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Operators on quotient indecomposable spaces

By MANUEL GONZÁLEZ (Santander) and JOSÉ M. HERRERA (Santander)

Abstract. We show that a complex Banach space X is a quotient indecomposable
Banach space if and only if every operator from X into a quotient space Y of X can be
written as λQ + K, where λ ∈ C, Q : X → Y is the quotient map and K is a strictly
cosingular operator. In this way, we obtain a dual version of a result of Ferenczi.

1. Introduction

It has been a long-standing open problem whether every infinite di-
mensional Banach space X is decomposable; i.e., whether we can write
X = Y ⊕ Z, with Y and Z infinite dimensional closed subspaces. In [6]
Gowers and Maurey constructed a complex hereditarily indecompos-
able (HI for short) Banach space, i.e., a space with no decomposable sub-
spaces, which we denote XGM . Moreover, they showed that for a complex
HI Banach space X the operators in X have a very simple structure:
L(X) = CI ⊕ SS(X) where I is the identity map and SS(X) is the class
of all strictly singular operators on X. Later, Ferenczi [1] showed that
given a complex HI Banach space X and a subspace Y ⊂ X, we have
L(Y, X) = CJY ⊕ SS(Y, X), where JY is the natural inclusion of Y into
X and SS(Y, X) is the class of strictly singular operators from Y into X.
Similar results can be obtained in the case of real Banach spaces (see [2,
Theorem 2]).
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Infinite dimensional HI spaces may seem an eccentricity, since only
recently it has been proved their existence. However, they form an im-
portant class of Banach spaces because Gowers has proved the following
remarkable result (see [5, Theorem 2]): Every infinite dimensional Ba-
nach space contains an infinite dimensional subspace which either has an
unconditional basis or is HI.

In this paper, we obtain the analogous results for quotient indecom-
posable (QI for short) Banach spaces, i.e., Banach spaces with no decom-
posable quotients.

The proof of the above mentioned result for L(X) can be derived
from the fact that L(X)/SS(X) is a division algebra when X is HI. So the
Gelfand–Mazur theorem applies and the result follows. In our case (as well
as in the case of Ferenczi’s result), the main problem is that, in general,
there is no product in L(X, Y ), neither in L(X, Y )/SC(X, Y ), but when X

is a QI space we can proceed in a similar way as in Ferenczi’s paper. First
of all, we define a relation in the set of all quotients of X, so that given Y ,
W quotients of X, we say that W ≤ Y if the quotient map of W perturbed
by a strictly cosingular operator factorises through Y by a surjective op-
erator. Lemma 2 shows that this relation is a partial order and allows
us to “project” operators from L(X,Y ) to operators in L(X, W ), modulo
strictly cosingular operators. If we denote EY = L(X, Y )/SC(X, Y ), then
EY is a normed space and the previous “projections” define isometries
pY W : EY → EW for W ≤ Y , so that {EY , pY W } is an inductive system
and we can consider the inductive limit lim

→
EY .

As we observed, there is no natural way of composing operators in
L(X,Y ), not even in EY . However, Lemma 2 solves again the problem.
In fact, a natural idea to compose elements T, T ′ ∈ L(X, Y ) would be to
factorise T through Y and then compose with T ′. This is not possible
in general but passing to further quotients and modulo strictly cosingular
operators, such a factorization exists and the desired composition can be
defined. Thus, the product can be defined in lim

→
EY . Finally, it turns

out that lim
→

EY is a normed division algebra and, by the Gelfand–Mazur
Theorem, lim

→
EY is isometrically isomorphic to C. Then it is easy to

conclude that EY = C for every Y as complex vector spaces and we are
done.

We obtain a similar result for the case of real spaces. In particular, we
give an algebraic proof of the fact that L(X)/SC(X) is a normed division
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algebra. Hence, by the real version of the Gelfand–Mazur Theorem, it
is isomorphic to either the reals, or the complexes, or the quaternions
(compare with [2, Theorem 7]).

As we mentioned before, the scheme we follow is similar to that of Fer-
enczi. However, since working with quotients is less intuitive than working
with subspaces we have tried to be more explicit in the presentation of the
results that we need. Moreover, our scheme has a more algebraic flavour.

Along the paper X,Y, Z, . . . will denote Banach spaces over the field
of real or complex numbers. All claims are valid in both fields if there is
no explicit mention of one of them. X∗ will stand for the dual space of
X and L(X, Y ) for the linear continuous operators from X into Y ; we set
L(X) = L(X, X) and IX the identity map in X, or simply I if there is
no possible confusion. Given T ∈ L(X, Y ) we denote T ∗ the conjugate
operator. Given subspaces M ⊂ X, N ⊂ X∗ we denote, respectively, M⊥,

⊥N their annihilators. BX and
◦
BX will denote, respectively, the closed

and the open unit balls in X. A quotient of a Banach space will always
mean a quotient by a closed subspace. We will denote the quotient map
of a Banach space X onto a quotient Y by QXY : X → Y , or simply by
QY if there is no possible confusion.

