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Gysin sequence and Euler class of spherical Lie algebroids

By JAN KUBARSKI (ÃLódź)

Abstract. An n-dimensional Lie algebra g will be called a spherical Lie algebra
if it is cohomologically equivalent to the n-sphere, i.e. Hi(g) = 0 for 1 6 i 6 n − 1
and Hi(g) = R for i = 0, n. The 1-dimensional abelian Lie algebra R and the 3-
dimensional Lie algebras sl(2,R) and sk(3,R) are the only such Lie algebras. This work
deals with the invariantly oriented transitive Lie algebroids having spherical isotropy Lie
algebras. The Lie algebroids of some principal bundles and of some TC-foliations are
such algebroids. The aim of this work is to construct and investigate the Gysin sequence
and the Euler class of such Lie algebroids by generalizing these notions introduced for
R-Lie algebroids in [K5].

1. Introduction

A) Let (E, π,M) be an oriented n-sphere bundle. Then the fibre
integral 6

∫
: Ω?(E) → Ω?−n(M) has the following important property

[G-H-V]: the space of cohomology of its kernel H(ker 6
∫

) is isomorphic to
the space of cohomology of M ,

(1.1) π# : H(M)
∼=−→ H

(
ker 6

∫ )
.

Due to this fact, the Gysin sequence and the Euler class of E are easily
defined, see, for example, [G-H-V].

On the other hand, in the theory of Lie algebroids we can observe an
interesting analogy to the theory of sphere bundles, namely, it turns out
that, in some sense, flat connections for Lie algebroids play the same role
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as global cross-sections for sphere bundles. This was observed in [K6] for
regular Lie algebroids with the trivial one-dimensional adjoint bundle of
Lie algebras admitting a non-singular global cross-section invariant with
respect to the adjoint representation (for special cases of Lie algebroids of
Poisson manifolds over R-Lie foliations see [K5]). Among transitive Lie
algebroids fulfilling these properties we find:
• the Lie algebroids of S1-principal bundles,
• the Lie algebroid A(G; H) of the TC-foliation of left cosets of a non-

closed Lie subgroup H in a Lie group G, such that dim H̄−dim H = 1,
• the Lie algebroid A(M ;F) of a TP-foliation F on a compact and

simply connected manifold with 1-dimensional structural Lie algebras.

Among regular non-transitive ones we have:
• the Lie algebroids of Poisson manifolds over R-Lie foliations.

The fact analogous to (1.1) is their fundamental property which en-
ables us to observe the “flat connections – cross-sections” analogy. What
follows appears as common ideas for cross-sections of sphere bundles and
flat connections for Lie algebroids: the Gysin sequence, the notion of the
Euler class as well as the notion of an index at singularity and the theorem
of Euler–Poincaré–Hopf.

It turns out that this analogy – for transitive Lie algebroids – takes
place in a wider class of the so-called spherical Lie algebroids in which (a)
the isotropy Lie algebras g are cohomologically equivalent to the n-sphere
Sn, i.e. Hk(g) = 0 for 1 ≤ k ≤ n − 1 and Hk(g) = R for k = 0, n, (b)
the n-exterior power

∧n
g of the adjoint bundle g possesses a non-singular

global cross-section ε ∈ Sec
∧n

g invariant with respect to the adjoint
representation. Therefore, except for R-Lie algebroids, this analogy holds
for some sl(2,R) and sk(3,R)-Lie algebroids as well.

The generalization of the Euler class and the Gysin sequence for
spherical Lie algebroids is the aim of this paper. The Lie algebroids of
G-principal bundles for 3-dimensional Lie groups G such that gl(G) =
sk(3,R) (for example, G = SO(3), O(3), Spin(3)) or gl(G) = sl(2,R) (in
the case G = SL(2)) are the first examples of spherical Lie algebroids
with 3-dimensional structural Lie algebras. The case G = O(3) gives
principal bundles with compact and disconnected fibres, whereas the case
G = SL(2) – with non compact fibres. Therefore the classical theory of
the Gysin sequence and the Euler class for oriented bundles with fibres



Gysin sequence and Euler class of spherical Lie algebroids 247

cohomologically equivalent to a sphere [G-H-V, Vol. II, s. 5.23] does not
apply to these two classes of G-principal bundles. In the next paper [K8]
the cohomology theory of flat connections in spherical Lie algebroids is
developed. If the dimension of the base manifold is equal to n+1, where n
is the dimension of the isotropy Lie algebras, the index at an isolated sin-
gularity is defined. A version of the Euler–Poincaré–Hopf theorem joining
the sum of indexes to the Euler class is given. This generalizes the results
from [K5].

The paper is organized as follows. Sections 2 and 3 are devoted to the
fibre integral for Lie algebroids (introduced in [K4]) and its fundamental
properties. In Section 4 we study the Gysin sequence and the Euler classs
of a spherical Lie algebroid A. In Section 5 this class is calculated via
the Chern–Weil homomorphism of A. In Section 6 we prove how one
can calculate the cohomology algebra of A via H(M) and the Euler class
of A. We also show that two Lie algebroids on the same manifold, having
isomorphic cohomology algebras, can possess different Euler classes.

B) This work (as regards techniques) is based on our work [K4] where
the notion of the fibre integral 6

∫
A

in a regular Lie algebroid (A, [[ · , · ]], γ)
with respect to a non-singular cross-section ε of

∧n
g is introduced (g =

ker γ is the adjoint bundle of Lie algebras), n = rank g. The pair (A, ε)
is called a vertically oriented Lie algebroid and, for the transitive case
(considered in this work), the fibre integral 6

∫
A

: Ω?
A(M) → Ω?−n(M) is

defined as follows: 6
∫

A
Φ = 0 if deg Φ < n and γ?(6

∫
A

Φ) = (−1)nkιεΦ if
deg Φ = n + k, k > 0. We recall that ΩA(M) denotes the space of A-
differential forms, i.e. the space Sec

∧
A? of cross-sections of the bundle∧

A?. In ΩA(M) the exterior derivative dA works and gives a cohomology
algebra HA(M). We also add that by a homomorphism of vertically ori-
ented Lie algebroids (T, t) : (A, ε) → (A′, ε′) of the same rank n we mean
a homorphism T : A → A′ (inducing t : M → M ′) of Lie algebroids [K3],
such that (

∧n
T+)(εx) = ε′tx, x ∈ M , where T+ : g → g′ is the restriction

of T to adjoint bundles.
The basic properties of 6

∫
A

are given in the following theorems [K4]:

Theorem 1.1. (a) If (T, t) : (A, ε) → (A′, ε′) is a homomorphism of
vertically oriented Lie algebroids, then t? ◦ 6∫

A′ = 6
∫

A
◦T ?,

(b) 6
∫

A
◦γ? = 0,

(c) 6
∫

A
γ?ψ ∧ Φ = ψ ∧ 6

∫
A

Φ for arbitrary forms ψ ∈ Ω(M) and Φ ∈
ΩA(M),

(d) 6
∫

A
Φ ∧ γ?ψ = (−1)nk(6

∫
A

Φ) ∧ ψ for ψ ∈ Ωk(M), Φ ∈ Ω>n
A (M),

(e) 6
∫

A
is an epimorphism.
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Theorem 1.2. The operator 6
∫

A
commutes with the exterior deriva-

tives dA and dM if and only if

(a1) the isotropy Lie algebras gpx are unimodular, and

(a2) the cross-section ε is invariant with respect to the adjoint representa-

tion of A on
∧n

g.

