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Filling space with cubes of two sizes

By ATTILA BÖLCSKEI (Budapest)

Abstract. The problem to classify the unilateral and equitransitive tilings of the
plane by squares of different sizes has been revived in the last few years ([6], [1], [8]). The
analogous problem in three-dimensional space seems to be more difficult and has not
been investigated so far systematically ([2], [3]). In this paper we prove that there is only
one unilateral tiling of R3 by cubes of two sizes and that is necessarily equitransitive.
Finally we describe the maximal crystallographic group the tiling is equipped with.

1. Introduction

The investigation of unilateral and equitransitive tilings of R2 by
squares of three different sizes has been revived in the last few years. After
the constructions of D. Schattschneider [4, p. 76], Martini, Makai

and Soltan [6] and B. Grünbaum [6], the classification problem was
finally solved in [1] and in [8], by different methods.

A similar question in three-dimensional space has not been investi-
gated yet. The papers [2] and [3] contain some results on whether the
space can be filled with cubes so that no neighbouring cubes have the
same edge-length and they shortly cite the construction of Rogers filling
the space using cubes of two sizes only.

Our purpose is to describe all the possible unilateral, and then neces-
sarily equitransitive, tilings of the three-dimensional space with cubes of
just two different sizes using combinatorial and crystallographic methods.

For the purpose of classification, two tilings (T,Γ) and (T ′,Γ′), with
corresponding symmetry groups Γ and Γ′, respectively, will be considered
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equivalent if they are topologically equivariant (homeomeric). It means
that there exists a homeomorphism ψ that maps T onto T ′ (preserving
tiles, faces, edges and vertices) such that ψΓψ−1 = Γ′.

The main statement of the the paper will be

Theorem 1. Using only cubes of two sizes and having no two cubes

with a face in common, there is only one way to tile space. It is known as

Rogers filling.

Remark 1. In the literature this type of tiling is known as unilateral
([4], [6], [1]).

Remark 2. We say that a tiling is equitransitive if for any two con-
gruent tiles S and S′ there is a congruence transform of the space which
maps S onto S′ in such a manner, that the whole tiling is mapped onto
itself. The filling of Theorem 1 has this property.

Based on this result and Theorem 2 (see below) we formulate a

Conjecture. In every dimension d there exists precisely one equitran-
sitive unilateral tiling by d−dimensional cubes of two sizes.

Throughout the paper we use the following notation for squares and
cubes. The sizes of the objects we distinguish denoting the smaller ones
by λ1 and the bigger ones by λ2. Individual objects will be denoted by
capital letters: A,B,C . . . Furthermore, we use the method of Dawson for
identifying the faces, edges and vertices of a cube. Namely, we characterize
the faces by indices

• u-meaning the upper

• d-meaning the downmost

• l-meaning the left

• r-meaning the right

• b-meaning the back

• f -meaning the front

face of the cube as e.g. Au, Ad . . . . The edges can be represented by double,
the vertices by triple indices in a unique way.
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2. Non-edge-to-edge planar arrangements by squares

Before the spatial case we deal with arrangements in the plane by
squares of two sizes. The following assertion just repeats the well-known
fact (see [4] and Figure 1) that

Theorem 2. In the plane there exists only one unilateral and equi-

transitive tiling by squares of two different sizes.

Figure 1

Figure 2

From Figure 1 we can easily read off the unique neighbourhood of a
λ1- and of a λ2-type square.

We can observe that if we do not require equitransitivity the λ1-
environment has to be the one above. Namely, if X has a λ1-neighbour,
then the other neighbours are uniquely determined as shown in Figure 2.
But the last neighbour has again to be a λ1-square, which contradicts the
unilaterality condition.

In this way, if we require non-edge-to-edge configuration just at three
sides, there are three possible arrangements, shown in Figures 2 and 3.
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Figure 3 Figure 4

Moreover, if unilaterality holds just at two sides, the arrangements are
those in Figure 4.

3. Environments of λi-cubes in a unilateral tiling

In this section we focus our attention on three-dimensional unilateral
tilings not necessarily equitransitive. First we prove an important lemma
in three parts.

Lemma 1. For the mutual position of neighboring λ1- and λ2-cubes

there is only one possibility in the unilateral tiling of cubes of two sizes

shown in Figure 5.

Proof. We conduct the proof by excluding the other possibilities as
follows.