2. Definitions and basic results

Definition 1. A Banach space X is said to be decomposable if it con-
tains a pair of infinite dimensional closed subspaces M and N so that
X = M ⊕N . Otherwise, X is said to be indecomposable.

The space X is said to be hereditarily indecomposable (HI for short)
if all of its subspaces are indecomposable.

The space X is said to be quotient indecomposable (QI for short) if
all of its quotients are indecomposable.

It is not difficult to see that if the dual X∗ of a Banach space X is HI
or QI, then X is QI or HI, respectively. Since the space XGM is HI and
reflexive [6], X∗

GM is QI.
By the previous remark, our result is straightforward from Ferenczi’s

result in the case of a reflexive QI space. However, there are examples of
non-reflexive QI spaces:
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Example. There exists a non reflexive QI Banach space.

Indeed, Gowers [4] constructed an infinite dimensional Banach space
XG which does not contain c0, l1, or an infinite dimensional reflexive sub-
space. Since a non-reflexive subspace of a Banach space with an uncon-
ditional basis always contains a copy of c0 or l1 [7, Theorem 1.c.13], the
Dichotomy Theorem of Gowers [5, Theorem 2] allows us to conclude that
every infinite dimensional subspace of XG contains an HI subspace Y .

Moreover XG is a separable dual [4, p. 419]. So, by [7, Proposi-
tion 1.b.12], we can assume that Y is contained in a subspace of XG

generated by a boundedly complete basic sequence. Now a perturbation
argument allows us to show that Y contains a subspace Z generated by a
boundedly complete basic sequence. Hence Z is non reflexive and isomor-
phic to a dual: Z ' X∗. Since Z is HI, X is QI.

The following result is well known [11; Proposition 2.2].

Lemma 1. Let M and N be closed subspaces in a Banach space X.

The following assertions are equivalent:

a) X = M + N .

b) M⊥ ∩N⊥ = {0} and M⊥ + N⊥ is closed.

c) inf{‖f − g‖ : f ∈ M⊥, g ∈ N⊥, ‖f‖ = ‖g‖ = 1} > 0.

As a consequence, we derive some characterizations of QI Banach
spaces.

Proposition 1. For a Banach space X the following assertions are

equivalent:

a) X is quotient indecomposable.

b) There are no infinite codimensional closed subspaces M and N of X

so that we can write X = M + N .

c) Given infinite codimensional closed subspaces M and N of X, for

every ε > 0 there are f ∈ M⊥ and g ∈ N⊥ such that ‖f‖ = ‖g‖ = 1
and ‖f − g‖ < ε.

Proof. a) =⇒ b): X = M +N implies X/(M ∩N)= M/(M ∩N)⊕
N/(M ∩N).

b) =⇒ a): if X/M = A⊕B and Q : X → X/M is the quotient map,
then X = Q−1(A) + Q−1(B).
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b) ⇐⇒ c): follows directly from Lemma 1. ¤

Recall that an operator T ∈ L(X,Y ) is said to be strictly cosingular
if there is no quotient map Q : Y → Z with Z infinite dimensional, so that
QT maps X onto Z. Moreover, T is said to be lower semi-Fredholm if
its range R(T ) is finite codimensional, hence closed [3, Corollary IV.1.13].
We denote by SC(X, Y ) and Φ−(X, Y ) the sets of all strictly cosingular
and lower semi-Fredholm operators from X into Y , respectively.

Compact operators are strictly cosingular operators. Moreover, the
strictly cosingular and the lower semi-Fredholm operators admit the fol-
lowing characterizations in terms of compact operators.

Theorem 1 (Vladimirski). a) An operator T ∈ L(X, Y ) is strictly

cosingular if and only if for each infinite dimensional quotient map Q :
Y → Z, there is another infinite dimensional quotient map Q′ : Z → W

so that the composition K = Q′QT : X → W is compact.

b) An operator T ∈ L(X,Y ) is not lower semi-Fredholm if and only

if there is an infinite dimensional quotient Q : Y → W so that the compo-

sition K = QT : X → W is compact.

Moreover, in both cases the quotient W can be chosen in such a way

that ‖K‖ < ε for an arbitrary ε > 0.