We recall [K4] that the invariance of ε is equivalent to the following
property: for any open subset U ⊂ M on which ε|U = (h1 ∧ . . . ∧ hn)|U ,
hi ∈ Sec g, the equality (

∑n
i=1 hi ∧ . . . ∧ [[ξ, hi]] ∧ . . . ∧ hn)|U = 0 holds for

each ξ ∈ SecA.

Theorem 1.3. The kernel 6
∫

A
is a dA-stable space if and only if the

gpx are unimodular.

Theorem 1.4. For a trivial Lie algebroid A = TM×g over a connected

manifold M a cross-section ε of the vector bundle
∧n

g = M × ∧n
g is

invariant if and only if it is a constant one, ε(x) = ε0 for a
∧n adg-invariant

element ε0 ∈
∧n

g.

The transitive Lie algebroid A fulfilling properties (a1) and (a2) from
Theorem 1.2 is called a transitive unimodular invariantly oriented Lie al-
gebroid (briefly, TUIO-Lie algebroid).

In [K4] and [K7] three sources of such Lie algebroids can be found:

• the Lie algebroids of G-principal bundles for a structure Lie group G

not necessarily compact or connected but satisfying det(adG a) = +1,
a ∈ G,

• the Lie algebroid of the TC-foliation of left cosets of a nonclosed Lie
subgroup H in a Lie group G,

• the Lie algebroid A(M,F) of a TP-foliation on a compact and simply
connected manifold.

In [K7] one can find the Poincaré duality theorem for TUIO-Lie al-
gebroids over oriented manifolds establishing an isomorphism Hp

A(M) ∼=
Hn+m−p

A,c (M)? (n = rank g, m = dim M , Hn+m−p
A,c (M) denotes the (n +

m−p)-cohomology space of A-forms with compact support). This theorem
implies the duality between γ#

c : Hc(M) → HA,c(M) and 6
∫ #

A
: HA(M) →

H(M) from which we obtain (as a corollary)
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Theorem 1.5. If A is a TUIO-Lie algebroid over an oriented mani-

fold M , then the following conditions are equivalent:

(a) 6
∫ #n

A
: Hn

A(M) → H0(M) is an epimorphism,

(b) γ#m
c : Hm

c (M) → Hm
A,c(M) is a monomorphism.

C) Let g be any n-dimensional unimodular Lie algebra. For a tensor
0 6= ε0 ∈

∧n
g, take the substitution operator iε0 :

∧
g? → R. Then

ker iε0 =
⊕n−1

i=0

∧i
g?. Consider the cochain complex (ker iε0 , δ)

0 → R 0−→ g? δ1

−→
2∧

g? δ2

−→ · · · δn−2

−−−→
n−1∧

g? 0−→ 0.

The last arrow is also the Chevalley–Eilenberg differential δn−1 since, in
a unimodular Lie algebra g, we have δn−1 = 0 (this can easily be noticed
from the definition or Corollary 3.2 in [K4]). This yields that

(1.2) Hp(ker iε0) =
{

Hp(g) if 0 6 p < n,

0 if p = n.

Take now a trivial unimodular Lie algebroid A = TM × g equipped
with a constant cross-section ε ∈ Sec(M×∧n

g), ε(x) = ε0, 0 6= ε0 ∈
∧n

g.
ε is

∧n adA-invariant [K4, Example 3.1]. Consider the integration operator
6
∫

A
corresponding to ε. The Künneth homomorphism κ : Ω(M)×∧

g? →
ΩTM×g(M), ψ⊗ϕ 7→ γ?ψ∧π?ϕ, (γ : TM×g → TM and π : TM×g → g

are projections) is an isomorphism of graded differential algebras, see [K7,
Lemma 6.1].

Lemma 1.1. The following diagram commutes for a uniquely deter-

mined isomorphism κ1 of graded differential algebras:

0 −−−→ Ω(M)
⊗

ker ιε0 −−−→ Ω(M)
⊗∧

g?
id⊗ιε0−−−−→ Ω(M) −−−→ 0

∼=
yκ1 ∼=

yκ

∥∥∥

0 −−−→ ker 6
∫

TM×g
−−−→ ΩTM×g(M)

6R
T M×g−−−−→ Ω(M) −−−→ 0.

Proof. The right square commutes: (a) if deg Φ < n, Φ ∈ Ω(M) ⊗∧
g?, then 6

∫
TM×g

◦κ(Φ) = 0 = id⊗iε0(Φ). (b) if Φ = ψ ⊗ ϕ, ψ ∈ Ω(M),
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ϕ ∈ ∧
g? and deg Φ = n+k, k > 0, we have, for ε0 = h1∧ . . .∧hn (hi ∈ g),

(
6
∫

TM×g

◦κ
)
(ψ ⊗ ϕ)(v1 ∧ . . . ∧ vk)

= 6
∫

TM×g

(γ?ψ ∧ π?ϕ)(v1 ∧ . . . ∧ vk)

= (−1)nk(γ?ψ ∧ π?ϕ)(h1 ∧ . . . ∧ hn ∧ v1 ∧ . . . ∧ vk)

= (π?ϕ ∧ γ?ψ)(h1 ∧ . . . ∧ hn ∧ v1 ∧ . . . ∧ vk)

?= ιε0ϕ · ψ(v1 ∧ . . . ∧ vk)

= (id⊗ιε0)(ψ ⊗ ϕ)(v1 ∧ . . . ∧ vk).

The equality “ ?=” holds independently of the degree of ϕ (if deg ϕ < n,
then both sides of “ ?=” are 0). Clearly, there exists a uniquely determined
homomorphism κ1 of graded differential algebras for which the above dia-
gram commutes, and κ1 is an isomorphism. ¤

Corollary 1.1. The mapping

κ1# : H(M)
⊗

H(ker ιε0)
∼=−→ H

(
ker 6

∫

TM×g

)

induced by κ1 on cohomology (after its composition with the algebraic

Künneth isomorphism) is an isomorphism of graded algebras.

