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A characterization of the Janko group J1
by an active fragment of its character table

By V. A. BELONOGOV (Ekaterinburg)

Abstract. The sporadic simple Janko group J1 of order 175560 has a 15 × 15
character table X. In this paper it is given a characterization of J1 by a 12×6 submatrix
of X, which is an active fragment of X. The notion of the active fragment introduced
in the author’s book “Representations and characters in the theory of finite groups”,
Sverdlovsk, 1990 (in Russian).

1. Introduction

Let G be a finite group, X a character table of G, D the union of some
conjugacy classes of G (a normal subset of G) and Φ a set of irreducible
characters of G. Denote by X(Φ, D) the submatrix of X consisting of the
values of the functions from Φ on the elements from D. Let us say that
X(Φ, D) is an active fragment of X if D and Φ interact [1] (see Section 2
below).

The sporadic simple group J1 of order 175560 has a 15× 15 character
table X [5]. It is easy to see that X has the following 12×6 active fragment:

3
↓

A =

2 →
2 →
3 →
3 →

26666664
1 1 1 1

56 0 1 −1
76 −1 −1 0
77 0 0 1

133 0 1 0
209 −1 0 0

37777775 .
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Here the matrix A is written in a compact form: a number with an arrow
indicates the multiplicity of the corresponding row or column. (The full
form of A is written in Lemma 2 below.)

The aim of this paper is to prove

Theorem. Let G be a finite group. The following conditions are equi-

valent:

(1) the matrix A as above is an active fragment of a character table of G,

(2) G ∼= J1.

Note that similar characterizations of the groups PSL(2, q) and Sz(q)
are obtained in [2, Chapter 8], where some general methods of investiga-
tion of a group with a given active fragment of its character table are
developed.

Let G be a group satisfying the condition (1). The proof of Theorem,
as proofs of the characterizations above, includes the following steps to
make clear the structure of G: the determination of the order of G, the
extension of A to a larger fragment of a character table of G, the proof of
simplicity of G. Besides the proof of Theorem contains a new step: the
complete reconstruction of the centralizer of an involution of G. Finally,
a result of Janko [5] completes the proof of Theorem.

2. Preliminaries

We use the standard notation and some definitions from [1], [2]. Let
us recall something of these. Always G is a finite group, Irr(G) is the set
of irreducible (complex) characters of G, gG := {x−1gx | x ∈ G} and o(g)
is the order of g for g ∈ G, k(G) is the number of the conjugacy classes
of G, kG(D) is the number of the conjugacy classes of G contained in a
normal subset D of G, M ×N is the Cartesian product of sets M and N .
If α is a class function of G and D is a normal subset of G then α|0D is a
class function of G defined by the equation

α|0D(g) =
{

0 if g ∈ G \D,

α(g) if g ∈ D.

The function α|0D is called the D-part of α.
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Suppose that D is a normal subset of G and Φ ⊆ Irr(G). We say that
D and Φ interact if the D-part φ|0D of every character φ in Φ is a linear
combination of the characters in Φ: φ|0D =

∑
ψ∈Φ aφ,ψψ, aφ,ψ are complex

numbers. (It is shown in [1], [2] that the classical concept of p-block of
irreducible characters of a group may be defined in terms of interactions;
note that every p-section of G interacts with every p-block of G.) We set

D− = G \D, Φ− = Irr(G) \ Φ.

Proposition 1. Let G be a finite group, D a normal subset of G and

Φ ⊆ Irr(G). The following conditions are equivalent:

(1) D and Φ interact,

(2)
∑

d∈D φ(d)χ(d) = 0 for all (φ, χ) ∈ Φ× Φ− ,

(3)
∑

φ∈Φ φ(d)φ(g) = 0 for all (d, g) ∈ D ×D− ,

(4) |G|−1
∑

d∈D

∑
φ∈Φ ψ(d)φ(d)φ(t) = ψ(t) for all (ψ, t) ∈ Φ×D.