Proof. Parts a) and b) are Theorem C.II.6.1 and Lemma C.II.6.3
in [8], respectively. The assertion ‖K‖ < ε for an arbitrary ε > 0 follows
directly from the proof of these results. ¤

Definition 2. Given an operator T ∈ L(X,Y ) we define

Γ−(T ) = inf
Y→Z

‖QZT‖

‖T‖q = sup
Y→Z

Γ−(QZT )

where the subindex Y → Z will mean, from now on, that Z runs over the
set of all infinite dimensional quotients of Y .

The following result was proved in [10]. We include a proof for the
convenience of the reader.
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Proposition 2. a) ‖ · ‖q is a seminorm on L(X,Y ).

b) Γ−(T ) > 0 if and only if T ∈ Φ−(X, Y ).

c) ‖T‖q = 0 if and only if T ∈ SC(X,Y ).

Proof. a) Let T, U ∈ L(X, Y ) and Z a quotient of Y .

From ‖QZ(T + U)‖ ≤ ‖QZT‖+ ‖QZU‖, taking infima we get

Γ−(T + U) ≤ Γ−(T ) + ‖U‖.

Applying this to QZ(T + U), it follows

Γ−(T + U) ≤ Γ−(QZ(T + U)) ≤ Γ−(QZT ) + ‖QZU‖ ≤ ‖T‖q + ‖QZU‖.

Taking infima, we have Γ−(T +U) ≤ ‖T‖q +Γ−(U). Now, since ‖QZT‖q ≤
‖T‖q, we can write

Γ−(QZ(T + U)) ≤ ‖QZT‖q + Γ−(QZU) ≤ ‖T‖q + Γ−(QZU)

and taking suprema we conclude ‖T + U‖q ≤ ‖T‖q + ‖U‖q.

b) If T ∈ Φ−(X, Y ), then there exist a finite dimensional subspace
N of Y and δ > 0 so that T (BX) + N ⊃ δBY . Thus, for every infinite
codimensional subspace M of Y , there exists x ∈ BX such that ‖x‖ = 1
and dist(T (x),M) > δ/2; hence ‖QY/MT‖ > δ/2. Conversely, if T /∈
Φ−(X, Y ), then, by Theorem 1, for every ε > 0 we can find an infinite
dimensional quotient Z of Y such that ‖QZT‖ < ε; hence ‖T‖q = 0.

c) If T /∈ SC(X,Y ), then there is a quotient map QZ : Y → Z such
that QZT is onto. By the open mapping theorem there is ε > 0 such that

QZT
( ◦
BX

)
⊃ ε

◦
BZ .

Thus, for every quotient map φ : Z → W we have ‖φQZT‖ ≥ ε. Hence
‖T‖q ≥ ε too.

Conversely, if T ∈SC(X, Y ), it follows from Theorem 1 that ‖T‖q = 0.
¤
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Proposition 3. Let K ∈ L(X) be a compact operator such that
‖K‖ < ε < 1/2. Then I + K is an isomorphism and (I + K)−1 = I + K1,
with K1 compact and ‖K1‖ < 2ε.

Proof. Since ‖K‖ < 1/2, the operator I + K is an isomorphism.
Moreover, from I = (I + K)(I + K)−1 = (I + K)−1 + K(I + K)−1, it
follows that

(1) (I + K)−1 = I −K(I + K)−1.

Taking norms in (1) we obtain ‖(I + K)−1‖ = ‖I −K(I + K)−1‖ < 1 +
ε‖(I +K)−1‖, hence ‖(I+ K)−1‖< 1

1−ε< 2, and if we put K1=−K(I +K)−1,
then we are done. ¤

3. Operators on quotient indecomposable spaces

In this section X will be a QI Banach space.
We will study the operators from X into any of its quotients using

the following relation.

Definition 3. Given two quotients Y , Z of X and the corresponding
maps QY : X → Y , QZ : X → Z, we write Z ≤ Y if there are an operator
K ∈ SC(X, X) and a surjective map φ ∈ L(Y, Z) so that QZ(I + K) =
φQY .

Our next result shows that the relation ≤ defines a filter in the set of
all quotients of the space X.

Lemma 2. Let Y and Z be quotients of X and 0 < ε < 1. Then there
are quotient maps Y → V and Z → W , a compact operator K : X → X
with ‖K‖ < ε, and an isomorphism φ : V → W so that QW (I−K) = φQV .
In particular, W ≤ Y , W ≤ Z.

Proof. We write Y = X/M and Z = X/N . Note that, by Proposi-
tion 1, given δ > 0 there are f ∈ M⊥ and g ∈ N⊥, so that ‖f‖ = ‖g‖ = 1
and ‖f − g‖ < δ. So, taking δ = ε

22 , we find f1 ∈ M⊥, g1 ∈ N⊥, so that
‖f1‖ = ‖g1‖ = 1 and ‖f1 − g1‖ < ε

22 . Then, we choose x1 ∈ X such that
‖x1‖ < 2 and f1(x1) = 1.