It is easy to see that the mapping

ρ : Ω(M) −→ Ω(M)
⊗

ker ιε0 , ψ 7−→ ψ ⊗ 1,

is a homomorphism of graded differential algebras for which the diagram

(1.3)

Ω(M)
ρ−−−−→ Ω(M)

⊗
ker ιε0∥∥∥ ∼=

yκ1

Ω(M)
γ?

−−−−→ ker(6
∫

TM×g
).

commutes. [The fact that Im γ?⊂ ker6
∫

TM×g
follows from Theorem 1.1 (b)].

Finally, consider a transitive Lie algebroid A over a manifold M of
dimension m, with the Atiyah sequence 0 → g ↪→ A

γ−→ TM → 0. Let
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ε ∈ Sec
∧n

g, n = rank g, be a non-singular cross-section. Denote by
6
∫

A
: Ω?

A(M) → Ω?−n(M) the fibre integral with respect to ε. In the
present work we examine the short exact sequence of graded spaces

(1.4) 0 −→ ker 6
∫

A

i
↪→ ΩA(M)

6R
A−→ Ω(M) −→ 0.

The homomorphism i is of degree 0 and 6
∫

A
of degree −n. We assume that

(A, ε) is a TUIO-Lie algebroid, i.e. that Lie algebras gpx are unimodular
and ε is

∧n adA-invariant. Due to Theorems 1.2–3, the sequence (1.4) is
a sequence of differential spaces.

2. H(ker 6
∫

A
) for spherical Lie algebroids

Definition 2.1. An n-dimensional real Lie algebra g is called a spher-
ical Lie algebra (s-Lie algebra for short) if it is cohomologically equivalent
to the n-sphere Sn, i.e. if

Hk(g) =
{ 0 for 1 6 k 6 n− 1,

R for k = 0, n.

Every s-Lie algebra is unimodular.

Example 2.1. The following are examples of s-Lie algebras:
• R – the 1-dimensional abelian Lie algebra,
• sl(2,R) – the Lie algebra of real 2× 2-matrices with trace zero,
• sk(3,R) – the Lie algebra of real 3× 3 skew symmetric matrices.

The last two Lie algebras are 3-dimensional.

Proposition 2.1. The above are the only s-Lie algebras.

Proof. It is sufficient to check that
•for an arbitrarily taken real Lie algebra g if H1(g)= 0 then H3(g) 6= 0.
The assumption H1(g) = g/[g, g] = 0 implies that the Levi factor l of

g is nontrivial. Let g = l ⊕ m be the Levi decomposition of g. The rest
trivially follows from the facts that H3(l) 6= 0 and H0(m)g = R and the
Hochschild–Serre formula [H–S, Theorem 13] (for a = 3):

Ha(g) =
r⊕

Hr(l)⊗Ha−r(m)g. ¤
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Definition 2.2. A TUIO-Lie algebroid is called a spherical Lie alge-
broid (s-Lie algebroid for short) if its isotropy Lie algebras gpx are s-Lie
algebras.

Example 2.2. (1) Lie algebroids of S1-, SL(2)-, SO(3)-, O(3)- or
Spin(3)-principal bundles are s-Lie algebroids. (2) The Lie algebroid of the
TC-foliation of left-cosets of a nonclosed Lie subgroup H in a Lie group G,
such that dim H̄ − dim H = 1, is an s-Lie algebroid ([K4, Theorem 3.5]).

Theorem 2.1. For any s-Lie algebroid (A, ε) over a manifold M ,

γ# : H(M) −→ H
(

ker 6
∫

A

)

is an isomorphism of graded algebras.

Proof. M (paracompact and not necessarily connected) can be cov-
ered by a finite family of open (not necessarily connected) subsets {U1, . . .

. . . , Uk} such that A|Ui
is isomorphic to a trivial Lie algebroid. Indeed,

each point has a neighbourhood on which A is isomorphic to a trivial Lie
algebroid [A–M], [M], next we need to use Th.I from [G-H-V, Vol. I, p. 17].

Our theorem will be proved inductively with respect to k.

Step 1. k = 1. In this situation, A ∼= TM × g. According to
(1.3), the theorem follows from the assumption that g is an s-Lie alge-
bra: H(ker ιε0) = R.

Step 2. Assume the theorem is true for positive numbers 6 k. We
prove this theorem for the number k + 1. Let M = U1 ∪ . . . ∪ Uk+1 (the
Lie algebroid A over Ui is isomorphic to a trivial one). Put U = U1,
V =

⋃k+1
i=2 Ui. Then U ∪ V = M , U ∩ V =

⋃k+1
i=2 U1 ∩ Ui. Of course,

A|U1∩Ui
too is isomorphic to a trivial one. Consider the Mayer–Vietoris

sequence for the covering {U, V } [K7, Section 3]

0 → ΩA(M) α−→ ΩA|U (U)
⊕

ΩA|V (V )
β−→ ΩA|U∩V

(U ∩ V ) → 0

and the following diagram in which Ω1 := ΩA|U , Ω2 := ΩA|V , Ω12 :=
ΩA|U∩V

and the integration operators are determined with respect to the
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restrictions of ε:

0 0 0
y

y
y

0 −−−→ ker 6
∫

A
−−−→ ker 6

∫
A|U

⊕
ker 6

∫
A|V

−−−→ ker 6
∫

A|U∩V
−−−→ 0

y
y

y
0 −−−→ ΩA(M) α−−−→ Ω1(U)

⊕
Ω2(V )

β−−−→ Ω12(U ∩ V ) −−−→ 0
y6RA

y6
R

A|U
⊗6R

A|V

y6
R

A|U∩V

0 −−−→ Ω(M) α−−−→ Ω(U)
⊕

Ω(V )
β−−−→ Ω(U ∩ V ) −−−→ 0.

y
y

y
0 0 0

The bottom rows and all columns are exact. Therefore, by the nine-lemma,
the top row is exact, too. This yields the following diagram with exact
rows:

0 −−−→ Ω(M) −−−→ Ω(U)
⊕

Ω(V ) −−−→ Ω(U ∪ V ) −−−→ 0
yγ?

M

yγ?
U⊕γ?

V

yγ?
U∩V

0 −−−→ ker 6
∫

A
−−−→ ker 6

∫
A|U

⊕
ker 6

∫
A|V

−−−→ ker 6
∫

A|U∩V
−−−→ 0 .