1. There does not exist such a unilateral construction, where a smaller
cube, X, would stand in the interior of a face of a bigger one (on Au).

Namely, suppose on the contrary that such an arrangement exists.
In this case the common neighbours of X and A would form a non-
edge-to-edge tiling of squares of two sizes locally on Au. Then the
environment of the λ1-square consists of λ2-squares only. Thus the
faces of X are adjacent to λ2-cubes except for Xu. But the only
possible neighbour at this face would be a λ1-cube, which contradicts
the unilaterality.
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Figure 5 Figure 6

2. There does not exist such a unilateral tiling, where the mutual position
of the cubes is that shown in Figure 6.

If there existed such a tiling, the neighbours of X would form a
non-edge-to-edge environment of Xd just at three sides on Au. But
again, each of the three allowed neighbourhoods would cause that at
Xu we are able to border only with another λ1-cube, a contradiction.

3. There does not exist such a unilateral construction, where the mutual
position of the cubes would be that in Figure 7 by projecting them
parallelly e.g. with edge Arf .

Figure 7 Figure 8

Let us suppose the contrary. Consider first Figure 8. Here we
depicted the arrangement arising when the neighbourhood of Xd is
of the first type from among the three ones in Figure 4. The other
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neighbours of X are then strictly determined: now we have to put
a λ2-cube to Xu, next we are forced to put another λ2-cube to Xr.
But in this way we necessarily get a gap between the last cube and A,
shown in Figure 8, right. Therefore, this construction is not permitted,
neither the other two possible neighbourhoods of Figure 4 because of
similar argumentation. ¤

Figure 8b Figure 9

Now we can formulate our observations about the environments of the
cubes of different types. First let us consider a λ1-cube.

Lemma 2. The environment of a cube of λ1-type is uniquely deter-

mined up to an isometry.

Proof. In Figure 5 we have depicted a λ1-cube X and its λ2-neigh-
bour called A. Now we consider the common neighbours of X and A. We
have a planar arrangement of squares where unilaterality at two sides is
needed. The only possibility is just the first case in Figure 4 up to an
isometry. This is true because we have to set smaller squares to a corner
which is obviously impossible for the other cases. In this way we are forced
to build two λ2 cubes to Xl and Xb respectively, and the arrangement is
straightforward (see Figure 9). There is another possible solution with
starting configuration which is just the reflected image of the former one
that refers to the tiling on Au, changing the orientation. ¤

For the purpose of algebraic description we introduce a coordinate
system with O as origo, OI, OJ and OK as axis and with the lengths a =
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OI, b = OE (Figure 5). The coordinates of the centers of the central λ1-
cube are (a

2 , a
2 , a

2 ), the centers of the surrounding λ2-cubes are ( b
2 , b

2 ,− b
2 ),

(a+ b
2 , a− b

2 , b
2 ), ( b

2 , a+ b
2 , b

2 ), (− b
2 , b

2 , a− b
2 ), (a− b

2 ,− b
2 , a− b

2 ), (a− b
2 , a−

b
2 , a + b

2 ).

Surprisingly, a similar statement is true for λ2-cubes:

Lemma 3. The environment of a cube of λ2-type is uniquely deter-

mined up to an isometry.

Proof. In Figure 10 we can see the previously discussed arrangement
of a λ1-cube but from the opposite direction. (To simplify the figure we
omitted the cube D.) Our aim is to form the neighbours of A. We assert
that either Al or Ab borders a λ1-square. This is necessary because we
cannot cover these faces with λ2-cubes only by avoiding common faces.
The smaller cube has to join either the corner Alb −Aul or Arb −Aub.

Figure 10

Indeed, first consider the face Al. The two corners above are not
proper because the gap between them and Bd allows at most a λ1-square
in contradiction with the previous lemma. By a similar reasoning, the
corner Aufl is not good either.

The only remaining possibility is Albu. Indeed, we can build the neigh-
bourhood of A beginning at this corner with a cube of λ1-type. After
forming its environment, we can easily see that we have to continue on Ab

at Arbu. Building up its environment we are forced to set the next smaller
cube and the other ones step by step in a similar way. The neighbours of
A are uniquely determined.
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If we start at Ab, our only chance is indeed the corner Arbu. Namely,
if we put λ1-cubes to the other corners, we cannot form their environments
just by overlapping. But if we put a cube to Arbu we can build the envi-
ronment in a unique way as above. Our solution will be the same as the
former one.

