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Generalizations of jets and reflections
in the theory of connections

By MIROSLAV KUREŠ (Brno)

Abstract. Classical holonomic jets are generalized to nonholonomic jets and fur-
thermore, to quasijets, which are in fact certain vector bundle morphisms. Higher order
connections are viewed as sections of r-th order jet prolongation of a fibered manifold.
This approach is prolonged to quasijets and obtained quasiconnections are studied.

1. Introduction

In this paper, we present the influence of a development of the jet
theory upon the modern theory of connections. We recall that the general
connection is defined as a section of the first jet prolongation of an arbitrary
fibered manifold. Analogously, the r-th order connection is defined as
a section of the r-th jet prolongation, preferably the nonholonomic one.
We recommend the monograph of Kolář, Michor and Slovák, [8],
for a self-contained introduction to jet theory. [3]–[7] and [12]–[14] are
the fundamental papers dealing with nonholonomic jets and higher order
connections.

The generalization of jets to quasijets is very natural. The concept
of a quasijet was introduced in [9]. Quasijets are investigated in papers of
Dekrét, first of all in [2]. The recent paper [11] uses modern language of
Weil bundles in this investigation. Surely, quasijets may play an important
role in the study of several geometrical objects. In the paper, we introduce
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the investigation of sections of the r-th order quasijet prolongation of a
fibered manifold. These sections are not studied up to now. We show
that they generalize the higher order connections by a natural way and we
shall call them quasiconnections. Especially, we take the properties of the
product of higher order connections into account of this generalization.

As to the product of higher order connections, the following result is
more or less known (see e.g. [1]): if the product is a holonomic connection,
then the factors must be holonomic and, moreover, satisfying a certain
conditions expressible in the first order case of them as the vanishing of
curvatures. We introduce the product of quasiconnections. It represents a
nonholonomic connection if and only if the factors are also nonholonomic
connections.

The paper has the following structure. In Section 2 we recall the basic
facts from the theory of jets. Section 3 is devoted to quasijets: the starting
point is the paper [2] and we contribute to it by slight generalizations and
simplifications. Section 4 deals with connections, we evaluate the explicit
formulae of the product of connections in Lemma 1 and we precise the
conditions under which the product represents a holonomic connection in
Proposition 4. Section 5 contains quite original results: we discuss the ba-
sic properties of sections of higher order quasijet prolongations by analogy
with the Section 4. In addition, we find one-to-one correspondence between
second order quasiconnections and couples of nonholonomic connections.

We remind that we do not study the important subbundle of semi-
holonomic jets in this paper.

2. Jets

Holonomic jets

Roughly speaking, (holonomic) jets are certain equivalence classes of
smooth maps between manifolds, which are represented by Taylor poly-
nomials. We make this idea precise. Two maps f, g : M → N are said
to determine the same r-jet at x ∈ M , if for every curve γ : R → M

with γ(0) = x the curves f ◦ γ and g ◦ γ have the r-th order contact at
zero. In such a case we write jr

xf = jr
xg and an equivalence class of this

relation is called an r-jet of M into N . The set of all r-jets of M into N

is denote by Jr(M,N). If the source of a r-jet is x ∈ M and the target
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of this jet is x̄ = f(x) ∈ N , then α := jr
xf 7→ x and β := jr

xf 7→ x̄ are
projections of fibered manifolds α : Jr(M, N) → M , β : Jr(M, N) → N .
Further, by Jr

x(M, N) or Jr(M, N)x̄ we mean the set of all r-jets of M

into N with source x ∈ M or target x̄ ∈ N , respectively, and we write
Jr

x(M, N)x̄ = Jr
x(M,N) ∩ Jr(M, N)x̄. As r-th order contact of maps is

preserved under composition, we define the composition of r-jets as the
r-jet of the composed map.

Let p : Y → M be a fibered manifold. The set JrY of all r-jets
of the local sections of Y is called the r-th jet prolongation of Y and
JrY ⊂ Jr(M, Y ) is a closed submanifold. (If Y → M is a vector bundle,
then JrY → M is also a vector bundle.) Let q : Z → N be another fibered
manifold and f : Y → Z a fibered bundle morphism with the property that
the base map f0 : M → N is a local diffeomorphism. There is an induced
map Jr(f0, f)(X) := jr

β(X)f ◦ X ◦ jr
f0(α(X))f

−1
0 for X ∈ Jr(M, Y ). If we

restrict it to local sections, we obtain a map denoted by Jrf : JrY → JrZ

which is called the r-th jet prolongation of f .