By the induction assumptions, γ#
U , γ#

V and γ#
U∩V are isomorphisms. Writ-

ing the long cohomology sequences and using the five-lemma, we assert
that γ#

M is an isomorphism, too. ¤

3. Gysin sequence and Euler class of s-Lie algebroids

Let us come back to the sequence (1.4) of graded differential spaces for
an arbitrary s-Lie algebroid (A, ε) and consider the corresponding canoni-
cal long exact sequence in cohomology

· · · −→ HA(M)
6R

A
#

−−−→ H(M) ∂−→ H
(

ker 6
∫

A

)
i#−→ HA(M) −→ · · ·
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with the connecting homomorphism ∂ of degree n + 1. In the following
diagram

H(M)
γ#

−−−−→ HA(M)

∼=
xγ#−1

∥∥∥

H(ker 6
∫

A
)

i#−−−−→ HA(M)
x∂

∥∥∥

H(M)
6R

A
#

←−−−− HA(M),

the bottom square commutes. Define the operator D : H(M) → H(M) as
the composition

D : H(M) ω̃−→ H(M) ∂−→ H(ker 6
∫

A
)

γ#−1

−−−→ H(M)

where ω̃ is the involution ω̃(ψ) = (−1)deg ψ+1ψ. D is a homomorphism of
degree n + 1, giving the exactness of the triangle

H(M)

↘γ#

D

x HA(M).(3.1)

↙6R
A

#

H(M)

Definition 3.1. D is called the Gysin homomorphism of the s-Lie al-
gebroid (A, ε). The long exact sequence

· · · D=0−−−→ Hk(M)
γ#k

−−→ Hk
A(M)

6R
A

#k=0−−−−−→ 0 −→ · · · (0 6 k < n)

· · · 0 −→ Hn(M)
γ#n

−−→ Hn
A(M)

6R n
A−−→ H0(M) D0

−−→ · · ·

· · ·Hp(M) Dp

−−→ Hp+n+1(M)
γ#

−−→ Hp+n+1
A (M)

6R #
A−−→ Hp+1(M) Dp+1

−−−→ · · ·
(p > 0)
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corresponding to (3.1) is called the Gysin sequence of (A, ε). The coho-
mology class

χA := D0(1) = γ#−1(∂(−1)) ∈ Hn+1(M)

is called the Euler class of (A, ε).

Remark 3.1. The construction of the Gysin homomorphism and the
Euler class. Take a closed form ψ ∈ Ω(M). There exists a form Φ ∈
ΩA(M) such that 6

∫
A

Φ = ψ (see Theorem 1.1 (e)). Then, by Theorem 1.2,
dAΦ ∈ ker 6

∫
A

and ∂[ψ] = [dAΦ]ker 6R
A
. Therefore

D[ψ] = (−1)deg ψ+1γ#−1[dAΦ]ker 6R
A
.

In particular, for ψ = 1 ∈ H0(M) and an n-form Φ̃ such that 6
∫

A
Φ̃ =

−ψ = −1, we have [dAΦ̃]ker 6R
A

= γ#χA. For any representative Ψ of χA,
χA = [Ψ], there exists a form Φ ∈ Ωn

A(M) such that

6
∫

A

Φ = −1 and dAΦ = γ∗Ψ.

Indeed, [dAΦ̃]ker 6R
A

= [γ∗Ψ], so dAΦ̃− γ?Ψ = dAΘ for a form Θ ∈ ker 6
∫

A
.

Thus γ?Ψ = dA(Φ̃−Θ), and Φ := Φ̃−Θ is the looked-for form.

Proposition 3.1. D(α ∧ β) = α ∧D(β) for arbitrary classes

α, β ∈ H(M).

Proof. Take a form Ω ∈ Ωn
A(M) such that 6

∫
A

Ω = 1. Let α = [ϕ],
β = [ψ]. By Theorem 1.1 (c), we have 6

∫
A
(γ?(ϕ ∧ ψ)) ∧ Ω = ϕ ∧ ψ, so this

equality gives

D(α ∧ β) = (−1)deg ϕ+deg ψ+1γ#−1(∂[ϕ ∧ ψ])

= (−1)deg ϕ+deg ψ+1γ#−1[dA(γ?(ϕ ∧ ψ) ∧ Ω)]ker 6R
A

= (−1)deg ψ+1γ#−1

(
γ#[ϕ] ∧ [dA(γ?ψ ∧ Ω)]ker 6R

A

)

= [ϕ] ∧ (−1)deg ψ+1γ#−1(∂[ψ])

= [ϕ] ∧D[ψ] = α ∧Dβ. ¤
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Corollary 3.1. D(α) = α ∧ χA.

From this and the Gysin sequence we easily obtain

Proposition 3.2. For an s-Lie algebroid (A, ε), the following condi-

tions are equivalent:

(1) 6
∫ #n

A
: Hn

A(M) → H0(M) is an epimorphism,

(2) χA = 0,

(3) 6
∫ #

A
: HA(M) → H(M) is an epimorphism,

(4) γ#n+1 : Hn+1(M) → Hn+1
A (M) is a monomorphism,

(5) γ# : H(M) → HA(M) is a monomorphism.

In particular, if Hn+1(M) = 0, then χA = 0.

If additionally M is oriented, then according to Theorem 1.5 the above

conditions are equivalent to

(6) γ#m
c is a monomorphism.

Corollary 3.2. If an s-Lie algebroid (A, ε) is flat, then χA = 0.

Proof. Let λ : TM → A be a flat connection. Then γ ◦ λ = id
and λ is a homomorphism of Lie algebroids. This implies the relation
λ# ◦ γ# = id#, which yields the monomorphy of γ#. The proposition
above gives the equality χA = 0. ¤

In particular, the trivial Lie algebroid TM×g has the vanishing Euler
class.

From the Gysin sequence we immediately have

Corollary 3.3. If χA = 0, then the following short sequences are

exact:

(3.2) 0 −→ Hn+p(M) ∂#

−−→ Hn+p
A (M)

6R #
A−−→ Hp

A(M) −→ 0, p > 0.

In particular,

Hn+p
A (M) ∼= Hn+p(M)

⊕
Hp(M), p > 0.
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Corollary 3.4. The Euler class χA vanishes for any R-s-Lie algebroid

A over a noncompact 2-manifold M and for any sl(2,R) or sk(3,R)-s-Lie

algebroid A over a noncompact 4-manifold M .

The comparison with principal bundles having a structure Lie group
cohomologically equivalent to a sphere is given in the following theorem
(we recall that each bundle with the fibre cohomologically equivalent to a
sphere possesses the Euler class defined analogously as for sphere bundles
[G-H-V, Vol. II, 5.23]).

Theorem 3.1. Let P be a principal bundle with the structure Lie

group G cohomologically equivalent to a sphere, invariantly oriented by

ε0 ∈
∧n

g (g is the Lie algebra of G, n = dim G), such that
∫

G
∆R = 1 and

∆R is the right-invariant n-form on G equalling ε0 at the unit. Then the

Euler classes of the bundle P and the invariantly oriented Lie algebroid

A(P ) are equal to each other:

χA(P ) = χP .

