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Units in right alternative loop rings

By EDGAR G. GOODAIRE (St. John’s)

Abstract. We find conditions under which a right alternative loop ring has a Bol
loop of units.

1. Background

A groupoid is a set L together with a (closed) binary operation (a, b) 7→
a · b (often denoted by juxtaposition). If both translation maps

R(a) : x 7→ xa right multiplication

and

L(a) : x 7→ ax left multiplication

are bijections of L for all a ∈ L, then the pair (L, ·) is a quasigroup. A
quasigroup with two-sided identity element is a loop.

If a, b, c are elements of a quasigroup (L, ·), the commutator (a, b)
of a and b, and the associator (a, b, c) of a, b and c are the elements of L

uniquely defined by the equations

ab = ba(a, b) and ab · c = (a · bc)(a, b, c).

A loop is (right) Bol if it satisfies the (right) Bol identity,

(1.1) (xy · z)y = x(yz · y),
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and Moufang if it satisfies the right Bol identity and also the left Bol
identity:

x(y · xz) = (x · yx)z.

A right Bol loop L is power associative (that is, the subloop generated by a
single element is associative) and, more generally, right power alternative:

(xym)yn = xym+n

for any x, y ∈ L and any integers m and n [Rob66]. With H = 〈y〉, the
subloop generated by y, right power alternativity implies x(hH) = xH for
any x ∈ L and h ∈ H. Thus L is the disjoint union of left cosets of H and
it follows, as in group theory, that if L is finite, the order of H divides the
order of L [Bru46, §V.1]. Thus the order of any element of L divides |L|
[Bur78].

If (R, +, ·) is a (not necessarily associative) ring, and x, y, z ∈ R, we
denote the (ring) commutator of x and y by [x, y] and the (ring) associator
of x, y and z by [x, y, z]. Thus,

[x, y] = xy − yx and [x, y, z] = (xy)z − x(yz).

A ring is right alternative if it satisfies the right alternative law: (xy)y =
xy2. Right alternative rings with no nonzero elements of additive order 2
also satisfy the right Bol identity. (See [ZSSS82, §16.1], but note that
the identity called right Moufang in that work is, in fact, the right Bol
identity.) Rings which satisfy just the right alternative law need not even
be power associative [Kun98], [Goo00], so we always assume that right
alternative rings are strongly right alternative, that is, they also satisfy the
right Bol identity. As with loops, the right Bol identity in a ring with 1
implies power associativity and right power alternativity (for nonnegative
exponents), Robinson’s inductive argument in [Rob66] working verbatim.

If R is any commutative associative ring with 1 and L is a loop (with
identity, also denoted 1), one constructs the loop ring RL just as the
familiar group ring is formed. The elements of RL are formal (finite) sums

∑

`∈L

α``, α` ∈ R,
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with the understanding that
∑

`∈L

α`` =
∑

`∈L

β`` if and only if α` = β` for all ` ∈ L.

Addition and multiplication are defined in the obvious ways:

∑

`∈L

α`` +
∑

`∈L

β`` =
∑

`∈L

(α` + β`)`

(∑

`∈L

α``
)(∑

k∈L

βkk
)

=
∑

`,k∈L

(α`βk)`k.

Of importance in this paper is the fact that in any loop ring, the augmen-
tation map ε : RL → R, which is defined by ε(

∑
α``) =

∑
α`, is a ring

homomorphism. The ring element ε(α) is called the augmentation of α.

2. Right alternative loop rings

A right alternative ring is alternative if it also satisfies the left al-
ternative law: x(xy) = x2y. Right alternative rings which are not al-
ternative are, in some sense, hard to find. Albert showed that a finite
dimensional right alternative algebra over a field of characteristic 0 which
has no nonzero nil ideals is alternative [Alb49]. Mikheev obtained the
same conclusion for right alternative rings without nilpotent elements or
elements of additive order 2 [Mik69] and, more recently, Kunen proved
that a right alternative loop ring of characteristic different from two is
necessarily alternative [Kun98]. Thus, if there exists a right (but not left)
alternative loop algebra over a field, the characteristic must be two. Such
loop algebras do in fact exist.