Proof. See [1, Theorem 1]. ¤

Proposition 2. Let X be a character table of a group G, D is a normal

subset of G and Φ ⊆ Irr(G). The following conditions are equivalent:

(1) rank(X(Φ, D)) + rank(X(Φ, D−)) = |Φ|,
(2) rank(X(Φ, D)) + rank(X(Φ−, D)) = kG(D),

(3) rank(X(Φ, D)) + rank(X(Φ, D−)) + rank(X(Φ−, D))+
rank(X(Φ−, D−)) = k(G),

(4) D and Φ interact.

Proof. See [2, Theorem 8A6]. ¤

3. Proof of Theorem

Troughout this section, G is a finite group which satisfies the condition
(1) of Theorem. Let a, b, c, d1, d2, d3 be elements of G, corresponding to
the first, second, . . . , sixth column of A, respectively, and φi (i = 1, . . . , 12)
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denotes the element of Irr(G), corresponding to i-th row of A. Let us set

D = aG ∪ bG ∪ cG ∪ dG
1 ∪ dG

2 ∪ dG
3 and Φ = {φ1, . . . , φ12}.

Thus, A = X(Φ, D) for a character table X of G.

Lemma 1. (1) |G| = 175560 = 23 · 3 · 5 · 7 · 11 · 19.

(2) |CG(b)| = 7, |CG(c)| = 11.

(3) |CG(d1)|−1 + |CG(d2)|−1 + |CG(d3)|−1 = 3/19.

Proof. Let x−1, y−1, z−1, t−1
1 , t−1

2 , t−1
3 denote the orders of the cen-

tralizers of a, b, c, d1, d2, d3, respectively. By Proposition 1 ((1) =⇒ (4)),
we have the equation

A diag(x, y, z, t1, t2, t3)A∗A = A.

Since rank(A) = 3 and the 3× 3 submatrix A
(6,9,12)
(2,3,4) of A (superscripts are

numbers of rows, subscripts are numbers of column) is non-singular, the
equation is equivalent to

A(6,9,12) diag(x, y, z, t1, t2, t3)A∗A(2,3,4) = A
(6,9,12)
(2,3,4) ,

that is




77x 0 0 t1 t2 t3
133x 0 z 0 0 0
209x −y 0 0 0 0







−360 360 120
4 3 1
3 8 −1
1 −1 6
1 −1 6
1 −1 6




=




0 0 1
0 1 0

−1 0 0


 .

From here we get x = 1/175560, y = 1/7, z = 1/11, t1+t2+t3 = 3/19.
Therefore the assertions (2) and (3) hold.

Now we show that a=1. If not, 1∈D− and Proposition 1 ((1) =⇒ (3)
for (d, g) = (a, 1)) implies a contradiction. Hence a = 1, |G| = x−1 and
(1) holds. ¤
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Lemma 2. (1) k(G) = 15 and the active fragment A may be extended

to the following fragment of a character table of G:

|CG(g)| |G| 7 11 19 19 19
g 1 b c d1 d2 d3 g1 . . . g9

φ1 1 1 1 1 1 1 1 . . . 1
φ2 56 0 1 −1 −1 −1
φ3 56 0 1 −1 −1 −1
φ4 76 −1 −1 0 0 0
φ5 76 −1 −1 0 0 0
φ6 77 0 0 1 1 1
φ7 77 0 0 1 1 1
φ8 77 0 0 1 1 1
φ9 133 0 1 0 0 0
φ10 133 0 1 0 0 0
φ11 133 0 1 0 0 0
φ12 209 −1 0 0 0 0

χ1 120 1 −1 a11 a12 a13 0 . . . 0
χ2 120 1 −1 a21 a22 a23 0 . . . 0
χ3 120 1 −1 a31 a32 a33 0 . . . 0

(here aij are some complex numbers);

