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On submanifolds
of Lorentzian almost paracontact manifolds

By MUKUT MANI TRIPATHI (Lucknow) and SHIV SHARMA SHUKLA

Abstract. Lorentzian almost paracontact structures are constructed from Rie-
mannian almost paracontact structures on a differentiable manifold. Some properties
of submanifolds of a Lorentzian s-paracontact manifold are presented. Non-existence
of any anti-invariant distribution A on a submanifold tangent to the structure vector
field of an LP-Sasakian manifold such that the structure vector field is orthogonal to A
is proved. This non-existence implies that an LP-Sasakian or LSP-Sasakian manifold
does not admit any proper CR, generalized CR, semi-invariant or almost semi-invariant
submanifold. It is also proved that a Lorentzian s-paracontact manifold can not admit
any proper mixed foliated semi-invariant submanifold.

1. Introduction

K. Matsumoto introduced [9] the notion of a Lorentzian almost
paracontact manifold. Later on several authors studied Lorentzian almost
paracontact manifolds including those of [5], [10]–[13], [16]. Different types
of submanifolds of Lorentzian almost paracontact manifold have been stud-
ied in [3], [4], [6], [7], [15], [17]–[19], [21], [23], [24].

In this paper, we study submanifolds of Lorentzian almost paracon-
tact manifolds. The paper is organized as follows. Section 2 is devoted
to preliminaries. In Section 3, we prove a theorem which interrelates the
Riemannian and Lorentzian almost paracontact structures on a differen-
tiable manifold. In this way, we find a general method for constructing
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Lorentzian almost paracontact structures from Riemannian almost para-
contact structures on a differentiable manifold. In Section 4, some proper-
ties of submanifolds of a Lorentzian s-paracontact manifold are presented.
In Section 5, we mainly prove the non-existence of any anti-invariant dis-
tribution A on a submanifold tangent to the structure vector field of an
LP–Sasakian manifold such that the structure vector field is orthogonal
to A. Therefore, we are able to state that a LP -Sasakian or LSP -Sasakian
manifold can not admit any proper CR, generalized CR, semi-invariant or
almost semi-invariant submanifold. In the last section, we prove that a
Lorentzian s-paracontact manifold can not admit any proper mixed foli-
ated semi-invariant submanifold.

2. Preliminaries

A differentiable manifold M is said to admit an almost paracontact
Riemannian structure (φ, ξ, η, g), where φ is a (1, 1) tensor field, ξ is a
vector field, η is a 1-form and g is a Riemannian metric on M such that

φ2 = I − η ⊗ ξ, η(ξ) = 1,(1)

g(φX, φY ) = g(X, Y )− η(X)η(Y )(2)

for all vector fields X and Y on M (see [20]).
On the other hand, M is said to admit a Lorentzian almost paracontact

structure (φ, ξ, η, g), if φ is a (1, 1) tensor field, ξ is a vector field, η is a
1-form and g is a Lorentzian metric on M , which makes ξ a timelike unit
vector field, such that

φ2 = I + η ⊗ ξ, η(ξ) = −1,(3)

g(φX, φY ) = g(X, Y ) + η(X)η(Y )(4)

for all vector fields X and Y on M (see [9], [10]).
For both the structures mentioned above, it follows that

η ◦ φ = 0, φξ = 0,(5)

g(ξ, X) = η(X),(6)

g(φX, Y ) = g(X,φY ).(7)
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A Lorentzian almost paracontact manifold is called

1. Lorentzian para Sasakian (in brief, LP-Sasakian) manifold [9] if

(8) (∇Xφ)Y = g(φX, φY )ξ + η(Y )φ2X,

where ∇ is the covariant differentiation with respect to g,

2. Lorentzian special para Sasakian (in brief, LSP-Sasakian) manifold
[9] if

(9) Φ(X,Y ) = εg(φX, φY ), ε2 = 1.

An LSP -Sasakian manifold is always LP -Sasakian [9].

Let M be a submanifold of a Lorentzian almost paracontact manifold
M with Lorentzian almost paracontact structure (φ, ξ, η, g). Let the in-
duced metric on M also be denoted by g. Then Gauss and Weingarten
formulae are given respectively by

∇XY = ∇XY + h(X, Y ), X, Y ∈ TM,(10)

∇XN = −ANX +∇⊥XN, N ∈ T⊥M,(11)

where∇ is the induced connection on M , h is the second fundamental form
of the immersion, and −ANX and ∇⊥XN are the tangential and normal
parts of ∇XN . From (10) and (11) one gets

(12) g(h(X, Y ), N) = g(ANX,Y ).