Assume we have selected fi ∈ M⊥, gi ∈ N⊥, so that ‖fi‖ = ‖gi‖ = 1
and xi ∈ X such that

fi(xj) = δij ; ‖xi‖ ‖fi − gi‖ <
ε

2i
(i, j ≤ n).
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If we set Fn = [x1, . . . , xn] and Gn = [f1, . . . , fn], then
⋂n

i=1 Ker fi = ⊥Gn

and we have

X = Fn ⊕ ⊥Gn and X∗ = F⊥n ⊕Gn.

Let Pn be the projection on X with Ker Pn = Fn and R(Pn) = ⊥Gn.
Since M + Fn is infinite codimensional and closed, we can choose fn+1 ∈
(M + Fn)⊥ and gn+1 ∈ N⊥ such that

‖fn+1‖ = ‖gn+1‖ = 1; ‖fn+1 − gn+1‖ <
ε

2n+2‖Pn‖ .

We take yn+1 ∈ X such that ‖yn+1‖ < 2 and fn+1(yn+1) = 1, and set
xn+1 = Pn(yn+1). Since fn+1 ∈ R(P ∗n) = F⊥n , we have

fn+1(xn+1) = (P ∗nfn+1)(yn+1) = fn+1(yn+1) = 1.

Moreover, fn+1(xi) = fi(xn+1) = 0 for i = 1, . . . , n, by the selection of
fn+1 and xn+1. And also

‖xn+1‖ ‖fn+1 − gn+1‖ <
2‖Pn‖ε

2n+2‖Pn‖ =
ε

2n+1
.

We consider the operator K : X → X defined by K(x) =
∑∞

n=1(fn −
gn)(x) xn. We have

‖K‖ ≤
∞∑

n=1

‖fn − gn‖ ‖xn‖
∞∑

n=1

ε

2n
= ε.

Therefore I−K is an isomorphism from X onto X. Moreover, (I−K)∗fk =
gk for every k. Indeed,

〈K∗fk, x〉 =
〈
fk,

∞∑
n=1

(fn − gn)(x)xn

〉
= 〈fk − gk, x〉

and K∗(fk) = fk − gk. From this it follows that

⊥[gn] = ⊥
(
(I −K∗)[fn]

)
= (I −K)−1(⊥[fn]).

Hence (I −K)(⊥[gn])=⊥[fn]. Now the quotients V = X/⊥[fn] and W =
X/⊥[gn] fulfil the required conditions. In fact, as fi(xj) = δij , [fn] is
infinite dimensional so that ⊥[fn] and ⊥[gn] are infinite codimensional.
Finally, it is clear that I−K induces an isomorphism φ−1 from W onto V .

¤
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Lemma 3. Let Z be a quotient of X. Then for every Banach space

Y and every T ∈ L(Y,X) the quantity Γ−(QZT ) does not depend on the

choice of Z. Therefore,

Γ−(T ) = ‖T‖q for every T ∈ L(Y, X).

Proof. Let Z1, Z2 be quotients of X. Given a quotient map Z2→W2

and 0 < ε < 1, by Lemma 2 we can find quotient maps Z1 → W1, W2 →
W ′

2, a compact operator K : X → X and an isomorphism φ : W1 → W ′
2

such that ‖K‖ < ε and φQW1 = QW ′
2
(I + K).

Moreover, by Proposition 3, we can choose K such that ‖K‖ < ε and
‖(I + K)−1‖ < 1 + 2ε. Then ‖φ−1‖ = ‖φ−1QW ′

2
‖ = ‖QW1(I + K)−1‖ ≤

‖(I + K)−1‖ < 1 + 2ε, and we have

‖QW1T‖ = ‖φ−1φQW1T‖ ≤ ‖φ−1‖ ‖φQW1T‖
≤ (1 + 2ε)‖QW ′

2
(I + K)T‖ ≤ (1 + 2ε)(‖QW ′

2
T‖+ ε‖T‖)

≤ ‖QW ′
2
T‖+ ε(3 + 2ε)‖T‖ ≤ ‖QW2T‖+ ε′

where ε′ = ε(3 + 2ε)‖T‖. Thus Γ−(QZ1T ) ≤ ‖QW2T‖ + ε′ for any W2,
hence Γ−(QZ1T ) ≤ Γ−(QZ2T ) + ε′. Since we can take ε′ > 0 arbitrarily
small, Γ−(QZ1T ) ≤ Γ−(QZ2T ), and by symmetry we are done. ¤

As an immediate consequence of this lemma and Proposition 2 we
obtain the following result.