(2)
∑3

i=1 aij = −1 for all j ∈ {1, 2, 3};
(3) |CG(gi)| divides 8 · 3 · 5 for all i ∈ {1, . . . , 9}.
Proof. Since rank(X(Φ, D)) = 3 and kG(D) = 6, rank(X(Φ−, D)) =

6 − 3 = 3 by Proposition 2. Therefore, |Φ−| ≥ 3. By Proposition 1
((1) =⇒ (2)), we have φ12(1)χ(1)−|bG|φ12(b)χ(b) = 0 for χ ∈ Φ−, whence
χ(1) = 120χ(b) and χ(b) is integer (for example, by [2, 2A6(3)]). Hence

∑

χ∈Φ−
χ(1)2 = 1202

∑

χ∈Φ−
χ(b)2 ≥ 1202|Φ−| ≥ 1202 · 3.

But by the second ortogonality relation,
∑

χ∈Φ− χ(1)2=|G|−∑
φ∈Φ φ(1)2=

1202 · 3. Therefore,

|Φ−| = 3, k(G) = 15,

χ(1) = 120 and χ(b) = 1 for all χ ∈ Φ−.
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Thus we have filled two first columns of the character table X of G. By
Proposition 1 ((1) =⇒ (2)), φ11(1)χ(1) + |cG|φ11(c)χ(c) = 0 for χ ∈ Φ−.
Therefore

χ(c) = −1 for all χ ∈ Φ−

and hence we know third column of the character table.
At beginning the proof we noted that rank(X(Φ−, D)) = |Φ−|. Hence,

by Proposition 2, rank(X(Φ−, D−)) = 0 (obviously, Φ− interacts also
with D), that is

χi(gj) = 0 for all i, j.

By the second ortogonality relation for the columns corresponding to
1 and dj (j ∈ {1, 2, 3}), we have 1−56 ·2+77 ·3+120

∑3
i=1 aij = 0, where

aij = χi(gj). Whence the assertion (2) follows.
Let j ∈ {1, 2, 3}. Then, by (2), there exists such i ∈ {1, 2, 3} that

χi(dj) 6= 0. Since χi(1) = 120 = 8 · 3 · 5 is the product of the orders of
some Sylow subgroups of G, then as known (see, for example, [2, 5B8])
χi(g) = 0 provided (o(g), 120) 6= 1. Hence (o(dj), 8 · 3 · 5) = 1. Similarly,
from φ6(dj) 6= 0 it follows that (o(dj), 7 · 11) = 1. Therefore, o(d1) =
o(d2) = o(d3) = 19. This and the statement (3) of Lemma 1 imply

|C(d1)| = |C(d2)| = |C(d3)| = 19.

So, the assertion (1) holds.
Let j ∈ {1, . . . , 9}. Suppose that o(gj) = 19. Then 〈gj〉 = 〈d1〉

and, as known (for example, by [2, 2A15]), χi(gj)α = aij (i = 1, 2, 3) for
an automorphism α of the field Q(e2πi/19). But it is impossible by (2).
Therefore (o(gj), 19) = 1. Similarly, (o(gj), 7) = (o(gj), 11) = 1. These
equations and (1) (see the row “|CG(g)|”) imply (3). ¤

Lemma 3. The group G is simple.

Proof. Suppose that N is a normal subgroup of G and {1} 6= N 6= G.
Then N =

⋂
χ∈Γ Kerχ, where Γ ⊆ Irr(G) \ {φ1} and Ker χ = {g ∈ G |

χ(g) = χ(1)}. Lemma 2 implies that the elements b, c, d1, d2, d3 cannot
belong to Ker χ for all χ ∈ Irr(G)\{φ1}. Therefore |N | divides 8·3·5. Let P

be a Sylow subgroup of N . By the Frattini argument, NG(P ) ⊇ 〈d〉, where
|〈d〉| = 19. Since |P | < 19, P 〈d〉 = P × 〈d〉. But this is a contradiction,
since CG(d) = 〈d〉 by Lemma 2. ¤
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Lemma 4. (1) All involutions of G are conjugate.