Moreover, we have

(∇Xφ)Y = ((∇XP )Y −AFY X − th(X, Y ))(13)

+ ((∇XF )Y + h(X,PY )− fh(X, Y )),

where

φX ≡ PX + FX, PX ∈ TM, FX ∈ T⊥M,(14)

φN ≡ tN + fN, tN ∈ TM, fN ∈ T⊥M,(15)

(16) (∇XP )Y ≡ ∇XPY − P∇XY, (∇XF )Y ≡ ∇⊥XFY − F∇XY.
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Let ξ ∈ TM . We write TM = {ξ}⊕{ξ}⊥, where {ξ} is the distribution
spanned by ξ and {ξ}⊥ is the complementary orthogonal distribution of
{ξ} in M . Then we get

Pξ = 0 = Fξ, η ◦ P = 0 = η ◦ F,(17)

P 2 + tF = I + η ⊗ ξ, FP + fF = 0,(18)

f2 + Ft = I, tf + Pt = 0.(19)

A submanifold M of a Lorentzian almost paracontact manifold M

with ξ ∈ TM is an almost semi-invariant submanifold of M if TM can be
decomposed as a direct sum of mutually orthogonal differentiable distri-
butions

TM = D1 ⊕D0 ⊕D ⊕ {ξ},

where D1 = TM ∩ φ(TM), D0 = TM ∩ φ(T⊥M) (see [7]). A submanifold
M of a Lorentzian almost paracontact manifold M with ξ ∈ TM is a
generalized CR-submanifold [21] of M if TM can be decomposed as a
direct sum of mutually orthogonal differentiable distributions TM = D0⊕
D ⊕ {ξ}, where D0 = TM ∩ φ(T⊥M).

A submanifold M of a Lorentzian almost paracontact manifold M is
an invariant (resp. anti-invariant) submanifold of M if φ (TM) ⊂ TM

(resp. φ (TM) ⊂ T⊥M). An almost semi-invariant submanifold of a
Lorentzian almost paracontact manifold is a semi-invariant submanifold
if D = {0}. A semi-invariant submanifold of a Lorentzian almost para-
contact manifold becomes an invariant submanifold (resp. anti-invariant
submanifold) if D0 = {0} (resp. D1 = {0}). An almost semi-invariant
submanifold is proper if none of the distributions D1, D0 and D is zero. A
semi-invariant submanifold is proper if D0 6= {0} 6= D1.

3. Riemannian and Lorentzian almost paracontact
structures

An example of a 5-dimensional LP -Sasakian manifold is given as fol-
lows.
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Example 3.1 (K. Matsumoto, I. Mihai and R. Rosca [11]). Let
R5 be the 5-dimensional real number space with a coordinate system
(x, y, z, t, s). Defining

η = ds− ydx− tdz , ξ =
∂

∂s
,

g = η ⊗ η − (dx)2 − (dy)2 − (dz)2 − (dt)2 ,

φ

(
∂

∂x

)
= − ∂

∂x
− y

∂

∂s
, φ

(
∂

∂y

)
= − ∂

∂y
,

φ

(
∂

∂z

)
= − ∂

∂z
− t

∂

∂s
, φ

(
∂

∂t

)
= − ∂

∂t
, φ

(
∂

∂s

)
= 0,

the structure (φ, ξ, η, g) becomes an LP -Sasakian structure in R5.

Now, we prove the following theorem which interrelates the Riemann-
ian and Lorentzian almost paracontact structures on a differentiable man-
ifold.

Theorem 3.2. A differentiable manifold M admits an almost para-

contact Riemannian structure if and only if it admits a Lorentzian almost

paracontact structure.

Proof. Let M admit an almost paracontact Riemannian structure
(φ, ξ, η, g). We define a 1-form β by

(20) β (X) ≡ −η(X)

and a (0, 2) tensor field γ (see page 148, B. O’Neill [14]) by

(21) γ(X, Y ) ≡ g(X,Y )− 2η(X)η(Y ).

From (20), it is clear that

β (X)β (Y ) = η(X)η(Y )

and hence (21) becomes equivalent to

(22) g(X, Y ) = γ(X, Y ) + 2β (X)β (Y ) .
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In view of (20), (1) transforms to

φ2 = I + β ⊗ ξ, β(ξ) = −1.

From (21), it is clear that γ is symmetric. Moreover,

γ(φX, φY ) = g(φX, φY ) = g(X, Y )− η(X)η(Y )

= γ(X,Y ) + η(X)η(Y ) = γ(X, Y ) + β (X) β (Y ) ,

where (21), (5), (2) and (20) have been used. Consequently,

γ(ξ, X) = β (X) = −η(X) = −g(ξ, X).