The Gysin homomorphisms are identical and the Gysin sequences are

“equivalent”:

(3.3)

· · ·H(M) D−−−−→ H(M)
γ#

−−−−→ HA(M)
6R #

A−−−−→ H(M) · · ·
∥∥∥

∥∥∥ ∼=
yτ#

P

∥∥∥

· · ·H(M) D−−−−→ H(M) π#

−−−−→ H(P )
6R #

P−−−−→ H(M) · · ·

Proof. Let χA(P ) = [Ψ]. Take an n-form Φ ∈ Ωn
A(M) such that

6
∫

A
Φ = −1 and dAΦ = γ?Ψ. Denote by Φ̃ the right-invariant n-form on

P corresponding to Φ, Φ̃ = τP (Φ), where τP : ΩA(P )(M) ∼= ΩR(P ) is
the canonical isomorphism (see [K2], [K4, (1.6)]). Then, by the definition
of fibre integrals, 6

∫
P

Φ̃ = −1 and γ?Ψ = dAτ−1
P Φ̃ = τ−1

P dΦ̃. Therefore
π?Ψ = τP γ?Ψ = dΦ̃, which implies that χP = [Ψ] = χA(P ) and the
commutativity of diagram (3.3) follows. ¤

Remark 3.2. The last theorem does not refer to the non-compact case
G = SL(2).
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Theorem 3.2 (Naturality of the Gysin sequence). A homomorphism

(T, t) : (A, ε) → (A′, ε′) of s-Lie algebroids induces a homomorphism of

the long exact Gysin sequences

· · ·Hk(M ′)
γ′#−−−−→ Hk

A′(M
′)

6R #
A′−−−−→ Hk−n(M ′)

DA′−−−−→ Hk+1(M ′) · · ·
yt# (1)

yT# (2)
yt# (3)

yt#

· · ·Hk(M)
γ #

−−−−→ Hk
A(M)

6R #
A−−−−→ Hk−n(M) DA−−−−→ Hk+1(M) · · ·

Proof. The commutativity of (1) follows immediately from the equal-
ity t? ◦ γ = γ′ ◦ T .

(2) – immediately from the equality t? ◦ 6∫
A′ = 6

∫
A
◦T ? in Theorem 1.1

(a) (passing to cohomology).
(3) From the general fact [G-H-V, Vol. I] we have the commuting

diagram

H(M ′) ∂′−−−−→ H(ker 6
∫ ′

A
)

yt#

yT̃#

H(M) ∂−−−−→ H(ker 6
∫

A
)

where T̃ : ker 6
∫

A′ → H(ker 6
∫

A
) is the restriction of T ?. Hence it appears

that in the diagram below all small squares commute:

DA′ : H(M ′) ω̃−−−−→ H(M ′) ∂′−−−−→ H(ker 6
∫

A′)
(γ′#)−1

−−−−−→ H(M ′)
yt#

yt#

yT̃#

yt#

DA : H(M) ω̃−−−−→ H(M) ∂−−−−→ H(ker 6
∫

A
)

(γ#)−1

−−−−→ H(M),

which easily implies the commutativity of (3). ¤

As a consequence we obtain

Corollary 3.5 (Naturality of the Euler class). If (T, t) : (A, ε) →
(A′, ε′) is a homomorphism of s-Lie algebroids over manifolds M , M ′ then

χA = t#χA′ .
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4. Euler class via the Chern–Weil homomorphism

In [K3], the Chern–Weil homomorphism hA for any regular Lie alge-
broid A is constructed. We use this homomorphism for an s-Lie algebroid
(A, ε) (therefore for a transitive one):

hA :
k⊕ (

Sec
k∨

g?

)

I0

−→ H(M)

Γ 7−→ 1
k!

[〈Γ, Ωb ∨ . . . ∨ Ωb︸ ︷︷ ︸
k times

〉]

where (Sec
∨k

g?)I0 denotes the space of invariant cross-sections of the
bundle

∨k
g? with respect to the adjoint representation ad∨A of A on

∨k
g?

and Ωb ∈ Ω2(M ; g) is the curvature form of any connection λ : TM → A in
the Lie algebroid A, Ωb(X, Y ) = −ω([[λX, λY ]]), X, Y ∈ X(M) (ω : A → g

is the connection form of λ). We recall that Γ ∈ Sec
∨k

g? is invariant if
and only if for any ξ ∈ Sec A and h1, . . . , hk ∈ Sec g,

(γ ◦ ξ)(〈Γ, h1 ∨ . . . ∨ hk〉) =
k∑

i=1

〈Γ, h1 ∨ . . . ∨ [[ξ, hi]] ∨ . . . ∨ hk〉.

Theorem 4.1. Let 0 → g ↪→ A
γ−→ TM → 0 be the Atiyah sequence

of A. The form γ?〈Γ,Ωb∨. . .∨Ωb〉 for invariant Γ ∈ (Sec
∨k

g?)I0 is closed,

more precisely,

γ?〈Γ, Ωb ∨ . . . ∨ Ωb︸ ︷︷ ︸
k times

〉 = dAΦ

for

(4.1) Φ = k!
∑

i+j=k−1

1
k + j

〈
Γ, ω ∨ 1

i!
(dAω)i ∨ 1

j!

(
−1

2
[[ω, ω]]

)j
〉

.

[Remark: This is a generalization of the standard formula [G-H-V, Vol. II].
In the standard formula concerning principal bundles, the sign “–” does
not occur because there is a left Lie algebra of a structure Lie group there,
not a right one].

Proof. Each point x ∈ M has a connected neighbourhood U such
that A|U is the Lie algebroid of a trivial principal bundle π : U ×G → U
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for some connected Lie group G, A|U = A(U × G). Let H̄ ⊂ T (U × G)
be the connection in U × G corresponding to the restriction of λ to U ,
λ|U : TU → A|U , and let Ω̄U ∈ Ω2(U, g) be the curvature form of H̄.
Clearly, Γ|U ∈ Sec

∨k
g?
|U is ad∨A|U -invariant. By the connectedness of

U ×G, we have the isomorphism of vector spaces

ν :
( k∨

g?
)

I
−→

(
Sec

k∨
g?
|U

)
I0

[K3, p. 43], where (
∨k

g?)I denotes the space of AdG-invariant vectors from∨k
g?. ν is defined by the formula ν(w)(x) =

∨k(ẑ)−1?(w), z ∈ (U ×G)|x,
ẑ : g → gpx is an isomorphism of the right Lie algebra g of G onto the Lie
isotropy Lie algebra gpx at x [K2; p. 11]. Therefore Γ|U = ν(w) for some
AdG-invariant element w ∈ (

∨k
g?)I . Let ω̄ be the connection form of H̄.

