A characterization of the Janko group J_{1} by an active fragment of its character table

By V. A. BELONOGOV (Ekaterinburg)

Abstract

The sporadic simple Janko group J_{1} of order 175560 has a 15×15 character table X. In this paper it is given a characterization of J_{1} by a 12×6 submatrix of X , which is an active fragment of X . The notion of the active fragment introduced in the author's book "Representations and characters in the theory of finite groups", Sverdlovsk, 1990 (in Russian).

1. Introduction

Let G be a finite group, X a character table of G, D the union of some conjugacy classes of G (a normal subset of G) and Φ a set of irreducible characters of G. Denote by $\mathrm{X}(\Phi, D)$ the submatrix of X consisting of the values of the functions from Φ on the elements from D. Let us say that $\mathrm{X}(\Phi, D)$ is an active fragment of X if D and Φ interact [1] (see Section 2 below).

The sporadic simple group J_{1} of order 175560 has a 15×15 character table X [5]. It is easy to see that X has the following 12×6 active fragment:

$$
A=\begin{aligned}
& \\
& \\
& 2 \\
& 2 \\
& 3 \\
& 3
\end{aligned} \rightarrow\left[\begin{array}{rrrr}
1 & & & \\
& \rightarrow \\
& 1 & 1 & 1 \\
56 & 0 & 1 & -1 \\
76 & -1 & -1 & 0 \\
77 & 0 & 0 & 1 \\
133 & 0 & 1 & 0 \\
209 & -1 & 0 & 0
\end{array}\right] .
$$

Mathematics Subject Classification: 20C15.
Key words and phrases: finite groups, character table, active fragment, sporadic simple group Janko J_{1}.
Supported by the Russian Fund of Fundamental Researches, grant No. 99-01-462

Here the matrix A is written in a compact form: a number with an arrow indicates the multiplicity of the corresponding row or column. (The full form of A is written in Lemma 2 below.)

The aim of this paper is to prove
Theorem. Let G be a finite group. The following conditions are equivalent:
(1) the matrix A as above is an active fragment of a character table of G, (2) $G \cong J_{1}$.

Note that similar characterizations of the groups $\operatorname{PSL}(2, q)$ and $S z(q)$ are obtained in [2, Chapter 8], where some general methods of investigation of a group with a given active fragment of its character table are developed.

Let G be a group satisfying the condition (1). The proof of Theorem, as proofs of the characterizations above, includes the following steps to make clear the structure of G : the determination of the order of G, the extension of A to a larger fragment of a character table of G, the proof of simplicity of G. Besides the proof of Theorem contains a new step: the complete reconstruction of the centralizer of an involution of G. Finally, a result of Janko [5] completes the proof of Theorem.

2. Preliminaries

We use the standard notation and some definitions from [1], [2]. Let us recall something of these. Always G is a finite group, $\operatorname{Irr}(G)$ is the set of irreducible (complex) characters of $G, g^{G}:=\left\{x^{-1} g x \mid x \in G\right\}$ and $o(g)$ is the order of g for $g \in G, k(G)$ is the number of the conjugacy classes of $G, k_{G}(D)$ is the number of the conjugacy classes of G contained in a normal subset D of $G, M \times N$ is the Cartesian product of sets M and N. If α is a class function of G and D is a normal subset of G then $\left.\alpha\right|_{D} ^{0}$ is a class function of G defined by the equation

$$
\left.\alpha\right|_{D} ^{0}(g)= \begin{cases}0 & \text { if } g \in G \backslash D, \\ \alpha(g) & \text { if } g \in D .\end{cases}
$$

The function $\left.\alpha\right|_{D} ^{0}$ is called the D-part of α.

Suppose that D is a normal subset of G and $\Phi \subseteq \operatorname{Irr}(G)$. We say that D and Φ interact if the D-part $\left.\phi\right|_{D} ^{0}$ of every character ϕ in Φ is a linear combination of the characters in $\Phi:\left.\phi\right|_{D} ^{0}=\sum_{\psi \in \Phi} a_{\phi, \psi} \psi, a_{\phi, \psi}$ are complex numbers. (It is shown in [1], [2] that the classical concept of p-block of irreducible characters of a group may be defined in terms of interactions; note that every p-section of G interacts with every p-block of G.) We set

$$
D^{-}=G \backslash D, \quad \Phi^{-}=\operatorname{Irr}(G) \backslash \Phi .
$$