Corollary 1. For every Banach space Y we have

L(Y, X) = Φ−(Y, X) ∪ SC(Y, X).

Lemma 4. Let Y be a quotient of X and let Z be a quotient of Y .

If T ∈ L(X, Y ) and U ∈ L(Y, Z), then

‖UT‖q ≤ ‖U‖q‖T‖q.

Proof. If U ∈ SC(Y,Z), then UT ∈ SC(X,Z); hence ‖UT‖q = 0 =
‖U‖q‖T‖q. Now suppose U /∈ SC(Y, Z) or, equivalently by Corollary 1,
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that U ∈ Φ−(Y, Z). Then, given ε > 0, there exists a quotient QW : Z →
W such that QW U is surjective and

(1) ‖QW U‖ < Γ−(U) + ε.

Let q : W → V denote a quotient map with dim V = ∞. Set N1 =
KerQW U and Nq = Ker qQW U , and let φ1 : Y → Y/N1 and φq : Y →
Y/Nq be the quotient maps. Then qQW U factorises through Y/Nq by an
isomorphism αq ∈ L(Y/Nq, V ) so that the quotients of W correspond in
a one to one way with the quotients of Y/N1, and the following diagram
commutes.

As qQW U = αqφq and ‖qQW U‖ = ‖αqφq‖ = ‖αq‖, it follows that

‖qQW UT‖ = ‖αqφqT‖ ≤ ‖αq‖ ‖φq T‖ = ‖qQW U‖ ‖φqT‖.

Therefore, by Lemma 3, we have

Γ−(QW UT ) = inf
q
‖qQW UT‖ ≤ inf

q
(‖qQW U‖ ‖φqT‖)

≤ ‖QW U‖ inf
q
‖φqT‖.

Now, by Lemma 3, infq ‖φqT‖ = infψ:Y/N1→Y/Nq
‖ψφ1T‖ = Γ−(φ1T ).

And by (1), we obtain

Γ−(QW UT ) ≤ (Γ−(U) + ε)Γ−(φ1T ).

Applying Lemma 3 it follows ‖UT‖q ≤ (‖U‖q + ε)‖T‖q for any ε > 0, so
we are done. ¤
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For T ∈ L(X, Y ), we denote by T the class of T in L(X,Y )/
SC(X, Y ). Observe that, by Proposition 2, ‖T‖q := ‖T‖q defines a norm
on L(X, Y )/SC(X, Y ). We denote

EY = (L(X,Y )/SC(X,Y ), ‖ · ‖q).

Given αY ∈ EY and quotients maps QY : X → Y , QZ : X → Z such
that Z ≤ Y , there exist K ∈ L(X) and a surjective operator φ : Y → Z
so that we have QZ(I + K) = φQY . If T ∈ L(X, Y ) is a representative of
αY , then it is clear that the composition φT does not depend on φ or T
modulo SC(X, Y ).

This allows us to define an operator pY Z : EY → EZ setting
pY Z(αY ) = φT .

Observe that, if W ≤ Z ≤ Y , then pZW pY Z = pY W .

Lemma 5. Let Y , Z be quotients of X. Assume that Z ≤ Y . Then
pY Z is a linear isometry.

Proof. We proceed in several steps. Let αY ∈ EY .
First we show that ‖pY Z(αY )‖q ≤ ‖αY ‖q. Note that we have

pY Z(αY ) = φ T . So from Lemma 4 we get

‖φ‖q = ‖φQY ‖q = ‖QZ(I + K)‖q ≤ ‖QZ‖q‖I + K‖q = 1.

Therefore ‖φ‖q ≤ 1, and again by Lemma 4 we obtain

‖pY Z(αY )‖q = ‖φT‖q ≤ ‖φ‖q‖T‖q ≤ ‖T‖q = ‖αY ‖q.

In order to prove the remaining inequality, we suppose first that φ :
Y → Z is an isomorphism. Then Z ≤ Y , Y ≤ Z and pZY pY Z = IY , and
we have

‖αY ‖q = ‖pZY pY Z(αY )‖q ≤ ‖pY Z(αY )‖q ≤ ‖αY ‖q.

So ‖pY Z(αY )‖q = ‖αY ‖q.
If φ is a quotient map and αY = T , then pY Z(αY ) = φT . Thus, by

Lemma 3,
‖pY Z(αY )‖q = ‖φT‖q = ‖T‖q = ‖αY ‖q.