By equality (15) from [K3] and the standard formula [G-H-V, Vol. II], we
have

π?〈Γ|U , Ωb|U ∨ . . . ∨ Ωb|U 〉 = 〈w, Ω̄U ∨ . . . ∨ Ω̄U 〉 = dΦ̄

for

Φ̄ = k!
∑

i+j=k−1

1
k + j

〈
w, ω̄ ∨ 1

i!
(dω̄)i ∨ 1

j!

(
1
2
[[ω̄, ω̄]]L

)j
〉

= k!
∑

i+j=k−1

1
k + j

〈
w, ω̄ ∨ 1

i!
(dω̄)i ∨ 1

j!

(
−1

2
[[ω̄, ω̄]]R

)j
〉

([ · , · ]L and [ · , · ]R denote the left and right structures of a Lie algebra g of
the Lie group G). On the other hand, the real form π?〈Γ|U , Ωb|U∨. . .∨Ωb|U 〉
on P = U ×G is right-invariant and

γ?
|U

〈
Γ|U ,Ωb|U ∨ . . . ∨ Ωb|U

〉
= τ−1

P π?
〈
Γ|U , Ωb|U ∨ . . . ∨ Ωb|U

〉

for the canonical isomorphism τP : ΩA(P )(U)
∼=−→ ΩR(P ) [K2]. Since τP

commutes with exterior derivatives, we have

γ?
|U

〈
Γ|U , Ωb|U ∨ . . . ∨ Ωb|U

〉
= τ−1

P (dΦ̄) = dA|U (τ−1
P Φ̄).
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ω̄ is AdG-equivariant, therefore dω̄ and [ω̄, ω̄]R are AdG-equivariant too.
Considering the adjoint representations adA(P ) and AdG, we have the ana-
logous isomorphism

τ∨P : Ωad
A(P )

(
M ;

s∨
g
) ∼=−→ ΩAd

(
P ;

s∨
g
)

between the spaces of equivariant forms [M, App.A, Proposition 4.12] (see
also [K1] for the language of differential groupoids). The following obser-
vations hold:

(1) τ∨P (ω) = ω̄ (i.e. ẑ(ω̄pz(v)) = ωpx[v]), see, for example [K2, p. 39],

(2) τ∨P commutes with exterior derivatives, in particular, τ∨P (dAω) = dω̄,

(3) τ∨P [[ω, ω]] = [ω̄, ω̄]R,

(4) τ∨P 〈ν(w), ϕ〉 = 〈w, τ∨P (ϕ)〉 for any invariant vector w ∈ (∨s
g
)
I

and
equivariant form ϕ ∈ Ωad

A(P )(M ;
∨s

g).

From this we have

γ?
|U 〈Γ|U ,Ωb|U ∨ . . . ∨ Ωb|U 〉 = dA|U (τ−1

P Φ̄)

= dA|U

(
k!

∑

i+j=k−1

1
k + j

〈
Γ|U , ω ∨ 1

i!
(dAω)i ∨ 1

j!

(
−1

2
[[ω, ω]]

)j
〉)

.

The arbitrariness of x yields the assertion of our theorem. ¤

As a corollary we get

γ?〈Γ,Ωb〉 = dA〈Γ, ω〉, Γ ∈ (Sec g?)I0 ,(4.2)

γ?〈Γ,Ωb ∨ Ωb〉 = dA

(
〈Γ, ω ∨ dAω〉 − 1

3
〈Γ, ω ∨ [[ω, ω]]〉

)
,(4.3)

Γ ∈
(

Sec
2∨

g?
)

I0
.

Problem: Prove formula (4.1) using only the category of Lie alge-
broids.

4.1. s-Lie algebroids of rank 1

Consider an s-Lie algebroid (A, ε) of rank 1. Then g is a trivial rank 1
LAB with global adA-invariant cross-section ε ∈ Sec g, i.e. one satisfying
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the relation [[ξ, ε]] = 0 for each ξ ∈ SecA. Take

(4.4) ε? ∈ Sec g?

such that
ιεε

? = 1.

Then ε? is ad\
A-invariant, i.e. ad\

A(ξ)(ε?) = 0 for ξ ∈ Sec A. Indeed, since
rank g = 1 and εx 6= 0 for each x ∈ M , it is enough to notice the equality

ad\
A(ξ)(ε?)(ε) = (γ ◦ ξ)〈ε?, ε〉 − 〈ε?, [[ξ, ε]]〉 = 0.

Therefore ε? belongs to the domain of the Chern–Weil homomorphism hA

of A.

Theorem 4.2. Under the above assumptions,

χA = h
(2)
A (−ε?).

Proof. According to the definition of hA, we have hA(−ε?) =
[〈−ε?, Ωb〉]. To prove our theorem, let us take the 1-form Φ = 〈−ε?, ω〉 ∈
Ω1

A(M). According to (4.2), dAΦ = γ?〈−ε?, Ωb〉, therefore it is sufficient
to check that 6

∫
A

Φ = −1. Clearly, this follows from the equalities

γ?
(
6
∫

A

Φ
)

= ιεΦ = 〈−ε?, ω(ε)〉 = 〈−ε?, ε〉 = −1. ¤

Corollary 4.1. There exist nonintegrable s-Lie algebroids (A, ε) of
rank 1 having nonzero Euler class χA.

Indeed, take the s-Lie algebroid of rank 1 of the TC-foliation of
left cosets of a nonclosed Lie subgroup H in a Lie group G, such that
dim H̄−dim H = 1, (Example 2.2 and [K4, Theorem 3.5.3]). The invariant
cross-section ε ∈ Sec g corresponds via the isomorphism ϕ to an element
0 6= ε0 = [w] ∈ h̄/h. Assume G to be a compact, connected and semisimple
Lie group. According to the proof of Theorem 7.4.3 from [K3], h

(2)
A 6= 0.

Since the domain of h
(2)
A , (Sec g?)I0 , is a 1-dimensional vector space (more

exactly, (Sec g?)I0 is canonically isomorphic to (h̄/h)?, see [K3, Proposi-
tion 7.4.1 and the next remarks], and via this isomorphism the invariant
cross-section ε? ∈ (Sec g?)I0 is mapped into an element ε?

0 ∈ (h̄/h)? such
that ιε0ε

?
0 = −1), we have h

(2)
A (ε?) 6= 0. Adding the simple connectedness

to the properties of G, we obtain the looked-for objects.
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4.2. s-Lie algebroids of rank 3.

Consider an s-Lie algebroid (A, ε) of rank 3, ε ∈ (Sec
∧3

g)I0 . Ac-
cording to the remark after Theorem 1.2, after writting ε = h1 ∧ h2 ∧ h3

(locally), hi ∈ Sec g, we have

[[ξ, h1]] ∧ h2 ∧ h3 + h1 ∧ [[ξ, h2]] ∧ h3 + h1 ∧ h2 ∧ [[ξ, h3]] = 0, ξ ∈ Sec A.