Nonholonomic jets

For r = 1, the set of nonholonomic 1-jets J̃1(M, N) := J1(M,N).
By induction, let α : J̃r−1(M,N) → M denote the source projection and
β : J̃r−1(M,N) → N the target projection of (r − 1)-th nonholonomic
jets. Then X is said to be a nonholonomic r-jet with the source x ∈ M

and the target x̄ ∈ N , if there is a local section σ : M → J̃r−1(M, N)
such that X = j1

xσ and β(σ(x)) = x̄. There is a natural embedding
Jr(M, N) ⊂ J̃r(M, N).

Every X ∈ J̃r(M, N) induces a map µX : (T . . . T︸ ︷︷ ︸
r-times

M)x→ (T . . . T︸ ︷︷ ︸
r-times

N)x̄

in the following way. For r = 1 and X = j1
xf is µX defined as Txf . By

induction, let X = j1
xσ for a local α-section σ : M → J̃r−1(M, N). Then

σ(u) ∈ Jr−1
u (M, N), µ(σ(u)) : ( T . . . T︸ ︷︷ ︸

r−1-times

M)u → ( T . . . T︸ ︷︷ ︸
r−1-times

N)β(σ(u)) and

we put µX = Txµ(σ(u)). The constructed map µX : (T . . . T︸ ︷︷ ︸
r-times

M)x →

(T . . . T︸ ︷︷ ︸
r-times

N)x̄ is a vector bundle morphism with respect to all vector bundle

structures T . . . T︸ ︷︷ ︸
r-times

→ T . . . T︸ ︷︷ ︸
r−1-times

. However, µX is not an entirely general

vector bundle morphism of this type.
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Let p : Y → M be a fibered manifold. We construct the r–th jet
nonholonomic prolongation of Y denoted by J̃rY as the set of all nonholo-
nomic r-jets of the local sections of Y . The construction of the r-th jet
nonholonomic prolongation of f for a fibered bundle morphism f : Y → Z

with the property that the base map f0 : M → N is a local diffeomorphism
is analogous to the holonomic case.

Local expressions

Let xi are local coordinates on M , i = 1, . . . , m = dim M , x̄p lo-
cal coordinates on N , p = 1, . . . , n = dim N . On Jr(M, N) we have
local coordinates xi, x̄p and the induced coordinates ap

i1...iq
, q = 1, . . . , r,

i1, . . . , iq = 1, . . . , m. The induced coordinates are symmetric in all sub-
scripts. On J̃r(M, N) we have local coordinates xi, x̄p and the induced
coordinates bp

i1...ir
, i1, . . . , ir = 0, 1, . . . ,m, which are not symmetric in the

subscripts. Let us realize that we obtain the same coordinate descriptions
also in the cases of JrY or J̃rY , respectively.

If the induced coordinates of a nonholonomic jet are invariant with
respect to any transposition of subscripts, we have in fact a holonomic jet.
We realize the transfer from bp

i1...ir
to ap

i1...iq
by deleting of all zeros in

subscripts.

3. Quasijets

The iterated tangent bundle

We introduce the following denotation of projections in the iterated
tangent bundle T . . . T︸ ︷︷ ︸

r-times

M . For every s, 0 < s ≤ r, we denote by πs :

T . . . T︸ ︷︷ ︸
s-times

M → M the canonical projection to the base. Further, we denote

πs
b := πs

T . . . T︸ ︷︷ ︸
b–times

M : T̃ s(T . . . T︸ ︷︷ ︸
b-times

M) → T . . . T︸ ︷︷ ︸
b-times

M projection with T . . . T︸ ︷︷ ︸
b-times

M

as the base space, aπs := T . . . T︸ ︷︷ ︸
a-times

πs : T . . . T︸ ︷︷ ︸
a-times

(T . . . T︸ ︷︷ ︸
s-times

M) → T . . . T︸ ︷︷ ︸
a-times

M

induced projection originating by the posterior application of the functor
T . . . T︸ ︷︷ ︸
a-times