Proposition 1. Let G be a finite group, D a normal subset of G and $\Phi \subseteq \operatorname{Irr}(G)$. The following conditions are equivalent:
(1) D and Φ interact,
(2) $\sum_{d \in D} \phi(d) \overline{\chi(d)}=0$ for all $(\phi, \chi) \in \Phi \times \Phi^{-}$,
(3) $\sum_{\phi \in \Phi} \phi(d) \overline{\phi(g)}=0$ for all $(d, g) \in D \times D^{-}$,
(4) $|G|^{-1} \sum_{d \in D} \sum_{\phi \in \Phi} \psi(d) \overline{\phi(d)} \phi(t)=\psi(t)$ for all $(\psi, t) \in \Phi \times D$.

Proof. See [1, Theorem 1].
Proposition 2. Let X be a character table of a group G, D is a normal subset of G and $\Phi \subseteq \operatorname{Irr}(G)$. The following conditions are equivalent:
(1) $\operatorname{rank}(\mathrm{X}(\Phi, D))+\operatorname{rank}\left(\mathrm{X}\left(\Phi, D^{-}\right)\right)=|\Phi|$,
(2) $\operatorname{rank}(\mathrm{X}(\Phi, D))+\operatorname{rank}\left(\mathrm{X}\left(\Phi^{-}, D\right)\right)=k_{G}(D)$,
(3) $\operatorname{rank}(\mathrm{X}(\Phi, D))+\operatorname{rank}\left(\mathrm{X}\left(\Phi, D^{-}\right)\right)+\operatorname{rank}\left(\mathrm{X}\left(\Phi^{-}, D\right)\right)+$ $\operatorname{rank}\left(\mathrm{X}\left(\Phi^{-}, D^{-}\right)\right)=k(G)$,
(4) D and Φ interact.

Proof. See [2, Theorem 8A6].

3. Proof of Theorem

Troughout this section, G is a finite group which satisfies the condition (1) of Theorem. Let $a, b, c, d_{1}, d_{2}, d_{3}$ be elements of G, corresponding to the first, second, \ldots, sixth column of A, respectively, and $\phi_{i}(i=1, \ldots, 12)$
denotes the element of $\operatorname{Irr}(G)$, corresponding to i-th row of A. Let us set

$$
D=a^{G} \cup b^{G} \cup c^{G} \cup d_{1}^{G} \cup d_{2}^{G} \cup d_{3}^{G} \quad \text { and } \quad \Phi=\left\{\phi_{1}, \ldots, \phi_{12}\right\} .
$$

Thus, $A=\mathrm{X}(\Phi, D)$ for a character table X of G.
Lemma 1. (1) $|G|=175560=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$.
(2) $\left|C_{G}(b)\right|=7,\left|C_{G}(c)\right|=11$.
(3) $\left|C_{G}\left(d_{1}\right)\right|^{-1}+\left|C_{G}\left(d_{2}\right)\right|^{-1}+\left|C_{G}\left(d_{3}\right)\right|^{-1}=3 / 19$.

Proof. Let $x^{-1}, y^{-1}, z^{-1}, t_{1}^{-1}, t_{2}^{-1}, t_{3}^{-1}$ denote the orders of the centralizers of $a, b, c, d_{1}, d_{2}, d_{3}$, respectively. By Proposition $1((1) \Longrightarrow(4))$, we have the equation

$$
A \operatorname{diag}\left(x, y, z, t_{1}, t_{2}, t_{3}\right) A^{*} A=A .
$$

Since $\operatorname{rank}(A)=3$ and the 3×3 submatrix $A_{(2,3,4)}^{(6,9,12)}$ of A (superscripts are numbers of rows, subscripts are numbers of column) is non-singular, the equation is equivalent to

$$
A^{(6,9,12)} \operatorname{diag}\left(x, y, z, t_{1}, t_{2}, t_{3}\right) A^{*} A_{(2,3,4)}=A_{(2,3,4)}^{(6,9,12)},
$$

that is

$$
\left[\begin{array}{rrllll}
77 x & 0 & 0 & t_{1} & t_{2} & t_{3} \\
133 x & 0 & z & 0 & 0 & 0 \\
209 x & -y & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
-360 & 360 & 120 \\
4 & 3 & 1 \\
3 & 8 & -1 \\
1 & -1 & 6 \\
1 & -1 & 6 \\
1 & -1 & 6
\end{array}\right]=\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right] .
$$

From here we get $x=1 / 175560, y=1 / 7, z=1 / 11, t_{1}+t_{2}+t_{3}=3 / 19$. Therefore the assertions (2) and (3) hold.