Analogously as in the previous section, take ε? ∈ Sec
∧3

g? such that
ιεε

? = 1. Then ε? is
∧3 ad\

A-invariant. Indeed, it is enough to notice that

(γ ◦ ξ)〈ε?, h1 ∧ h2 ∧ h3〉 − 〈ε?, [[ξ, h1]] ∧ h2 ∧ h3

+ h1 ∧ [[ξ, h2]] ∧ h3 + h1 ∧ h2 ∧ [[ξ, h3]]〉 = 0.

Since the first and the second cohomology groups of the Lie algebra
gpx are 0, we have the canonical isomorphism [G-H-V, Vol. III]

ρx :
( 2∨

g?
px

)

I

∼=−→
3∧

g?
px

(each element of
∧3

g?
px is invariant here) given by the formula

〈ρx(Ψ), x ∧ y ∧ z〉 = 〈Ψ, [x, y] ∨ z〉.

We recall that Ψ ∈ ∨2
g?
px is invariant if and only if 〈Ψ, [x, y]∨z〉+〈Ψ, [x, z]∨

y〉 = 0 for any x, y, z ∈ gpx. By this and the fact that g is an LAB,
the sum (

∨2
g?)I :=

⋃
x∈M (

∨2
g?
px)I ⊂

∨2
g? is a smooth subbundle of∨2

g?. Of course, any
∨2 ad\

A-invariant cross-section Γ ∈ (Sec
∨2

g?)I0

is a cross-section of this subbundle. All the isomorphisms ρx induce the
linear smooth homomorphism

ρ :
( 2∨

g?
)

I
−→

3∧
g?

of vector bundles.

Proposition 4.1. The homomorphism Sec ρ induced by ρ on invariant

crosssections is an isomorphism

Sec ρ :
(

Sec
2∨

g?
)

I0

∼=−→
(

Sec
3∧

g?
)

I0
.
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Proof. Let Γ ∈ Sec
∨2

g?. Then ρ ◦ Γ is invariant if and only if Γ
is. Indeed, since g is an LAB and gpx = g2

px, each cross-section h ∈ Sec g

is locally a sum of cross-sections of the form [hα, hβ ]. The rest follows
trivially from the Jacobi identity in Sec A. ¤

Take Γ ∈ (Sec
∨2

g?)I0 such that

ρ(Γ) = ε?.

Theorem 4.3. Under the above assumptions,

χA = h
(4)
A (−2Γ).

Proof. According to the definition of hA we have

h
(4)
A (−2Γ) = [〈−Γ, Ωb ∨ Ωb〉].

To prove our theorem, let us take the 3-form Φ ∈ Ω3
A(M) defined by

Φ = 〈−Γ, ω ∨ dAω〉 − 1
3
〈−Γ, ω ∨ [[ω, ω]]〉.

According to (4.3),
γ?〈−Γ,Ωb ∨ Ωb〉 = dAΦ.

Therefore it suffices to check that 6
∫

A
Φ = −1, i.e. γ?( 6

∫
A

Φ) = ιεΦ = −1.
Since dAω(hi, hj) = [hi, hj ] and [[ω, ω]](hi, hj) = 2[hi, hj ] and ω(hi) = hi,
we obtain

ιε

(
ω ∨ dAω − 1

3
ω ∨ [[ω, ω]]

)
=

(
ω ∨ dAω − 1

3
ω ∨ [[ω, ω]]

)
(h1 ∧ h2 ∧ h3)

=
1
3
(
h1 ∨ [h2, h3]− h2 ∨ [h1, h3] + h3 ∨ [h1, h2]

)
.

Therefore

ιεΦ =
〈
−Γ, ιε

(
ω ∨ dAω − 1

3
ω ∨ [[ω, ω]]

)〉

=
1
3
〈−Γ, [h2, h3] ∨ h1 − [h1, h3] ∨ h2 + [h1, h2] ∨ h3〉
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=
1
3
〈−ρ(Γ), h2 ∧ h3 ∧ h1 − h1 ∧ h3 ∧ h2 + h1 ∧ h2 ∧ h3〉

= 〈−ε?, h1 ∧ h2 ∧ h3〉 = −1. ¤

5. Computation of the algebra HA(M)

For an arbitrarily taken element Ω /∈ R to which we assign the de-
gree n, we form the anticommutative graded algebra (

∧
Ω,∧) ∼= H(Sn)

as the exterior algebra over the 1-dimensional graded vector space LinΩ
(homogeneous of degree n) spanned by Ω.

Below, n = 1 or n = 3, therefore n is odd (see Proposition 2.1).

Theorem 5.1. Let (A, ε) be any s-Lie algebroid of rank n and let
Ψ ∈ Ωn+1(M) be a representative of the Euler class χA = [Ψ]. According
to Remark 3.1, we can take an n-form Ω ∈ Ωn

A(M) such that 6
∫

A
Ω = −1

and dAΩ = γ?Ψ. Consider the skew tensor product Ω(M)
⊗∧

Ω of anti-
commutative graded algebras and define the operator d : Ω(M)

⊗∧
Ω →

Ω(M)
⊗∧

Ω by the formulae

d(ψ ⊗ 1) = dMψ ⊗ 1

d(ψ ⊗ Ω) = (−1)deg ψ(ψ ∧Ψ)⊗ 1 + dMψ ⊗ Ω.

Then d is an antiderivation and (Ω(M)
⊗∧

Ω, d) is a graded differential
algebra.

Proof. Clearly, d is a differential of degree +1, such that d(x∧ y) =
dx ∧ y + (−1)deg xx ∧ dy for x = ψ1 ⊗ 1, y = ψ2 ⊗ 1 or for x = ψ1 ⊗ 1,
y = ψ2⊗Ω. The remaining third case: x = ψ1⊗Ω, y = ψ2⊗Ω holds (n is
odd), giving zero on both sides of this equality:

d(ψ1 ⊗ Ω ∧ ψ2 ⊗ Ω) = d
(
(−1)n·deg ψ2ψ1 ∧ ψ2 ⊗ Ω ∧ Ω

)
= d(0) = 0,

d(ψ1 ⊗ Ω) ∧ ψ2 ⊗ Ω + (−1)deg ψ1+nψ1 ⊗ Ω ∧ d(ψ2 ⊗ Ω)

= (−1)deg ψ1(ψ1 ∧Ψ)⊗ 1 ∧ ψ2 ⊗ Ω

+ (−1)deg ψ1+deg ψ2+nψ1 ⊗ Ω ∧ ψ2 ∧Ψ⊗ 1

= (−1)deg ψ1
(
1 + (−1)n2)

ψ1 ∧Ψ ∧ ψ2 ⊗ Ω = 0. ¤
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Theorem 5.2. The mapping

µ : Ω(M)
⊗ ∧

Ω −→ ΩA(M)

defined by µ(ψ⊗1) = γ?ψ, µ(ψ⊗Ω) = γ?ψ∧Ω, is a degree 0 homomorphism

of graded algebras.