Theorem 2.1 [GR95], [GR96]. If B is a (right) Bol loop with a unique

nonidentity commutator which is also a unique nonidentity associator and,

if R is a ring of characteristic two, then RB is strongly right alternative.

3. Units

A unit in a ring with unity is an element with a two-sided inverse.
We write u−1 for the inverse of the unit u. For any ring R, let U(R)
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denote the set of all units in R. If R is an associative ring, then U(R) is
a group. More generally, if R is an alternative ring, U(R) is a Moufang
loop [GJM96, §II.5.3], but it appears difficult to prove (in general) that
the units of a right alternative ring are even closed under multiplication.
In this connection, the following lemma is of interest and later importance.

Lemma 3.1. If a ring R satisfies the right Bol identity and U(R) is
closed under multiplication, then U(R) is a (Bol) loop.

Proof. We must show that the left and right translation maps are
bijective. Thus, let a and b be units. The equation b = xL(a) = ax has
solution x = b(ab)−1 · b since, using the Bol identity,

a(b(ab)−1 · b) = [(ab)(ab)−1]b = b.

Thus L(a) is surjective and, interestingly, this fact shows that R(a) is also
surjective. To solve b = xR(a) = xa for x, first solve yL(a) = ay = a−1

for y, and then note that x = (ba)y is a solution to xR(a) = b since
(ba · y)a = b(ay · a) = b(a−1a) = b.

Now define a−2 = a−1a−1 and note that a−1 = aa−1 · a−1 = aa−2

by the right alternative law. Thus, for any x ∈ R, we have (xa · a−2)a =
x(aa−2 · a) = x, so xa = ya implies x = y; that is, R(a) is one-to-one. As
with the case of surjectivity, this fact implies that L(a) is also one-to-one,
for suppose ax = ay. Then

xa = (a−1a · x)a = a−1(ax · a) = a−1(ay · a) = (a−1a · y)a = ya,

so x = y. ¤
Now let B be a (finite) Bol loop with a unique nonidentity commutator

which is also a unique nonidentity associator. For simplicity, we refer to
such an element as a unique nonidentity “commutator/associator” and
consistently use s to denote such an element. It is not hard to show that
s is central and of order 2 [GR95, Lemma 3.2]. Let R be a commutative,
associative ring with 1 and form the loop ring RB. If g and h are in B
and we think of these as elements of the loop ring, then, if gh 6= hg,

gh− hg = gh− sgh = (1− s)gh.

Similarly, if g, h and k are in B and (gh)k 6= g(hk), then

(gh)k − g(hk) = (gh)k − s(gh)k = (1− s)(gh)k.
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In characteristic two, these statements imply

gh + hg = [g, h] ∈ (1 + s)RB(3.1)

and

(gh)k + g(hk) = [g, h, k] ∈ (1 + s)RB,(3.2)

properties which also hold if gh = hg and (gh)k = g(hk).

Lemma 3.2. Let F be a field of characteristic two and let B be

a finite Bol loop of 2-power order with a unique nonidentity commuta-

tor/associator. If α ∈ FB has augmentation 0, then αN = 0 for some

N > 0. Hence 1 + α is a unit.

Proof. Write α =
∑

α`` ∈ FB. Using (3.1),

α2 =
∑

α2
``

2 + (1 + s)β

for some β ∈ FB, and so, for any n > 0,

α2n

=
∑

α2n

` `2
n

+ (1 + s)β

for some β ∈ FB. If |B| = 2n, then `2
n

= 1 for all ` ∈ B, so α2n

=
γ1+(1+s)β for some β ∈ FB and γ ∈ F . Since (1+s)2 = 1+2s+s2 = 0,
it follows that the square of α2n

is in F1, so αN ∈ F1 for some N . Now
ε(αN ) = ε(α)N = 0 implies αN = 0.

The final statement of the lemma holds because 1+α+α2+· · ·+αN−1

is a two-sided inverse of α. ¤
Corollary 3.3. With F and B as in Lemma 3.2, the set of units of

FB is U(FB) = {µ ∈ FB | ε(µ) 6= 0}. In particular, U(FB) is closed

under multiplication.