(2) G has an element of order 6.

(3) G has at least two conjugacy classes of elements of order 5.

(4) G has at least two conjugacy classes of elements of order 10.

(5) If G has an element of order 15, the sequence o(g1), . . . , o(g9)
(in the notation of Lemma 2) within ranking is 2, 3, 5, 5, 6, 10, 10, 15, 15.

Proof. (1) Let T be a Sylow 2-subgroup of G and M be a maximal
subgroup of T . Since G is simple (by Lemma 3), it follows from [4, IV.1.7]
that every involution of T is conjugate with an involution of M . Therefore,
assertion (1) will be proved if we shall find a maximal subgroup M in T

such that all involutions of M are conjugate in G. We may suppose that
T has not cyclic maximal subgroups and hence T is elementary abelian.
Then Aut(T ) ∼= GL(3, 2) is a group of order 8 · 3 · 7 without subgroups of
order 21. Hence |NG(T )/CG(T )| = n ∈ {1, 3, 7}. By the Burnside theorem
[4, IV.2.6] and simplicity of G, n 6= 1. In the case n = 7 all involutions of
T are conjugate in NG(T ). In the case n = 3, T has a maximal subgroup
M all involutions of which are conjugate in NG(T ). Thus, (1) holds.

(2) Let g be an element of order 7 of G. Then Aut(〈g〉) is a cyclic
group of order 6 and so |NG(〈g〉)/CG(〈g〉)| = n must be a divisor of 6.
Since all elements of order 7 in G are conjugate by Lemma 2, all elements
of 〈g〉 \ {1} are conjugate in NG(〈g〉) by [4, IV.2.5]. Therefore n = 6 and
so NG(〈g〉) has an element s of order 6 (NG(〈g〉) = 〈g〉〈s〉 is the Frobenius
group of order 42).

(3) Let g be an element of order 5. Then NG(〈g〉)/CG(g) is a cyclic
group of order n ∈ {2, 4}. In the same way as in the proof of (2), we
get (considering the element c) that G has an element of order 10. Hence
|CG(g)| is even. If n = 4, T has a cyclic quotient group of order 4; there-
fore, T is abelian and G has a normal 2-complement by [4, IV.2.7]. This
contradicts to Lemma 3. Therefore, n = 2, whence, by [4, IV.2.5], (3)
holds.

(4) This follows easily from (3).

(5) Suppose that G has an element of order 15. It follows from (3)
that G has at least two classes of elements of order 15. From this and
(1)–(4) it follows that G \D consists of 9 conjugacy classes of G, and the
orders of their elements are 2, 3, 5, 5, 6, 10, 10, 15, 15. ¤
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Lemma 5. Let t be an involution of G. Then CG(t) = 〈t〉×F , where

F ∼= A5.

Proof. Since G has only one conjugacy class of involutions and G

has elements of order 6 and 10 (by Lemma 4), |CG(t)| = 8 · 3 · 5 by Lem-
ma 2(3).

Assume that CG(t) is solvable. Then it has a Hall subgroup of order
3 ·5 which, clearly, is cyclic. Consequently, G has an element x of order 15
and the element xt of order 30. But this contradicts to the assertion (5)
of Lemma 4.

Thus CG(t) is nonsolvable. Set C = CG(t). Then C/〈t〉 ∼= A5 and
all involutions of C/〈t〉 are conjugate in C/〈t〉. Therefore, all (three) sub-
groups of order 4 of C contaning t are conjugate in C. Hence T is elemen-
tary abelian or quaternion. If T is elementary abelian then, by [4, IV.2.2],
T ∩ Z(C) ∩ C ′ = 1, whence t /∈ C ′ and C = 〈t〉 × C ′ ∼= 〈t〉 ×A5. The case
where T is the quaternion group (and then C ∼= SL(2, 5)) may be exclude
by the result of [3]. ¤

Now the proof of Theorem follows immediately from Lemmas 3, 4(1),
5 and the theorem of Janko [5].
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