Proof. The homogeneity of µ and the commutativity of µ with the
differentials dA and d, as well as the condition µ(x ∧ y) = µ(x) ∧ µ(y) for
x = ψ1 ⊗ 1, y = ψ2 ⊗ 1 or x = ψ1 ⊗ Ω and y = ψ2 ⊗ Ω is easy to see. For
x = ψ1 ⊗ Ω and y = ψ2 ⊗ Ω this condition follows from the observation
that Ω ∧ Ω = 0 in

∧
Ω, and Ω ∧ Ω = 0 in Ω(M) (n is odd). ¤

Theorem 5.3. For an s-Lie algebroid (A, ε) over a manifold M , the

mapping induced by µ on the cohomology

µ# : H

(
Ω(M)

⊗∧
Ω

)
−→ HA(M)

is an isomorphism of graded algebras.

Proof. Consider the short exact sequence

0 −→ Ω(M) i−→ Ω(M)
⊗∧

Ω
ρ−→ Ω(M) −→ 0,

i(ψ) = ψ ⊗ 1, ρ(ψ1 ⊗ 1 + ψ2 ⊗ Ω) = −ψ2; i and ρ commute with the
differentials. The following diagram

0 −−−−→ Ω(M) i−−−−→ Ω(M)
⊗∧

Ω
ρ−−−−→ Ω(M) −−−−→ 0

yγ?

yµ

∥∥∥

0 −−−−→ ker 6
∫

A
−−−−→ ΩA(M)

6R
A−−−−→ Ω(M) −−−−→ 0,

is commutative; indeed,

6
∫

A

◦µ(ψ1 ⊗ 1 + ψ2 ⊗ Ω) = 6
∫

A

(γ?ψ1 + γ?ψ2 ∧ Ω)

= 0 + ψ2∧ 6
∫

A

Ω = −ψ2 = ρ(ψ1 ⊗ 1 + ψ2 ⊗ Ω),

µ ◦ i(ψ) = µ(ψ ⊗ 1) = γ?ψ.
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Passing to the long exact sequences, we get from the five-lemma (since γ#

is an isomorphism [Theorem 2.1]) that µ# is an isomorphism. ¤

Corollary 5.1. If χA = 0, then HA(M) ∼= H(M)
⊗

H(Sn) as graded

algebras.

Proof. Let χA = 0. Then we can choose Ψ = 0 as a representative
of the Euler class χA, which gives d(ψ1⊗ 1+ψ2⊗Ω) = dψ1⊗ 1+dψ2⊗Ω,
i.e. d is equal to the tensor product of the differentials dM and 0VΩ [G].
The Künneth theorem yields the isomorphism of graded algebras

H
(
Ω(M)

⊗∧
Ω

) ∼= H(Ω(M))
⊗

H
( ∧

Ω
) ∼= H(M)

⊗
H(Sn).

This result and Theorem 5.3 imply that HA(M) ∼= H(Ω(M)
⊗∧

Ω) ∼=
H(M)

⊗
H(Sn) as graded algebras. ¤

Theorem 5.4. If dim M = n + 1 and M is compact, connected and

oriented, then for arbitrary s-Lie algebroids A and A′ over M of rank n

with nonzero Euler classes χA 6= 0 6= χA′ , there exists an isomorphism of

cohomology algebras HA(M) ∼= HA′(M).

Proof. Take the orientation class [∆] ∈ Hn+1(M) of M . Then χA =
k · [∆] = [k ·∆] and χA′ = k′ · [∆] = [k′ ·∆] for some reals k, k′ ∈ R\{0}.
Therefore Ψ = k · ∆ and Ψ′ = k′ · ∆ are representatives of the Euler
classes. According to Remark 3.1, there exist n-forms Ω ∈ Ωn

A(M) and
Ω′ ∈ Ωn

A′(M) such that 6
∫

A
Ω = −1, 6

∫
A′ Ω

′ = −1 and dAΩ = γ?Ψ, dA′Ω′ =
γ′?Ω′. Theorem 5.3 says that HA(M) ∼= H(Ω(M)

⊗∧
Ω) and HA′(M) ∼=

H(Ω(M)
⊗∧

Ω′) provided that in Ω(M)
⊗∧

Ω and Ω(M)
⊗ ∧

Ω′ the
following differentials dk and dk′ are defined:

dk(ψ ⊗ 1) = dMψ ⊗ 1

dk(ψ ⊗ Ω) = dMψ ⊗ Ω + (−1)deg ψ(ψ ∧Ψ)⊗ 1

=
{

dMψ ⊗ Ω, deg ψ > 0,

(ψ ·Ψ)⊗ 1 + dMψ ⊗ Ω, deg ψ = 0,

and analogously for dk′ .
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Put

I : Ω(M)
⊗∧

Ω −→ Ω(M)
⊗∧

Ω′,

ψ ⊗ 1 7−→ ψ ⊗ 1,

1⊗ Ω 7−→ 1⊗ k

k′
Ω′,

ψ ⊗ Ω 7−→ ψ ⊗ Ω′, deg ψ > 0.

Of course, I is an isomorphism of graded vector spaces. We check the
commutativity of I with differentials:
• dk′ ◦ I(ψ ⊗ 1) = dk′(ψ ⊗ 1) = dψ ⊗ 1 = I ◦ dk(ψ ⊗ 1),
• dk′ ◦ I(1⊗ Ω) = dk′(1⊗ k

k′Ω
′) = k

k′ ·Ψ′ ⊗ 1 = Ψ⊗ 1 = I ◦ dk(1⊗ Ω),
• if deg ψ > 0, then dk′◦I(ψ⊗Ω) = dk′(ψ⊗Ω′) = dψ⊗Ω′ = I◦dk(ψ⊗Ω).

Therefore I# : H(Ω(M)
⊗∧

Ω)
∼=−→ H(Ω(M)

⊗∧
Ω′) is an isomor-

phism of cohomology algebras which implies that HA(M) ∼= HA′(M). ¤
Remark 5.1. According to the above theorem, the Euler class χA is

not – in general – an invariant of the cohomology algebra of A and ac-
cording to [K7, Proposition 7.6.] it has nothing in common with the
Euler–Poincaré characteristic of A; the last, when considered for TUIO-Lie
algebroids (dim M + rank g is odd), is always 0.

Acknowledgments. I would like to thank Martin Bordemann (Frei-
burg) for assistance, advice and some interesting, helpful discussions, es-
pecially concerning Proposition 2.1 (more precisely, for pointing out to me
the Hochschild–Serre formula to prove this proposition).
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