, aπs
b := T . . . T︸ ︷︷ ︸

a-times

πs
T . . . T︸ ︷︷ ︸

b–times

M the general case containing both previous

cases. If a or b equal zero, we do not write them. We recall the concept of
the kernel injection. For a vector bundle q : E → M we have two vector
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bundle structures on TE, namely p : TE → E and Tq : TE → TM . The
heart HE of the vector bundle E → M is defined as the vector bundle
V p ∩ V Tq → M . We can identify E with HE and there is the canonical
kernel injection ι : E ≈ HE → TE.

Now we take aπ1
b : T . . . T︸ ︷︷ ︸

s-times

M→ T . . . T︸ ︷︷ ︸
s−1-times

M in the role of the mentioned

vector bundle and we denote the kernel injection by a+1ιb : T . . . T︸ ︷︷ ︸
s-times

M→
T . . . T︸ ︷︷ ︸

s+1-times

M .

The definition and the basic properties of quasijets

Let x ∈ M , x̄ ∈ N . A map φ : (T . . . T︸ ︷︷ ︸
r-times

M)x → (T . . . T︸ ︷︷ ︸
r-times

N)x̄ is said

to be a quasijet of order r with the source x and the target x̄, if it is a
vector bundle morphism with respect to all vector bundle structures aπ1

b :
(T . . . T︸ ︷︷ ︸

r-times

M)x → ( T . . . T︸ ︷︷ ︸
r−1-times

M)x and aπ1
b : (T . . . T︸ ︷︷ ︸

r-times

N)x̄ → ( T . . . T︸ ︷︷ ︸
r−1-times

N)x̄,

a + b = r− 1. The set of all such quasijets is denoted by QJr
x(M,N)x̄ and

QJr(M,N) means the set of all quasijets from M to N .
There is a bundle structure QJr(M, N) → M × N and, analogously

to Jr, the set QJrY of all r-jets of the local sections of a fibered manifold
Y → M Y is called the r-th quasijet prolongation of Y . We compose
quasijets as maps. Further, let q : Z → N be another fibered manifold
and f : Y → Z a fibered bundle morphism with the property that the
base map f0 : M → N is a local diffeomorphism. There is an induced
map QJr(f0, f)(X) := jr

β(X)f ◦X ◦ jr
f0(α(X))f

−1
0 for X ∈ QJr(M, Y ). The

composition denoted the composition of quasijets, where the holonomic
jets jr

β(X)f , jr
f0(α(X))f

−1
0 are considered as quasijets by the use of the map

µ from Section 2. If we confine ourselves to local sections, we obtain a
map denoted by QJrf : QJrY → QJrZ which is called the r-th quasijet
prolongation of f .

For every s, 0 < s < r and for every a, b ≥ 0 such that a + b + s = r,
we denote by aφs

b the underlying map with respect to the projection aπs
b :

T . . . T︸ ︷︷ ︸
r-times

→ T . . . T︸ ︷︷ ︸
r−s-times

, i.e. aφs
b ◦ aπs

b = aπs
b ◦φ.

Proposition 1. aφs
b ∈ QJr−s

x (M,N)x̄.

Proof. The assertion is only a slight generalization of Proposition 1
in [2], where it is formulated and proved for the case s = 1. Certainly,
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it is sufficient to decompose the projection aπs
b to projections T . . . T︸ ︷︷ ︸

r-times

→

T . . . T︸ ︷︷ ︸
r−1-times

, . . . , T . . . T︸ ︷︷ ︸
r−s+1-times

→ T . . . T︸ ︷︷ ︸
r−s-times

and applicate the mentioned proposi-

tion s-times. ¤

For every s, 0 < s < r and for every a, b ≥ 0 such that a + b + s = r,
we define r−s−1

a ψb := ( T . . . T︸ ︷︷ ︸
r−s−1-times

aιb)−1 ◦φ ◦ T . . . T︸ ︷︷ ︸
r−s−1-times

aιb. The following

proposition was proved in [2].

Proposition 2. r−s−1
a ψb ∈ QJr−1

x (M, N)x̄.

