous proposition it generates
a finite dimensional, nilpotent subalgebra M(V,N) of M(V, N).

A particular property of finite dimensional, nilpotent Lie algebras
is that they also carry the structure of nilpotent Lie groups: because
of the nilpotency the Campbell–Taylor–Hausdorff series breaks off after
finitely many steps, hence converges on the whole Lie algebra and defines,
therefore, the structure of a nilpotent Lie group on it (see e.g. [7] p. 227,
III.3.23). So M(V, N) can be viewed as a nilpotent Lie group.

On the other hand, this also applies to N , since it is a nilpotent
Lie algebra itself. So it is possible to equipe M(V, N) with the structure
of a (abstract) nilpotent group: multiplication is defined pointwise by
(f · g)(x) = f(x) ∗N g(x) = f(x) + g(x) + 1

2 [f(x), g(x)] + . . . (Campbell–
Taylor–Hausdorff multiplication in N), the inverse by f−1(x) = f(x)−1 =
−f(x), the neutral element is the mapping, which is identical zero; the law
of associativity holds obviously.

We now can consider the subgroup L(V,N) of M(V, N), which is gen-
erated by L(V,N). Our next aim is to show, that this group is a path con-
nected subgroup ofM(V, N). To do so, it is important to see thatM(V,N)
(with the group structure induced by the Campbell–Taylor–Hausdorff mul-
tiplication) is a subgroup of M(V,N), with the group structure described
above.

Proposition 5. M(V, N) is a subgroup of M(V, N).

Proof. Let ∗M(V,N) and ∗N be the Campbell–Taylor–Hausdorff mul-
tiplication in M(V, N) resp. N ; let [ , ]M(V,N) be the bracket in M(V,N)
and [, ] the bracket in N ; finally, let · be the multiplication in M(V, N).
Then (f ∗M(V,N) g)(x) = f(x) + g(x) + 1

2 [f, g]M(V,N)(x) + . . . = f(x) +
g(x) + 1

2 [f(x), g(x)] + · · · = f(x) ∗N g(x) = (f · g)(x) holds by the above
considerations. ¤
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Proposition 6. L(V,N) is a path connected subgroup of M(V, N),
hence a Lie group.

Proof. L(V,N) consists of all finite words
∏

i fi with fi ∈ L(V, N).
To show that L(V,N) is a subgroup of M(V, N), it suffices by the previous
proposition to show that all finite words are in M(V, N). To do so we
proceed by induction over the word length. All words of length one are in
M(V, N), since

∏1
i=1 fi = f1 ∈ L(V,N) ∈M(V,N). We assume now that

all words of length k are in M(V, N), then

(
k+1∏

i=1

fi

)
(x) =

(
k∏

i=1

fi · fk+1

)
(x) =

k∏

i=1

fi(x) ∗N fk+1(x)

=
k∏

i=1

fi(x) + fk+1(x) +
1
2

[
k∏

i=1

fi(x), fk+1(x)

]
+ . . .

=
k∏

i=1

fi(x) + fk+1(x) +
1
2

[
k∏

i=1

fi, fk+1

]

M(V,N)

(x) + . . .

=

(
k∏

i=1

fi ∗M(V,N) fk+1

)
(x)

holds. So it remains to show that this subgroup is path connected. Yet,
this is completely obvious, since it is generated by a path connected set.
But path connected subgroups of Lie groups are analytic, according to the
famous Yamabe Theorem (see e.g. [7] Theorem I.6.1 and Theorem I.9.15)
and analytic subgroups of simply connected nilpotent Lie groups are simply
connected and closed (see e.g. [7] Theorem III.3.31). ¤

2.3. Proof of Theorem 1 & 2

Now we have come to show how the results of the previous section
can be used to prove that the group of mappings from Section 2.1 – and
then as well the group of left translations as the group of multiplications
– is a Lie group.

We will proceed in two steps: First we will prove the result for “poly-
nomial” Lie groups. Then we will use this to show that it holds for N

arbitrary nilpotent. Let N be a “polynomial” Lie group, i.e. a nilpotent
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Lie algebra with the group structure induced by the Campbell–Taylor–
Hausddorff multiplication. Since the group of left translations is isomor-
phic to the semidirect product of G and L (Theorem 3), we have to show
only that L is a Lie group.