The general case, in which φ is surjective, follows from the previous
cases and the definition of the relation ≤. ¤

Given two quotients Y , Z of X, we will denote by EY Z the set
of elements of EY that have a representative in L(X, Y ) that factorises
through Z; i.e., αY ∈ EY Z if there exist T ∈ L(X,Y ) with αY = T and
φ ∈ L(X, Z), ψ ∈ L(Z, Y ) such that T = ψφ.
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Lemma 6. Let Y , Z be quotients of X and αY ∈ EY . Then there

exists W ≤ Y such that pY W (αY ) ∈ EWZ .

Proof. If αY = 0, then αY ∈ EY Z . If αY 6= 0 and T is a represen-
tative of αY , then T /∈ SC(X, Y ), so there exists a quotient q : Y → W

such that q T is surjective with kernel N . If we consider the natural quo-
tient QX/N : X → X/N , by Lemma 1, there are a compact operator
K ∈ L(X) and a quotient Q : X/N → V such that QQX/N (I + K)
factorises through Z. Passing to a quotient of W , we can suppose that
V = X/N and Q = I. Now, if T ′ : X/N → W denotes the map induced
by q T , then T ′QX/N = q T and we have

T ′QX/N (I + K) = q T = pY W (αY ).

As T ′QX/N (I + K) factorises through Z, we conclude that pY W (αY ) ∈
EWZ . ¤

Since the relation ≤ defines a filter in the set of all quotients of X

and the maps pY Z are transitive, {EY , pY Z} is an inductive system and
we can consider the inductive limit E = lim

→
EY . We denote by [αY ] the

class in lim
→

EY of an element αY ∈ EY .
Observe that E has a natural vector space structure. However, this is

not the only structure it has, as we show in the next result.

Theorem 2. The space E is a normed division algebra.

Proof. We proceed in several steps.

(1) E is an algebra. Given two elements α, β ∈ E, we choose repre-
sentatives αY ∈ EY , βZ ∈ EZ , of α and β, respectively. By Lemma 6
we can suppose that αY has a representative T ∈ L(X,Y ) that factorises
through Z by φ. If U ∈ L(X, Z) is a representative of βZ , then we define
the product αβ as [φU ] ∈ E.

The definition is correct because it does not depend on the choice of
the representatives. The choice of βZ ∈ EZ presents no problem. Let αY ,
αV be representatives of α. By the definition of E, there exists a quotient
W of X such that W ≤ Y , W ≤ V and pY W (αY ) = pV W (αV ). This
means that there exist surjective maps ψ : Y → W , ψ′ : V → W such that
ψ T = ψ′T ′ in EW for representatives T , T ′ of αY , αV which, by Lemma 6,
we can suppose factorise through Z by φ, φ′, respectively.
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The following (partially commutative) diagram may be useful to follow
these arguments.

Now, (ψφ − ψ′φ′)QZ = ψT − ψ′T ′ ∈ SC(X,W ) and if we put h =
ψφ− ψ′φ′, it follows from Lemma 3 that

0 = ‖hQZ‖q = Γ−(hQZ) = Γ−(h) = ‖h‖q.

Thus, by Proposition 2, h = ψφ− ψ′φ′ ∈ SC(Z, W ). Hence hU = ψφU −
ψ′φ′U ∈ SC(X,W ) and both ψφ U and ψ′φ′U define the same element in
EW , and so in E, as we wanted to prove.

(2) E is a normed algebra. Given α ∈ E and two representatives
αY ∈ EY and βZ ∈ EZ of α, there exists a quotient W of X such that
pY W (αY ) = pZW (βZ). As pY W and pZW are isometries (Lemma 5), we
have ‖αY ‖q = ‖βZ‖q and we can define

‖α‖ := ‖αY ‖q.

All the properties of a norm follow directly from those of ‖ · ‖q in EY . It
remains to prove that ‖αβ‖ ≤ ‖α‖ ‖β‖.

To see this we take T ∈ L(X,Y ), U ∈ L(X,Z) such that their equiva-
lence classes in EY , EZ , are representatives of α, β, respectively. Moreover,
by Lemma 6, we can suppose, passing to a quotient of Y if necessary, that
T factorises through Z by φ. By definition, αβ = [φU ], so it follows

‖αβ‖ = ‖φU‖q ≤ ‖φ‖q ‖U‖q = ‖T‖q ‖U‖q = ‖αY ‖q‖βZ‖q = ‖α‖ ‖β‖.