We have the induced projections of quasijet spaces now. We define
aΠs

b : QJr(M,N) → QJr−s(M, N) by aΠs
b (φ) = aφs

b and r−s−1
a Πb :

QJr(M,N)QJr−1(M, N) by r−s−1
a Πb(φ) = r−s−1

a ψb. Now, we are able
to describe a wide class of subbundles of QJr(M,N) by identifications
of some of these projections. We intend to determine the most significant
subbundle now. We know, that nonholonomic jets can be viewed as special
quasijets by use µ, cf. Section 2. The following proposition was also proved
in [2].

Proposition 3. φ represents a nonholonomic jet if and only if

(1) aΠ1
r−a−1 = a

hΠr−a−h−1

for all a = 0, . . . , r − 2 and all h = 1, . . . , r − a− 1.

Remark 1. The canonical involution in the second order case κ :
TTM → TTM is well known. We remark that we obtain holonomic
jets simply by generalized involutions.

Local expressions

If xi are local coordinates on M , i = 1, . . . , m = dim M , x̄p local
coordinates on N , p = 1, . . . , n = dim N , then xi, x̄p and the induced
coordinates c

pγ1...γq

i1...iq
, q = 1, . . . , r, i1, . . . , iq = 1, . . . ,m, where γ1, . . . , γq

are multiindexes of the length r with elements from {0, 1} representing an
ordered decomposition of every multiindex of this form. The ordering of
them respects the rule of the increasing number of left zeros in γ1, . . . , γq.

If the condition (1) from Proposition 3 comes true, we obtain the
identification of coordinates, in which it turns out that only first units in
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multiindexes γ1, . . . , γq (in each of them) of them are essential. So, we
remove all units except the first ones in multiindexes and we obtain only
one unit in each multiindex in this way. We replace the remaining units
by related i1, . . . , iq and take the sum of these multiindexes. This is the
way of the transfer from quasijet local coordinates to the nonholonomic
ones.

Example. For example, we take r = 3. If we have local coordinates
on TTTM as xi, yi

100 = yi, yi
010 = Xi, yi

110 = Y i, yi
001 = ξi, yi

101 = ηi,
yi
011 = Ξi, yi

111 = Hi and on TTTN as x̄p, ȳp
100 = ȳp, ȳp

010 = X̄p,
ȳp
110 = Ȳ p, ȳp

001 = ξ̄p, ȳp
101 = η̄p, ȳp

011 = Ξ̄p, ȳp
111 = H̄p, a quasijet

φ : TTTM → TTTN has the coordinate expression x̄p = fp(xi) and, in
fiber coordinates,

ȳp = cp100
i yi

X̄p = cp010
i Xi

Ȳ p = cp100 010
ij yiXj + cp110

i Y i

ξ̄p = cp001
i ξi

η̄p = cp100 001
ij yiξj + cp101

i ηi

Ξ̄p = cp010 001
ij Xiξj + cp011

i Ξi

H̄p = cp100 010 001
ijk yiXjξk + cp101 010

ij ηiXj

+ cp100 011
ij yiΞj + cp110 001

ij Y iξj + cp111
i Hi.

In view of the Proposition 3 φ represents a nonholonomic jet if and only if

Π1
2 = 1Π1 = 2Π

1Π
1
1 = 1

1Π .

It means the identification of the quasijet coordinates

cp100
i = cp110

i = cp101
i = cp111

i

cp010
i = cp011

i
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cp100 010
ij = cp101 010

ij = cp100 011
ij

cp100 001
ij = cp110 001

ij ,

and we see that we make do only with coordinates cp100
i , cp010

i , cp100 010
ij ,

cp001
i , cp100 001

ij , cp010 001
ij , cp100 010 001

ijk . They represent nonholonomic local
coordinates bp

i00, bp
0i0, bp

ij0, bp
00i, bp

i0j , bp
0ij , bp

ijk, respectively.
Moreover, φ represents a holonomic jet if and only if the induced

coordinates of a nonholonomic jet are invariant with respect to any trans-
position of subscripts. It means the identification of the nonholonomic
coordinates

bp
i00 = bp

0i0 = bp
00i

bp
ij0 = bp

i0j = bp
0ij .