Of course another congruent solution comes into consideration as with
the previous lemma. ¤

The analytic description of the environment is the following: the cen-
ter of the base λ2-cube is located in ( b

2 , b
2 ,− b

2 ).

The centers of the λ1-cubes are: (a
2 , a

2 , a
2 ), (b − a

2 , b + a
2 ,−a

2 ), (b +
a
2 , a

2 ,−a
2 ), (a

2 ,−a
2 ,−b + a

2 ), (−a
2 , b− a

2 ,−b + a
2 ), (b− a

2 , b− a
2 ,−b− a

2 ).

The centers of the λ2-cubes are: (a + b
2 , a − b

2 , b
2 ), ( b

2 , a + b
2 , b

2 ),
(− b

2 , b
2 , a− b

2 ), (a− b
2 ,− b

2 , a− b
2 ), (−a+ b

2 ,−a+ 3b
2 ,− 3b

2 ), ( b
2 ,−a+ b

2 ,− 3b
2 ),

( 3b
2 , b

2 ,−a− b
2 ), (−a+ 3b

2 , 3b
2 ,−a− b

2 ), ( 3b
2 , a+ b

2 ,−a+ b
2 ), (− b

2 ,−a+ b
2 , a− 3b

2 ),
(a + b

2 ,− b
2 ,− b

2 ), (−a + b
2 , 3b

2 ,− b
2 ).

Having proved the lemmas our Theorem 1 simply follows.

Proof of Theorem 1. The statement is just a simple consequence
of the uniqueness of the environments above. If we start either with a
cube of λ1 or of λ2-type the neighbours of it are determined as the further
neighbourhoods. In addition, the isometry, which may occur at the local
environments, preserves topological equivariance. This tiling is known as
Rogers filling. ¤

4. The maximal symmetry group

If we consider the configuration of cubes in the filling we see that there
are many symmetries of the space which map the tiling onto itself. E.g.
the translations in three directions that move the centers of small cubes
to the centers of any other small cubes form a space group 1. (P1 of [5].)
In order to determine the corresponding maximal symmetry group we use
the analytic description.

Firstly, we take a fundamental domain and give the face identifications
due to the Poincaré algorithm (for more information see [7]). In Figure 11
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Figure 11

a fundamental domain with our base configuration is drawn. The genera-
tors are the following:

z1 : LHJ → JKL

z2 : EKD → DGE

s1 : GJHE → DTSK

s2 : HLK → GJT

We can give the analytic forms of the transformations as usual in
crystallography [5] by homogeneous coordinates according to Figure 5 as
OI = i, OJ = j, OK = k:

Z1 =




0 0 −1 a

1 0 0 0
0 1 0 0
0 0 0 1


 , Z2 =




0 0 −1 0
1 0 0 0
0 1 0 −b

0 0 0 1


 ,

S1 =




0 0 1 2b
3

−1 0 0 4b
3

0 −1 0 − b
3

0 0 0 1


 , S2 =




0 −1 0 a + b

0 0 −1 0
1 0 0 0
0 0 0 1
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The first two generators are rotoinversions ( 3 ), the last ones are screw
motions of order three (31). The axes are parallel. These transformations
generate the corresponding crystallographic group which is 148. (R3 in
[5].) This is the maximal symmetry group of the tiling.
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three sizes, Beiträge zur Algebra und Geometrie (Contributions to Algebra and
Geometry) 41 no. 1 (2000), 267–277.

[2] R. J. M. Dawson, On filling space with different integer cubes, J. Combin. Theory
A 36 (1984), 221–229.

[3] D. E. Daykin, Space filling with unequal cubes, Bull. Amer. Math. Soc. 70 (1964),
340–341.

[4] B. Gr�unbaum and G. C. Shepard, Tilings and Patterns, W. H. Freeman (1987),
72–81.

[5] N. F. M. Henry and K. Lonsdale, International Tables for X-ray Crystallogra-
phy, Symmetry Groups, Vol. 1, Kynoch Press, Birmingham, 1969; New edition by
Theo Hahn, Vol. A, Reidel Co, Dordrecht, 1983.

[6] H. Martini, E. Makai and V. Soltan, Unilateral Tilings of the Plane with
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