Thus X is orthogonal to ξ with respect to g if and only if X is orthogonal
to ξ with respect to γ. From the last equation we see that γ(ξ, ξ) = −1,
that is, γ makes ξ a timelike unit vector field. If X and Y are orthogonal
to ξ with respect to γ, then γ(X,Y ) = g(X, Y ), that is, X and Y are
spacelike. Thus the metric γ is a Lorentzian metric associated with the
structure (φ, ξ, β). This proves the necessary part.

Conversely, let (φ, ξ, β, γ) be a Lorentzian almost paracontact struc-
ture on M . Then it is easy to check that (φ, ξ, η, g) is an almost paracontact
Riemannian structure on M , where η and g are defined by (20) and (22)
respectively. ¤

Remark 3.3. In view of the preceding theorem, it is now easy to con-
struct a Lorentzian almost paracontact structure by an almost paracontact
Riemannian structure and vice-versa.

4. Submanifolds of Lorentzian s-paracontact manifolds

We begin this section with the following definition, which is analogous
to the definition of special paracontact Riemannian manifolds.

Definition 4.1. We call a Lorentzian almost paracontact manifold as
a Lorentzian s-paracontact manifold if

(23) φX = ∇Xξ.

It can be verified that an LP -Sasakian manifold is always a Lorentzian
s-paracontact manifold.
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Definition 4.2. The distribution {ξ}⊥ in a Lorentzian almost para-
contact manifold will be called the paracontact distribution.

First, we prove

Theorem 4.3. On a Lorentzian s-paracontact manifold M the para-
contact distribution {ξ}⊥ is integrable.

Proof. Let X,Y ∈ {ξ}⊥. Then η(X) = 0 = η(Y ) and consequently,
in view of (23) and (7), it follows that η[X,Y ] = 0, X, Y ∈ {ξ}⊥. ¤

In view of Definition 4.2 and Theorem 4.3, we can state the following
theorem.

Theorem 4.4. Let M be a submanifold of a Lorentzian s-paracontact
manifold such that ξ is tangential to M . Then the paracontact distribution
{ξ}⊥ on M is integrable.

In view of the above theorem we have the following corollary.

Corollary 4.5. Let M be either a semi-invariant or an almost semi-
invariant or a generalized CR-submanifold of a Lorentzian s-paracontact
manifold. Then the paracontact distribution {ξ}⊥ on M is integrable.

Now, we prove a lemma.

Lemma 4.6. For a submanifold M of a Lorentzian s-paracontact man-
ifold, we have

φX = ∇Xξ + h (X, ξ) , ξ ∈ TM,(24)

φX = −AξX +∇⊥Xξ, ξ ∈ T⊥M,(25)

η (ANX) = 0, ξ ∈ T⊥M,(26)

η (ANX) = g (φX,N) , ξ ∈ TM(27)

for all X ∈ TM and N ∈ T⊥M .

Proof. From (23) and Gauss formula, we get (24) and (25). In view
of (6), we get (26). In last, for ξ ∈ TM , we have

η (ANX) = g (ξ,ANX) = −g
(
ξ,∇XN

)
= g

(∇Xξ, N
)

= g (φX,N) ,

where (6), (11) and (23) have been used. ¤
In view of (24), we can state the following
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Theorem 4.7. Let M be a submanifold of a Lorentzian s-paracontact

manifold such that ξ is tangential to M . Then M is an invariant subman-

ifold if and only if h (X, ξ) = 0, and M is an anti-invariant submanifold if

and only if ∇Xξ = 0.

Now, we prove the following

Theorem 4.8. If M is a totally umbilical submanifold of a Lorentzian

s-paracontact manifold such that ξ is tangential to M , then

(a) M is necessarily minimal and consequently totally geodesic, and

(b) M is an invariant submanifold and ∇Xξ 6= 0 for any non-zero X that

is not in {ξ}.

Proof. Let M be totally umbilical. Using (24), φξ = 0 and (6) we get

0 = h (ξ, ξ) = g (ξ, ξ)H = H, H ≡ trace (h) / dim (M) ,

hence we have (a). The second part is obvious from Theorem 4.7 and
Theorem 4.8 (a). ¤

Next, we prove the following

Theorem 4.9. A submanifold M of a Lorentzian s-paracontact mani-

fold such that ξ is normal to M is an anti-invariant submanifold if and only

if AξX = 0. Consequently, if M is totally geodesic then it is anti-invariant.

Proof. Since, ξ is normal to M , therefore in view of (25) and (12),
we obtain

g (φX, Y ) = −g (AξX, Y ) , X, Y ∈ TM,

which proves the theorem. ¤

We complete this section by the following

Remark 4.10. Since LP -Sasakian and LSP -Sasakian manifolds are
Lorentzian s-paracontact manifolds, therefore the results of this section
are valid for the submanifolds of LP -Sasakian and LSP -Sasakian mani-
folds.
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5. Nonexistence of an anti-invariant distribution

Let M be a submanifold of a Lorentzian s-paracontact manifold M
with ξ ∈ TM . Then in view of (27) and (14) we get

(28) η(ANX) = g(FX,N), X ∈ TM, N ∈ T⊥M.