By deleting of zeros in subscripts, we obtain the holonomic coordinates ap
i ,

ap
ij , ap

ijk (symmetric in subscripts).

Remark 2. We remark that further generalization of the concept of
quasijets does not carry an enrichment to the theory. If we consider a map
φ : (T 1

k . . . T 1
k︸ ︷︷ ︸

r-times

M)x → (T 1
k . . . T 1

k︸ ︷︷ ︸
r-times

N)x̄ in the definition of the generalized

quasijet (T 1
k is the functor of k-dimensional 1-velocities, T 1

1 = T ), we
obtain the same coordinate expression of it only with matrix multiindices.
It holds even for a map φ : (T 1

k1
. . . T 1

kr︸ ︷︷ ︸
r-times

M)x → (T 1
k1

. . . T 1
kr︸ ︷︷ ︸

r-times

N)x̄.

4. Connections

A nonholonomic r-th order connection in a fibered manifold p : Y →
M is a section Γ : Y → J̃rY . Holonomic r-th order connections can
be viewed as special nonholonomic ones. If Γ is a nonholonomic r-th
order connection and ∆ is a nonholonomic s-th order connection, we define
Γ ∗ ∆ := J̃sΓ ◦ ∆. Γ ∗ ∆ is a nonholonomic (r + s)-th order connection
called the product of Γ and ∆.

Now, we provide the coordinate expression of the product of Γ and
∆, which is necessary for practical computations and which was known
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only for r = 1 and s = 1 up to now. Let j1 . . . js is a sequence of integers,
jh = 0, 1, . . . , m (i.e. we understand non-negative integers whenever write
integers).

Firstly, we define the underlying sequence of integers k1 . . . ks as a
sequence of integers such that kh = jh or kh = 0 for h = 0, . . . , m excluding
k1 = . . . ks = 0. Further, we denote lh = jh − kh and we take from the
integers l1, . . . , ls the non-zero ones and denote them by L1, . . . , Lµ, µ ≤ s.

We denote the choice of an underlying sequence of integers from the
given sequence of integers j1 . . . js by ζ. Secondly, we decompose the se-
quence of integers k1 . . . ks to ν sequences of integers k1

1 . . . k1
s , . . . , kν

1 . . . kν
s

in this way:
(i) k1

h + · · ·+ kν
h = kh

(ii) if kh > 0, then for a unique ν0, 1 ≤ ν0 ≤ ν is kν0
h = kh

(iii) the ordering of sequences k1
1 . . . k1

s , . . . , kν
1 . . . kν

s submits to the posi-
tions of their first non-zero elements

We denote such a decomposition of the sequence of integers k1 . . . ks by ρ.

Moreover, we write shortly Γp
i1...ir,j1...js

instead of
∂sΓp

i1...ir

∂xj1 ...∂xjs
. With the use

of this denotation, we obtain the following lemma by a direct evaluation.

Lemma 1. The product Γ ∗∆ of a nonholonomic r-th order connec-
tion Γ with a nonholonomic s-th order connection ∆ has the coordinate
expression

(2) bp
i1...irj1...js

=





Γp
i1...ir

for j1 = · · · = js = 0

∆p
j1...js

for i1 = · · · = ir = 0

Γp
i1...ir,j1...js

+
∑
ζ

∑
ρ

Γp
i1...ir,q1...qνL1...Lµ

∆q1

k1
1...k1

s
. . .

. . . ∆qν

kν
1 ...kν

s
in another case.

The product is associative and evidently non-commutative. By the
derived formula, we deduce conditions under which Γ ∗ ∆ represents a
holonomic (r + s)-th order connection.

Proposition 4. If Γ ∗∆ is a holonomic connection, then Γ and ∆ are
holonomic and one of them is the projection of the other. For r = s = 1,
Γ ∗ ∆ is a holonomic connection, if and only if Γ = ∆ and this is a
holonomic curvature-free connection.