Proof. Since the augmentation map ε is a ring homomorphism, the
set {µ ∈ FB | ε(µ) 6= 0} is certainly closed under multiplication. To see
that this is the set of units, note first that the equation µν = 1 implies
ε(µ)ε(ν) = 1 so, if µ is a unit, ε(µ) 6= 0. Conversely, if µ ∈ FB and ε(µ) =
α 6= 0, α ∈ F , then ε(α−1µ) = 1, ε(1+α−1µ) = 0, so 1+(1+α−1µ) = α−1µ

is a unit by Lemma 3.2. Thus µ is a unit. ¤
The main result of this paper follows quickly.
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Corollary 3.4. If F is a field of characteristic two and B is a finite

Bol loop of 2-power order with unique nonidentity commutator/associator,

then the set U(FB) of units in FB is a Bol loop.

Proof. By Corollary 3.3, U(FB) is closed under multiplication. By
Theorem 2.1, U(FB) satisfies the right Bol identity, so the result follows
from Lemma 3.1. ¤

4. Indecomposability

In this section, we justify our special interest in Bol loops of 2-power
order in much of Section 3.

Call a loop indecomposable if it is not a nontrivial direct product. It
is known that any finite indecomposable group or Moufang loop with a
unique nonidentity commutator/associator is a 2-loop, that is, it consists
entirely of elements whose order is a power of 2 [GJM96, §V.1], and hence
must have order 2n for some n [GW68]. As we show here, an indecompos-
able Bol loop with a unique nonidentity commutator/associator is also a
2-loop. While we do not know if this implies that the Bol loop must have
2-power order, Bol loops of 2-power order do consist entirely of elements
of order a power of 2 (since the order of an element in a finite Bol loop
divides the order of the loop).

We require some identities satisfied by right alternative rings. Recall
that [x, y, z] = (xy)z − x(yz) denotes the associator of elements x, y, z in
a ring. Thus, the right alternative identity (xy)y = xy2 can be written
[x, y, y] = 0. Let R be a ring of characteristic two which satisfies this
identity. Replacing y by y + z in [x, y, y] = 0 gives

[x, y, y] + [x, y, z] + [x, z, y] + [x, z, z] = 0.

Since [x, y, y] = [x, z, z] = 0, we obtain [x, y, z] + [x, z, y] = 0 and hence

[x, y, z] = [x, z, y]

(in characteristic two). Suppose R is strongly right alternative in that it
also satisfies the Bol identity (1.1). Then

(x · yz)y − x(yz · y) = (x · yz)y − (xy · z)y = −[x, y, z]y = [x, z, y]y,
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which says that R satisfies the identity

[x, yz, y] = [x, z, y]y.

Any ring satisfies the Teichmuller identity

(4.1) [x, y, zw]− [x, yz, w] + [xy, z, w] = x[y, z, w] + [x, y, z]w

which can be verified directly. Setting w = y gives

[x, y, zy]− [x, yz, y] + [xy, z, y] = x[y, z, y] + [x, y, z]y

so that (in characteristic two),

(4.2) x[y, y, z] = x[y, z, y] = [x, y, zy] + [x, yz, y] + [xy, z, y] + [x, y, z]y.

Setting z = y and w = z in (4.1) and using [x, y, y] = 0 gives (in charac-
teristic two)

[x, y, yz] + [x, y2, z] + [xy, y, z] = x[y, y, z] + [x, y, y]z = x[y, y, z]

using the right alternative law at the last equality. Comparing with (4.2)
gives

[x, y, zy] + [x, yz, y] + [xy, z, y] + [x, y, z]y = [x, y, yz] + [x, y2, z] + [xy, y, z].

Since [xy, z, y] = [xy, y, z] and [x, yz, y] = [x, z, y]y = [x, y, z]y, we obtain

(4.3) [x, y, yz + zy] = [x, y2, z].

In the proof of the theorem which follows, it is convenient to have
available some standard loop theoretical terminology. A loop L has three
subloops Nλ, Nµ and Nρ called, respectively, the left, middle and the right
nuclei. These are defined by

Nλ = Nλ(L) = {a ∈ L | (ax)y = a(xy) for all x, y ∈ L},
Nµ = Nµ(L) = {a ∈ L | (xa)y = x(ay) for all x, y ∈ L},
Nρ = Nρ(L) = {a ∈ L | (xy)a = x(ya) for all x, y ∈ L}.