Now we show that $a=1$. If not, $1 \in D^{-}$and Proposition $1((1) \Longrightarrow(3)$ for $(d, g)=(a, 1))$ implies a contradiction. Hence $a=1,|G|=x^{-1}$ and (1) holds.

Lemma 2. (1) $k(G)=15$ and the active fragment A may be extended to the following fragment of a character table of G :

$\left\|C_{G}(g)\right\|$	$\|G\|$	7	11	19	19	19	
g	1	b	c	d_{1}	d_{2}	d_{3}	$g_{1} \ldots g_{9}$
ϕ_{1}	1	1	1	1	1	1	$1 \ldots 1$
ϕ_{2}	56	0	1	-1	-1	-1	
ϕ_{3}	56	0	1	-1	-1	-1	
ϕ_{4}	76	-1	-1	0	0	0	
ϕ_{5}	76	-1	-1	0	0	0	
ϕ_{6}	77	0	0	1	1	1	
ϕ_{7}	77	0	0	1	1	1	
ϕ_{8}	77	0	0	1	1	1	
ϕ_{9}	133	0	1	0	0	0	
ϕ_{10}	133	0	1	0	0	0	
ϕ_{11}	133	0	1	0	0	0	
ϕ_{12}	209	-1	0	0	0	0	
χ_{1}	120	1	-1	a_{11}	a_{12}	a_{13}	$0 \ldots 0$
χ_{2}	120	1	-1	a_{21}	a_{22}	a_{23}	$0 \ldots 0$
χ_{3}	120	1	-1	a_{31}	a_{32}	a_{33}	$0 \ldots 0$

(here $a_{i j}$ are some complex numbers);
(2) $\sum_{i=1}^{3} a_{i j}=-1$ for all $j \in\{1,2,3\}$;
(3) $\left|C_{G}\left(g_{i}\right)\right|$ divides $8 \cdot 3 \cdot 5$ for all $i \in\{1, \ldots, 9\}$.

Proof. Since $\operatorname{rank}(\mathrm{X}(\Phi, D))=3$ and $k_{G}(D)=6, \operatorname{rank}\left(\mathrm{X}\left(\Phi^{-}, D\right)\right)=$ $6-3=3$ by Proposition 2. Therefore, $\left|\Phi^{-}\right| \geq 3$. By Proposition 1 $((1) \Longrightarrow(2))$, we have $\phi_{12}(1) \overline{\chi(1)}-\left|b^{G}\right| \phi_{12}(b) \overline{\chi(b)}=0$ for $\chi \in \Phi^{-}$, whence $\chi(1)=120 \chi(b)$ and $\chi(b)$ is integer (for example, by [2, 2A6(3)]). Hence

$$
\sum_{\chi \in \Phi^{-}} \chi(1)^{2}=120^{2} \sum_{\chi \in \Phi^{-}} \chi(b)^{2} \geq 120^{2}\left|\Phi^{-}\right| \geq 120^{2} \cdot 3 .
$$

But by the second ortogonality relation, $\sum_{\chi \in \Phi^{-}} \chi(1)^{2}=|G|-\sum_{\phi \in \Phi} \phi(1)^{2}=$ $120^{2} \cdot 3$. Therefore,

$$
\begin{gathered}
\left|\Phi^{-}\right|=3, \quad k(G)=15 \\
\chi(1)=120 \quad \text { and } \quad \chi(b)=1 \quad \text { for all } \chi \in \Phi^{-} .
\end{gathered}
$$

Thus we have filled two first columns of the character table X of G. By Proposition $1((1) \Longrightarrow(2)), \phi_{11}(1) \overline{\chi(1)}+\left|c^{G}\right| \phi_{11}(c) \overline{\chi(c)}=0$ for $\chi \in \Phi^{-}$. Therefore

$$
\chi(c)=-1 \quad \text { for all } \chi \in \Phi^{-}
$$

and hence we know third column of the character table.
At beginning the proof we noted that $\operatorname{rank}\left(\mathrm{X}\left(\Phi^{-}, D\right)\right)=\left|\Phi^{-}\right|$. Hence, by Proposition $2, \operatorname{rank}\left(\mathrm{X}\left(\Phi^{-}, D^{-}\right)\right)=0$ (obviously, Φ^{-}interacts also with D), that is

$$
\chi_{i}\left(g_{j}\right)=0 \quad \text { for all } i, j .
$$

By the second ortogonality relation for the columns corresponding to 1 and $d_{j}(j \in\{1,2,3\})$, we have $1-56 \cdot 2+77 \cdot 3+120 \sum_{i=1}^{3} a_{i j}=0$, where $a_{i j}=\chi_{i}\left(g_{j}\right)$. Whence the assertion (2) follows.