Proof. If Γ ∗ ∆ is invariant with respect to any transposition of
subscripts, then Γp

i1...ir
and ∆p

j1...js
must be invariant with respect to any
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transposition of subscripts (see (2)). It means Γ and ∆ are holonomic. If
r ≤ s, then ap

i1...ir 0...0︸︷︷︸
s-times

= Γp
i1...ir

= ap
0...0︸︷︷︸

s-times

js−r+1...js
= ∆p

js−r+1...js
= ∆p

j1...jr

and Γ equals π(∆), where π is the jet projection π : J̃sY → J̃rY . The
case r ≥ s is analogous. For r = s = 1, ap

ij = ap
ji from (2) reads as

Γp
i,j + Γp

i,qΓ
q
j = Γp

j,i + Γp
j,qΓ

q
i .

The curvature C of a connection Γ : Y → J1Y is defined as C := 1
2 [Γ,Γ]

(Frölicher–Nijenhuis bracket) and the vanishing of C means just the eval-
uated equation. ¤

5. Quasiconnections

A r-th order quasiconnection in a fibered manifold p : Y → M is
a section Γ : Y → QJrY . As the nonholonomic jets can be viewed as
special quasijets, nonholonomic r-th order connections are special quasi-
connections. We revise the procedure known from Section 4. If Γ is a r-th
order quasiconnection and ∆ is a s-th order quasiconnection, we define
Γ ∗∆ := QJsΓ ◦∆.

Proposition 5. Γ ∗∆ is a (r + s)-th order quasiconnection.

Proof. It is necessary to realize the fact that the elements of QJrY

can be represented as sections M → QJrY equally as vector bundle
morphisms (with respect to all vector bundle structures) (T . . . T︸ ︷︷ ︸

r-times

M)x →

(T . . . T︸ ︷︷ ︸
r-times

Y )x̄. In other words, there is one-to-one correspondence between

such sections and such vector bundle morphisms. That is why there is one-
to-one correspondence between induced iterated tangent maps T . . . T︸ ︷︷ ︸

s-times

M→

T . . . T︸ ︷︷ ︸
s-times

QJrY and (T . . . T︸ ︷︷ ︸
s-times

T . . . T︸ ︷︷ ︸
r-times

M)x→(T . . . T︸ ︷︷ ︸
s-times

T . . . T︸ ︷︷ ︸
r-times

Y )x̄, which enables

to see the elements of QJs(QJrY ) as the elements of QJr+sY . Of course,
this proves the claim. ¤

We call Γ ∗∆ the product of Γ and ∆. The definition of the product
of quasiconnections extends naturally the concept of product introduced
in the Section 4. We intend to express the product of Γ and ∆ in local
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coordinates. For multiindices γi, i = 1, . . . , q, we denote by γi←− or γi−→ the
multiindices consisted of r first elements or s last elements of γi, respec-
tively.

Such coordinates c
pγ1...γq

i1...iq
of Γ ∗∆, in which

(3) γi←− 6= 0 . . . 0︸ ︷︷ ︸
r-times

for all i = 1, . . . , q, fulfil evidently c
pγ1...γq

i1...iq
= Γ

pγ1←−...γq←−
i1...iq

. Similarly, such
coordinates c

pγ1...γq

i1...iq
of Γ ∗∆, in which

(4) γi←− = 0 . . . 0︸ ︷︷ ︸
r-times

for all i = 1, . . . , q, fulfil c
pγ1...γq

i1...iq
= ∆

pγ1−→...γq−→
i1...iq

. It remains to derive a
general case, i.e. to express coordinates c

pγ1...γq

i1...iq
of Γ ∗ ∆, in which (3)

holds for all i = 1, . . . , u, u < q, and (4) holds for all i = u + 1, . . . , q.
We choose an equally ordered nonempty sequence of multiindices δ1 . . . δw

from the sequence of multiindices γu+1−−→ . . . γq−→, 1 ≤ w ≤ q. We denote the

remaining sequence of multiindices by ε1 . . . εw̄, w + w̄ = q. We denote
k1 . . . kw the lower indexes corresponding with δ1 . . . δw and l1 . . . lw̄ the
lower indices corresponding with ε1 . . . εw̄. The choice is denoted by ζ.
Further, we decompose the sequence of multiindices δ1 . . . δw to ν sequences
of multiindices: δ1

1 . . . δ1
w1

, . . . δν
1 . . . δν

wν
. We denote such a decomposition

by ρ. With this denotation, we derive directly the following lemma.