The nucleus of L is N(L) = Nλ ∩Nµ ∩Nρ and the centre of L is

Z(L) = {a ∈ N(L) | ax = xa for all x ∈ L}.
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Theorem 4.1. Let B be a finite Bol loop with a unique nonidentity

commutator/associator. Then B is the direct product of an abelian group

and a Bol 2-loop. In particular, if B is indecomposable and not associative,

then B itself is a 2-loop.

Proof. Let R be a commutative associative coefficient ring of char-
acteristic two. By Theorem 2.1, the loop ring RB is strongly right alter-
native. For any y and z in RB, the element yz + zy is the sum of elements
of the form gh+hg, g, h ∈ B, which is an element of (1+s)RB as noted in
(3.1). Thus yz + zy = (1 + s)w for some w ∈ RB, so [x, y, yz + zy] =
(1 + s)[x, y, w]. The associator [x, y, w] is the sum of elements of the
form (gh)k + g(hk), g, h, k ∈ B, which is also in (1 + s)RB [see (3.2)],
so [x, y, w] = (1 + s)t for some t ∈ RB and [x, y, zy + yz] = (1 + s)2t = 0.
From (4.3), we conclude that [x, y2, z] = 0 for all x, y, z ∈ RB. In partic-
ular, [g, h2, k] = 0 for all g, h, k ∈ B; that is, h2 ∈ Nµ(B) for all h ∈ B.
In a right Bol loop, it is easy to see that the middle nucleus and right nu-
cleus are identical. Thus h2 ∈ Nρ(B) for all h. By Lemma 3.4 of [GR95],
h2 ∈ Nλ and gh2 = h2g for all g ∈ L. Thus squares in B are central.

Let T be the set of all elements in B whose order is a power of 2 and
let S be the set of all elements of odd order in B. Since x2n−1 = 1 implies
x = x2n, the elements of S are central and hence form a normal subloop.
Recall that there is just one commutator and one associator in B, that
these are the same (the element we denote s), and that s is central and of
order 2. Let a, b ∈ T and consider

(ab)2 = (ab)(ab)

= a(b · ab)(a, b, ab)

= a(ba · b)(a, b, ab)(b, a, b)

= a(ab · b)(a, b, ab)(b, a, b)(a, b)

= a(ab2)(a, b, ab)(b, a, b)(a, b) by the right alternative law

= a2b2(a, b, ab)(b, a, b)(a, b) since squares are central.

Each of the associators (a, b, ab) and (b, a, b), and the commutator (a, b),
is either 1 or s. It follows that (ab)4 = a4b4 so that ab also has order a
power of 2. In fact, given the equation ab = c, it is easy to see that if any
two of a, b, c have orders a power of 2, then the third element has order a
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power of 2 also. Thus T is a subloop. To prove that T is normal, we must
prove that for any x, y ∈ B,

xT = Tx, (Tx)y = T (xy) and x(yT ) = (xy)T.

Each of these properties follows immediately from the fact that B has a
unique commutator/associator which is central of order 2. For example,
for any t ∈ T , (tx)y = t(xy)(t, x, y) = t′(xy) with t′ = t(t, x, y) ∈ T . It
remains only to observe that B = TS. For this, let a ∈ B have order
2k` with 2 - `. Write u2k + v` = 1 for integers u and v and note that
a = au2k

av` with (au2k

)` = 1 (hence au2k ∈ S) and (av`)2
k

= 1 (hence
av` ∈ T ). ¤

5. An open question

We conclude with an open question which this work has brought to
light. For any loop L and field F , the set ∆(L) = {α ∈ FL | ε(α) = 0}
is always an ideal (because the augmentation map ε is a homomorphism).
If FL is alternative (not necessarily associative), L is a 2-loop and F has
characteristic two, it is known that ∆(L) is nilpotent [G0095]: ∆(L)n =
{0} for some n. Is this true if FL is merely (strongly) right alternative?
Lemma 3.2 at least gives that ∆(L) is nil: α ∈ ∆(L) implies αn = 0 for
some n.
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