Let $j \in\{1,2,3\}$. Then, by (2), there exists such $i \in\{1,2,3\}$ that $\chi_{i}\left(d_{j}\right) \neq 0$. Since $\chi_{i}(1)=120=8 \cdot 3 \cdot 5$ is the product of the orders of some Sylow subgroups of G, then as known (see, for example, [2, 5B8]) $\chi_{i}(g)=0$ provided $(o(g), 120) \neq 1$. Hence $\left(o\left(d_{j}\right), 8 \cdot 3 \cdot 5\right)=1$. Similarly, from $\phi_{6}\left(d_{j}\right) \neq 0$ it follows that $\left(o\left(d_{j}\right), 7 \cdot 11\right)=1$. Therefore, $o\left(d_{1}\right)=$ $o\left(d_{2}\right)=o\left(d_{3}\right)=19$. This and the statement (3) of Lemma 1 imply

$$
\left|C\left(d_{1}\right)\right|=\left|C\left(d_{2}\right)\right|=\left|C\left(d_{3}\right)\right|=19 .
$$

So, the assertion (1) holds.
Let $j \in\{1, \ldots, 9\}$. Suppose that $o\left(g_{j}\right)=19$. Then $\left\langle g_{j}\right\rangle=\left\langle d_{1}\right\rangle$ and, as known (for example, by [2, 2A15]), $\chi_{i}\left(g_{j}\right)^{\alpha}=a_{i j}(i=1,2,3)$ for an automorphism α of the field $\mathbb{Q}\left(e^{2 \pi i / 19}\right)$. But it is impossible by (2). Therefore $\left(o\left(g_{j}\right), 19\right)=1$. Similarly, $\left(o\left(g_{j}\right), 7\right)=\left(o\left(g_{j}\right), 11\right)=1$. These equations and (1) (see the row " $\left.\left|C_{G}(g)\right| "\right)$ imply (3).

Lemma 3. The group G is simple.
Proof. Suppose that N is a normal subgroup of G and $\{1\} \neq N \neq G$. Then $N=\bigcap_{\chi \in \Gamma} \operatorname{Ker} \chi$, where $\Gamma \subseteq \operatorname{Irr}(G) \backslash\left\{\phi_{1}\right\}$ and $\operatorname{Ker} \chi=\{g \in G \mid$ $\chi(g)=\chi(1)\}$. Lemma 2 implies that the elements $b, c, d_{1}, d_{2}, d_{3}$ cannot belong to $\operatorname{Ker} \chi$ for all $\chi \in \operatorname{Irr}(G) \backslash\left\{\phi_{1}\right\}$. Therefore $|N|$ divides 8.3•5. Let P be a Sylow subgroup of N. By the Frattini argument, $N_{G}(P) \supseteq\langle d\rangle$, where $|\langle d\rangle|=19$. Since $|P|<19, P\langle d\rangle=P \times\langle d\rangle$. But this is a contradiction, since $C_{G}(d)=\langle d\rangle$ by Lemma 2.