Lemma 2. The product Γ ∗∆ of a r-th order quasiconnection Γ with
a s-th order quasiconnection ∆ has the coordinate expression

(5) c
pγ1...γq

i1...iq
=





Γ
pγ1←−...γq←−
i1...iq

for γi←− 6= 0 . . . 0︸ ︷︷ ︸
r-times

, i = 1, . . . , q

∆
pγ1−→...γq−→
i1...iq

for γi←− = 0 . . . 0︸ ︷︷ ︸
r-times

, i = 1, . . . , q

Γ
pγ1←−...γu←−
i1...iu,iu+1...iq

+
∑
ζ

∑
ρ

Γ
pγ1←−...γu←−
i1...iu,q1...qν l1...lw̄

∆
q1δ1

1 ...δ1
w1

k1
1...k1

w1
. . .

. . . ∆
qνδν

1 ...δν
wν

kν
1 ...kν

wν
for γi←− 6= 0 . . . 0︸ ︷︷ ︸

r-times

, i = 1, . . . , u

and γi←− = 0 . . . 0︸ ︷︷ ︸
r-times

, i = u + 1, . . . , q.
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Remark 3. The associativity and non-commutativity of the product
of quasiconnections follows directly from this coordinate expression.

The following assertion completes properties of the product Γ∗∆ of r-
th order quasiconnection Γ and s-th order quasiconnection ∆ and it proves
that the introduced product generalizes naturally of the product of higher
order connections.

Proposition 6. Γ∗∆ is a nonholonomic connection if and only if both
Γ and ∆ are nonholonomic connections.

Proof. We suppose that Γ ∗ ∆ is a nonholonomic connection. It
means (cf. Section 3) that we have the identification of coordinates of
Γ ∗∆, in which it turns out that only first units in multiindices γ1, . . . , γq

of them are essential. It follows that we have the identification of this type
for coordinates with multiindices γ1←−, . . . , γq←− or γ1−→, . . . , γq−→, in other words

for coordinates of Γ or ∆, respectively and that is why both Γ and ∆ are
nonholonomic connections.

Conversely, we suppose that Γ and ∆ are nonholonomic connections.
For coordinates of Γ ∗ ∆, we have evidently the described identification
of coordinates with respect to r first elements or s last elements of multi-
indices (separately). This implication is clear, if we recall that the prod-
uct of nonholonomic connections was defined correctly and we have the
extended definition. ¤
Characterization of second order quasiconnections

Second order nonholonomic connections play an important role in
the study of functional bundles of all smooth maps between the fibers
over the same base point of two fibered manifold over the same base and
they have something to do with the Schrödinger connection in a double
fibered manifold. In [1] was deduced a useful identification of second order
nonholonomic connection with two first order connection and a special
section. We contribute to it by the following identification.

Proposition 7. Second order quasiconnections in Y are in bijection
with couples (Θ1, Θ2), where Θ1 is a first order connection in Y and Θ2 is
a second order nonholonomic connection in Y .

Proof. As the nonholonomic jets in QJ2Y are characterized by the
condition Π1

1 = 1Π, there is the canonical projection P : QJ2Y → J̃2Y
satisfying

(6) Π1
1 ◦ P = Π1

1 .
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Let Γ be a second order quasiconnection in Y . We set Θ1 = 1Π(Γ),
Θ2 = P (Γ). Locally, coordinates (Γp10

i ,Γp01
i , Γp10 01

ij ,Γp11
i ) of Γ are pro-

jected to coordinates (Γp10
i ,Γp01

i , Γp10 01
ij ) of Θ2 and (Γp11

i ) of Θ1. It fol-
lows directly from this expression that Γ is in bijection with the couple
(Θ1,Θ2). (Alternatively, (6) can be replaced by 1Π ◦P̄ = 1Π and then
Θ1 = Π1

1 (Γ), Θ2 = P̄ (Γ).) ¤

Now, it follows from [1]:

Corollary. Second order quasiconnections in Y are in bijection with

quadruples (Θ, Θ̄, ¯̄Θ,Σ), where Θ, Θ̄, ¯̄Θ are first order connections in Y

and Σ : Y → V Y ⊗
2⊗

T ∗M is a section, V Y being the vertical tangent

bundle of Y .
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