Moreover, if M is LP -Sasakian, then in view of (8) and (13) we get

(29) (∇XP )Y −AFY X − th(X, Y ) = g(φX, φY )ξ + η(Y )φ2X.

Now, we prove the following

Theorem 5.1. Let M be a submanifold of a LP -Sasakian manifold M
with ξ ∈ TM . Then there does not exist any anti-invariant distribution A
such that A ⊥ {ξ}.

Proof. We shall prove that A = {0}. Let X ∈ A and Y ∈ TM . We
get

g(AFXX, Y ) = g(h(Y, X), FX) = g(th(Y, X), X)

= g(∇Y PX −P∇Y X −AFXY − g(φY, φX)ξ− η(X)φ2Y, X)

= −g(∇Y X,PX)− g(AFXY, X) = −g(AFXX,Y ),

which implies that
AFXX = 0, X ∈ A

and consequently

0 = η(AFXX) = g(FX, FX) = g(φX, φX) = g(X,X),

that is, A = {0}. ¤
Since an LSP -Sasakian manifold is LP -Sasakian, therefore we can

state the following

Corollary 5.2. Let M be a submanifold of a LSP -Sasakian manifold
M with ξ ∈ TM . Then there does not exist any anti-invariant distribution
A such that A ⊥ {ξ}.

In view of the definitions of CR [3], [17], generalized CR [21], semi-
invariant [6] and almost semi-invariant [7] submanifolds of Lorentzian al-
most paracontact manifolds and in view of Theorem 5.1 and Corollary 5.2
we have the following theorem.
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Theorem 5.3. An LP–Sasakian or LSP–Sasakian manifold does not
admit any proper CR, generalized CR, semi-invariant or almost semi-
invariant submanifold. In fact, in these cases the anti-invariant distribution
D0 becomes {0}.

Remark 5.4. The geometry of CR-submanifolds of Kaehler manifolds
was initiated by A. Bejancu in 1978 (see A. Bejancu [2] and K. Yano
& M. Kon [25]). The definition of CR-submanifolds of Lorentzian al-
most paracontact manifolds resembles with the definition of semi-invariant
submanifolds. However, the name CR-submanifold does not seem to be
appropriate as possibility of getting a CR-structure on the so called CR-
submanifold of a LAP -manifold is very far from reality. In [4], [23] it is
proved that a Lorentzian para-Sasakian manifold does not admit proper
semi-invariant submanifold. In [6], [18] it is claimed that the distribu-
tions D0 and D0⊕{ξ} are never integrable on semi-invariant submanifolds
of LP -Sasakian manifolds. The same result is claimed in [7] for almost
semi-invariant submanifolds of LP -Sasakian manifolds. Contrary to these
claims, the authors of [21] claim that the distribution D0 is always inte-
grable on generalized CR-submanifolds of LP -Sasakian manifolds. How-
ever, in view of the above theorem, in these cases the anti-invariant dis-
tribution D0 becomes {0}, which makes a number of results of [3], [6], [7],
[17], [18], [21] redundant.

6. Nonexistence of proper
mixed foliated semi-invariant submanifolds

In [8], a semi-invariant submanifold is said to be mixed foliated if
D1 ⊕ {ξ} is integrable and h (Z + ξ, X) = 0 for all Z ∈ D1 and X ∈ D0.
In [22], the first author of this paper proved that a Sasakian manifold does
not admit any proper mixed foliated semi-invariant submanifold.

In similar manner, we prove the following

Theorem 6.1. A Lorentzian s-paracontact manifold can not admit
any proper mixed foliated semi-invariant submanifold.

Proof. For a submanifold M of a Lorentzian s-paracontact manifold,
it follows that

φX = ∇Xξ = ∇Xξ + h (X, ξ) , ξ,X ∈ TM.

If M is semi-invariant, then for X ∈ D0 we get ∇Xξ = 0 and φX =
h (X, ξ). Moreover, if M is assumed to be mixed foliated, then for X ∈ D0

we get φX = 0, that is, D0 = {0}. ¤
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Remark 6.2. The authors of [4] prove that LP -Sasakian manifolds
do not admit proper mixed foliated semi-invariant submanifolds. But in
view of Theorem 5.3, LP -Sasakian manifolds do not admit even proper
semi-invariant submanifolds. Therefore, that result of [4] is redundant.

Acknowledgement. The authors are thankful to referees for their com-
ments towards the improvement of the paper.
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