(3) E is a division algebra. Let α ∈ E, α 6= 0 and let αY be a
representative of α. If T ∈ L(X,Y ) is a representative of αY , then T /∈
SC(X, Y ) and there exists a quotient map Q : Y → Z such that QT : X →
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Z is surjective. So, replacing Y by Z and αY by pY Z(αY ) we can suppose
that T is surjective and factorises through the quotient X = X/KerT as

X → X
φ−→ Z, i.e. T = φQX , where φ is an isomorphism. Now the inverse

of α in E is β = [φ−1QY ].
Indeed, by the definition of the product in E to calculate αβ we choose

the representatives T ∈ EY , φ−1QY ∈ EX for α, β. As T = φQX fac-
torises through X (T ∈ EY X), we get

αβ = [φφ−1QY ] = [QY ] = 1,

where 1 is the unity in E. In the same way, φ−1QY factorises through Y ,
and we get

βα = [φ−1T ] = [QX ] = 1.

So the proof is done. ¤

Proposition 4. For each quotient Y of X the natural map pY :EY→E,

defined as pY (T ) = [T ], is a linear isometry. Furthermore, when Y = X,

pX is an algebra homomorphism; in particular, EX is a subalgebra of E.

Proof. The first part follows from the fact that for any αY ∈ EY

we have ‖[αY ]‖ = ‖αY ‖q. For the second part it is enough to observe that
the product in E of elements represented in EX is just the composition.

¤

Now we recall a version of the Gelfand–Mazur Theorem.

Theorem 3 ([9, Theorem 1.7.1]). Every complex normed division al-

gebra is isomorphic to the field of complex numbers.

Corollary 2. If X is a QI complex Banach space, then E is isometri-

cally isomorphic to the field C of complex numbers. Moreover, for each Y

we have EY = C.

Proof. By Theorem 2, E is a normed division algebra with identity 1
and ‖1‖ = 1, so Theorem 3 applies. The second part follows from the first
one and Proposition 4. ¤

We now prove the result claimed in the introduction.
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Theorem 4. Let Z be a complex Banach space. Then Z is QI if and
only if for every quotient map QY : Z → Y we have

L(Z, Y ) = CQY ⊕ SC(Z, Y ).

Proof. Suppose that Z is QI. Let Y be a quotient of Z and let T ∈
L(Z, Y ). By Corollary 2, the class of T in L(Z, Y )/SC(Z, Y ) is a complex
number λ and the class of T − λQY is 0. Therefore, by Proposition 2,
T − λQY ∈ SC(Z, Y ).

Conversely, if Z is not QI, then there exists a decomposable quotient
Y of Z. Let A and B be two infinite dimensional subspaces of Y such that
Y = A ⊕ B. Let π : Y → A be the projection of Y onto the first factor
and consider the operator φ ∈ L(Z, Y ) defined by φ(x) = π(x).

If we assume that L(Z, Y ) = CQY ⊕SC(Z, Y ), then φ = λQY +K for
some 0 6= λ ∈ C and some K ∈ SC(Z, Y ). Now, denoting D := Q−1

Y (B),
we get φ|D = 0. Thus K|D = −λ(QY )|D, which is absurd. ¤

In the real case, the Gelfand–Mazur Theorem for normed division
algebras can be stated as follows.

Theorem 5 ([9, Theorem 1.7.6]). Every real normed division algebra
is isomorphic to either the reals, or the complexes, or the quaternions.

In this case, we obtain a weaker result from Theorem 2. We denote
by H the quaternions.

Theorem 6. Let X be a real QI Banach space. Then for every quo-
tient Y of X we have dim L(X, Y )/SC(X, Y ) ≤ 4.

Moreover, L(X)/SC(X) is a division algebra isomorphic to either
R, or C or H. In particular, if L(X)/SC(X) is isomorphic to H, then
L(X,Y )/SC(X,Y ) is also isomorphic to H, for every quotient Y of X.

Proof. Since by Proposition 4 we can identify the spaces EY as sub-
spaces of E, the first part of the theorem follows directly from Theorems 2
and 5.

For the second part, we observe that EX is a subalgebra of the division
algebra E, so it must be a division algebra too (to see this, just consider
for each non zero element a ∈ EX the linear endomorphisms ha(x) = ax
and ha(x) = xa on EX . Since E has no divisors of zero, ha and ha are
injective. So they are onto; hence a is invertible). Then, as EX is a
normed division algebra, by the Gelfand–Mazur Theorem (or simply, by
the Frobenius Theorem about finite division algebras) it must be R, C or
H. With the previous identifications we have EX ⊆ EY ⊆ H, so if EX = H
then for every Y we must have EY = H. ¤
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Remark. Note that EY ≡ L(X, Y )/SC(X, Y ) is not an algebra a pri-
ori. However, under the hypothesis of the second part of Theorem 6, this
space has the algebra structure translated from L(X)/SC(X). Namely,
given any operator U ∈ L(X, Y ) it has the form QY TU , where TU ∈
L(X), modulo strictly cosingular operators. Then the product is U1 U2 =
QY TU1TU2 .