But L is isomorphic to L(G,N), a group of mappings from G into the
polynomial Lie group N (Proposition 2). Since G itself is not a vectorspace,
the results of the previous section cannot be applied directly. Thus, we
have to find a suitable vector space V , such that L(G,N) can be considered
a subgroup of the group generated by L(V, N).

For this we will consider the algebra End N , the algebra of all linear
endomorphisms of N . Let V be the subalgebra of End N generated by
Aut N . Clearly, L(V, N), the group generated by L(V, N), is finite dimen-
sional, since it is according to Proposition 6 a path connected subgroup of
M(V, N), which is finite dimensional according to Proposition 4. Thus, it
suffices to find a subgroup of L(V,N) isomorphic to L(G,N).

Now consider mappings hg,m : V 7→ N with hg,m(Y ) = β(g)Y m for
g ∈ G and m ∈ N . Since V is not only a vector space, but also an algebra
and because Aut N is contained in V , such mappings are well defined
and, by the law of distributivity, they are linear. Thus, P, the group of
mappings generated by the set

P := {hg,m : V 7→ N ; hg,m(y) = β(g)Y m; g ∈ G, m ∈ N},

is a subgroup of the group generated by L(V, N). It is path connected,
since its generating set is path connected. L(G,N) is generated by the set

Q := {fg,m : G 7→ N ; fg,m(y) = β(gy)m; g ∈ G, m ∈ N}.

Obviously the map j : Q 7→ P with j(β(gy)m) = β(g)Y m is a bijection;
because

j

(
k∏

i=1

β(giy)mi

)
:=

k∏

i=1

j(β(giy)mi) =
k∏

i=1

β(gi)Y mi

holds, this extends to a map L(G, N) 7→ P, which is clearly a homo-
morphism. Since it is a bijection on the generating sets, it is also an
isomorphism. Thus, the polynomial case is done.
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Now let M be an arbitrary nilpotent Lie group. Then there exists
a polynomial Lie group N and a surjective homomorphism p : N 7→ M .
Because of the surjectivity of p the set

Q‘ := {fg,p(m) : G 7→ M ; fg,m(y) = β(gy)p(m); g ∈ G, m ∈ N}

generates L(G,N) and we get a surjection

p∗ : Q 7→ Q‘

p∗(β(gy)m) := β(gy)p(m).

As above, this extends to a homomorphism L(G,N) 7→ L(G,M) and since
it is surjective on the generating sets it is a surjection. Thus, we have
proved Theorem 1.

Since the group of right translations of analytic right Bol loop is always
a Lie group (see e.g. [4] p. 418–430), Theorem 2 follows now directly from
the proposition below.

Proposition 7. The group of multiplications of a right Bol loop is a

factor group of a semidirect product of the group of right translations by

the group of left translations.

Proof. Denote the group of left translations by Λ, the group of
right translations by Π and the group of multiplications by Θ. Let ρx

denote the multiplication from the right and λx multiplication from the
left with a given loop element x. It is possible to express the right Bol
identity as ρyλxy = λxρyλy (see Lemma 1 in [8]), but this implies that
ρ−1

y λxρy = λxyλ−1
y . Thus, we have a canonical action of Π as a group

of automorphisms of Λ. Now consider the semidirect product of Π by Λ
defined using this action. Then we get a mapping γ : Λ× Π 7→ Θ defined
by γ(λ, ρ) = λρ. That this mapping is surjective follows now directly from
the fact that ρλ = ρλρ−1ρ. It is clear that it is a homomorphism, since
γ((λ1, ρ1)(λ2, ρ2)) = γ(λ1ρ1λ2ρ

−1
1 , ρ1ρ2) = λ1ρ1λ2ρ

−1
1 ρ1ρ2 = λ1ρ1λ2ρ2 =

γ(λ1, ρ1)γ(λ2, ρ2) holds. ¤
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