Lemma 4. (1) All involutions of G are conjugate.
(2) G has an element of order 6 .
(3) G has at least two conjugacy classes of elements of order 5.
(4) G has at least two conjugacy classes of elements of order 10.
(5) If G has an element of order 15 , the sequence $o\left(g_{1}\right), \ldots, o\left(g_{9}\right)$
(in the notation of Lemma 2) within ranking is $2,3,5,5,6,10,10,15,15$.
Proof. (1) Let T be a Sylow 2-subgroup of G and M be a maximal subgroup of T. Since G is simple (by Lemma 3), it follows from [4, IV.1.7] that every involution of T is conjugate with an involution of M. Therefore, assertion (1) will be proved if we shall find a maximal subgroup M in T such that all involutions of M are conjugate in G. We may suppose that T has not cyclic maximal subgroups and hence T is elementary abelian. Then $\operatorname{Aut}(T) \cong G L(3,2)$ is a group of order $8 \cdot 3 \cdot 7$ without subgroups of order 21. Hence $\left|N_{G}(T) / C_{G}(T)\right|=n \in\{1,3,7\}$. By the Burnside theorem [4, IV.2.6] and simplicity of $G, n \neq 1$. In the case $n=7$ all involutions of T are conjugate in $N_{G}(T)$. In the case $n=3, T$ has a maximal subgroup M all involutions of which are conjugate in $N_{G}(T)$. Thus, (1) holds.
(2) Let g be an element of order 7 of G. Then $\operatorname{Aut}(\langle g\rangle)$ is a cyclic group of order 6 and so $\left|N_{G}(\langle g\rangle) / C_{G}(\langle g\rangle)\right|=n$ must be a divisor of 6 . Since all elements of order 7 in G are conjugate by Lemma 2, all elements of $\langle g\rangle \backslash\{1\}$ are conjugate in $N_{G}(\langle g\rangle)$ by [4, IV.2.5]. Therefore $n=6$ and so $N_{G}(\langle g\rangle)$ has an element s of order $6\left(N_{G}(\langle g\rangle)=\langle g\rangle\langle s\rangle\right.$ is the Frobenius group of order 42).
(3) Let g be an element of order 5 . Then $N_{G}(\langle g\rangle) / C_{G}(g)$ is a cyclic group of order $n \in\{2,4\}$. In the same way as in the proof of (2), we get (considering the element c) that G has an element of order 10. Hence $\left|C_{G}(g)\right|$ is even. If $n=4, T$ has a cyclic quotient group of order 4 ; therefore, T is abelian and G has a normal 2-complement by [4, IV.2.7]. This contradicts to Lemma 3. Therefore, $n=2$, whence, by [4, IV.2.5], (3) holds.
(4) This follows easily from (3).
(5) Suppose that G has an element of order 15. It follows from (3) that G has at least two classes of elements of order 15 . From this and (1)-(4) it follows that $G \backslash D$ consists of 9 conjugacy classes of G, and the orders of their elements are $2,3,5,5,6,10,10,15,15$.

Lemma 5. Let t be an involution of G. Then $C_{G}(t)=\langle t\rangle \times F$, where $F \cong A_{5}$.

Proof. Since G has only one conjugacy class of involutions and G has elements of order 6 and 10 (by Lemma 4), $\left|C_{G}(t)\right|=8 \cdot 3 \cdot 5$ by Lemma 2(3).

Assume that $C_{G}(t)$ is solvable. Then it has a Hall subgroup of order $3 \cdot 5$ which, clearly, is cyclic. Consequently, G has an element x of order 15 and the element $x t$ of order 30. But this contradicts to the assertion (5) of Lemma 4.

Thus $C_{G}(t)$ is nonsolvable. Set $C=C_{G}(t)$. Then $C /\langle t\rangle \cong A_{5}$ and all involutions of $C /\langle t\rangle$ are conjugate in $C /\langle t\rangle$. Therefore, all (three) subgroups of order 4 of C contaning t are conjugate in C. Hence T is elementary abelian or quaternion. If T is elementary abelian then, by [4, IV.2.2], $T \cap Z(C) \cap C^{\prime}=1$, whence $t \notin C^{\prime}$ and $C=\langle t\rangle \times C^{\prime} \cong\langle t\rangle \times A_{5}$. The case where T is the quaternion group (and then $C \cong S L(2,5)$) may be exclude by the result of [3].

Now the proof of Theorem follows immediately from Lemmas 3, 4(1), 5 and the theorem of Janko [5].

References

[1] V. A. Belonogov, D-blocks of characters of a finite group, Amer. Math. Soc. Transl. (2) 143 (1989), 103-128.
[2] V. A. Belonogov, Representations and characters in the theory of finite groups, UrO AN SSSR, Sverdlovsk, 1990. (in Russian)
[3] R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow subgroup is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759.
[4] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[5] Z. Janko, A new finite simple group whith abelian Sylow 2-subgroups and its characterization, J. Algebra 3 (1966), 147-186.
V. A. BELONOGOV

INSTITUTE OF MATHEMATICS AND MECHANICS
URAL BRANCH OF RUSSIAN ACADEMY OF SCIENCES
S. KOVALEVSKAYA ST. 16

EKATERINBURG, 620219
RUSSIA
E-mail: belonogov@imm.uran.ru
(Received October 21, 2000; file obtained January 30, 2001)