We observe that Corollary 2 also follows from the classical Gelfand–
Mazur theorem on complex division Banach algebras, avoiding the use of
Theorem 3, which is less natural in the context of Banach algebras.

In this case it remains to check the completeness of E. Next we give
a direct proof of this fact, which may have some interest by itself.

Proposition 5. The normed algebra E is complete.

Proof. It is enough to show that any absolutely converging series
in E is convergent.

In order to do that, we take a sequence (αn) ⊂ E such that
∑

n ‖αn‖ <

∞, and select representatives Tn : X → X/Yn of αn such that ‖Tn‖ ≤
2‖αn‖. Clearly, we can also assume that Y0 ⊂ Y1 ⊂ · · · ⊂ Yn ⊂ · · · and
dim X/Yn = ∞.

First we assume that Y∞ :=
⋃∞

n=0 Yn is infinite codimensional. We
consider the quotient maps Qn : X/Yn → X/Y∞ and write T ′n = QnTn.
Note that ‖T ′n‖ ≤ ‖Tn‖ ≤ 2‖αn‖; hence

∑
n ‖T ′n‖ < ∞. In this way,∑∞

n=0 T ′n is convergent to T ∈ L(X, X/Y∞) and we have that
∑∞

k=0 αk

converges to [T ] in E.

It remains to consider the case when Y∞ is finite codimensional. In
this case, adding a few vectors, we can assume that Y∞ = X. We take
n1 such that Yn1 * Y0, and select x1 ∈ Yn1 \ Y0 and f1 ∈ Y ⊥

0 such that
f1(x1) = 1.

Assume that ni, xi and fi have been chosen for i = 1, . . . , k − 1, and
denote Nk =

⋂k−1
i=1 N(fi). We take nk such that Ynk

∩ Nk * Ynk−1 and
select xk ∈ (Ynk

∩Nk)\Ynk−1 and fk ∈ Y ⊥
nk−1

such that fk(xk) = 1. In this
way we obtain sequences (xk) ⊂ X and (fk) ⊂ X∗ such that fi(xj) = δij .

We denote N =
⋂∞

i=1 N(fi) and Q : X → X/N the quotient map.



Operators on quotient indecomposable spaces 287

Claim. X/N is separable.

Indeed, denoting Zk =
⋂∞

i=k+1 N(fi), for every x ∈ Zk we have that
x −∑k

i=1 fi(x)xi ∈ N ; i.e., Zk = 〈x1, . . . , xk〉 ⊕ N ; hence Q(Zk) is finite
dimensional. Moreover, since Ynk

⊂ Zk for every k, we have that
⋃∞

k=1 Zk

is dense in X. Then
⋃∞

k=1 Q(Zk) is dense in X/N and X/N is separable.

We denote gi = fi

‖fi‖ ∈ N⊥ ≡ (X/N)∗. The subspace generated by
{Q(xi) : i ∈ N} is dense in X/N , (gi) is bounded and gi(Q(xn)) converges
to 0 for any n; hence gi converges to 0 with respect to the weak∗-topology.
Therefore, passing to a subsequence if necessary, a result of Johnson and
Rosenthal (see also the Proof of Theorem 1.b.7 in [7]) allows us to as-
sume that (gi) is a weak∗-basic sequence. Thus, by [7; Proposition 1.b.9],
{Q(xi) : i ∈ N} is a basis in X/N . If C is the corresponding basis constant,
then the projections Pn on X/N defined by

Pn

( ∞∑

i=1

aiQ(xi)

)
=

∞∑

i=n+1

aiQ(xi)

satisfy ‖Pn‖ ≤ C + 1, and the operators σn : X/Zn → X/N defined by
σn(x) = Pn(x) satisfy ‖σn‖ ≤ C + 1.

Moreover, denoting by Πn : X/N → X/Zn the quotient maps, we
have Πnσn(x) = x for all x ∈ X/Zn. Now, denoting T ′n = σnqnTn, where
qn : X/Yn → X/Zn is the quotient map, we have that ‖T ′n‖ ≤ (C+1)‖Tn‖;
thus,

∑ ‖T ′n‖ < ∞ and
∑

T ′n converges to T ∈ L(X, X/N). Thus, it is
clear that

∑n
i=0 αi converges to [T ] in E. ¤
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FACULTAD DE CIENCIAS
UNIVERSIDAD DE CANTABRIA
E–39071 SANTANDER
SPAIN

(Received July 26, 1999; revised July 19, 2000; file obtained December 1, 2000)


