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The natural operators transforming affinors
to tensor fields of type (4,4)

By JACEK DȨBECKI (Kraków)

Abstract. We give a complete classification of natural operators transforming
affinors to tensor fields of type (4,4).

The affinors on a smooth manifold M are, by definition, the tensor
fields of type (1,1) on M . All natural operators transforming affinors to
tensor fields of type (r, r) for r = 0 and r = 1 are classified in [2], for
r = 2 in [3], for r = 3 in [4]. Unfortunately, the methods used in these
cases are inadequate to investigate the cases r ≥ 4. In this paper we give
a modification of the method presented in [4]. It enables us to receive a
full characterization of natural operators transforming affinors to tensor
fields of type (4,4). Since they form a module over the ring consisting of
the known natural operators transforming affinors to functions, we prove
that this module is free and finite-dimensional, and we find a basis of it.

Let p, q be non-negative integers. We will use the symbol Xp
q M to

denote the vector space of all smooth tensor fields of type (p, q) on a smooth
manifold M . If V is a vector space then we will write T p

q V for

V ⊗ · · · ⊗ V︸ ︷︷ ︸
p times

⊗V ∗ ⊗ · · · ⊗ V ∗
︸ ︷︷ ︸

q times

and if f : V −→ W is an isomorphism between two vector spaces we will
write T p

q f for

f ⊗ · · · ⊗ f︸ ︷︷ ︸
p times

⊗ f−1∗ ⊗ · · · ⊗ f−1∗
︸ ︷︷ ︸

q times

: T p
q V −→ T p

q W.

Mathematics Subject Classification: 53A55, 53A45.
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If ϕ : M −→ N is an immersion between two smooth manifolds of the
same dimension then two tensor fields t ∈ Xp

q M and u ∈ Xp
q N are said to

be ϕ-related, if u(ϕ(x)) = T p
q (Txϕ)t(x) for every x ∈ M .

Let n, p, q, r, s be non-negative integers. A family of maps AM :
Xp

q M −→ Xr
s M , where M is an arbitrary n-dimensional smooth manifold,

is called the natural operator transforming tensor fields of type (p, q) to
tensor fields of type (r, s) if for every injective immersion ϕ : M −→ N

between two n-dimensional smooth manifolds, for every t ∈ Xp
q M and

every u ∈ Xp
q N the tensor fields AM (t) and AN (u) are ϕ-related whenever

t and u are ϕ-related. (This is a special case of a general definition of
natural operators, see [5].)

Let k be a non-negative integer. A natural operator A transforming
tensor fields of type (p, q) to tensor fields of type (r, s) is said to be of
order k if for any n-dimensional smooth manifold M , any x ∈ M and all
t, u ∈ Xp

q M the following implication

jk
xt = jk

xu =⇒ AM (t)(x) = AM (u)(x)

holds (here jk
xt denotes the k-jet of t at x). It is known (see [2]) that if

p = q and r = s then every natural operator transforming tensor fields of
type (p, q) to tensor fields of type (r, s) has order zero. This reduces the
problem of finding natural operators to determining equivariant maps (see
[5], [6]).

We racall that the group GL(n,K), where K is a field, acts on T p
q Kn

in the following way: if t ∈ T p
q Kn and A ∈ GL(n,K) then

(t ·A)i1...ip

j1...jq
= (A−1)i1

k1
. . . (A−1)ip

kp
t
k1...kp

l1...lq
Al1

j1
. . . A

lq
jq

for all i1, . . . , ip, j1, . . . , jq ∈ {1, . . . , n}.
Definition. A map a : T p

q Rn −→ T r
sRn is called to be equivariant if

a(t · A) = a(t) · A for all t ∈ T p
q Rn, A ∈ GL(n,R), and if a ◦ b is smooth

for every smooth map b : Rn −→ T p
q Rn. (The latter condition forces the

smoothness of a, but a proof of this is not simple, see [1].)

The set of all such equivariant maps will be denoted by E(p,q),(r,s),n.
Using standard methods (see [5], [6], [2]) we can show that there is a one-to-
one correspondence between natural operators of order zero transforming
tensor fields of type (p, q) to tensor fields of type (r, s) and equivariant
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maps from E(p,q),(r,s),n. Namely, if A is a natural operator then the corre-
sponding equivariant map a is defied by

a(t(0)) = ARn(t)(0)

for any t ∈ Xp
qRn (since A has order zero, the definition is independent of a

choice of t). Conversely, if a ∈ E(p,q),(r,s),n then the corresponding natural
operator is for every n-dimensional smooth manifold M , every t ∈ Xp

q M
and every x ∈ M defined by

AM (t)(x) = T r
s (Txϕ)−1a(T p

q (Txϕ)t(x)),

where ϕ is a chart on M .
Since we have established the relation between all natural operators

and equivariant maps for p = q and r = s, from now on we will study
equivariant maps instead of natural operators.

We first observe that E(p,q),(0,0),n is a ring and E(p,q),(r,s),n is a module
over E(p,q),(0,0),n. In the paper [2] it is given a classification of equivariant
maps transforming tensors of type (1,1) to tensors of type (0,0). Namely,
for every a ∈ E(1,1),(0,0),n there is a uniquely determined smooth function
f : Rn −→ R such that

(1) a(t) = f(c1(t), . . . , cn(t))

for every t ∈ T 1
1Rn, where ci : T 1

1Rn −→ R for i ∈ {1, . . . , n} are the
coefficients of the characteristic polynomial of a linear endomorphism i.e.

(2) det(λ idRn −t) = λn +
n∑

i=1

ci(t)λn−i

for every λ ∈ R and t ∈ T 1
1Rn. Of course, the converse statement also is

true: for every smooth map f : Rn −→ R formula (1) defines an equivariant
map a ∈ E(1,1),(0,0),n.

We can also construct examples of equivariant maps from E(1,1),(r,r),n

for each non-negative integer r.

Example. Suppose that ψ : {1, . . . , r} −→ N and σ ∈ Sr, where N is
the set of all non-negative integers and Sr denotes the set of all permuta-
tions of the set {1, . . . , r}. Put

(3) eψ,σ(t)i1...ir
j1...jr

= (tψ(1))iσ(1)
j1

. . . (tψ(r))iσ(r)
jr



366 Jacek Dȩbecki

for every t ∈ T 1
1Rn and all i1, . . . , ir, j1, . . . , jr ∈ {1, . . . , n}. Here tk,

where k is a non-negative integer, stands for

t ◦ · · · ◦ t︸ ︷︷ ︸
k times

.

It is immediate that eψ,σ ∈ E(1,1),(r,r),n.

We are now in a position to formulate our main result.

Theorem. The equivariant maps eψ,σ for

ψ : {1, 2, 3, 4} −→ {0, . . . , n− 1}

and σ ∈ S4 satisfying one out of the following ten conditions:

1. ψ(1) = n− 1 and

σ =
(

1 2 3 4

1 2 3 4

)
,

2. ψ(1) ≤ n− 2, ψ(2) = n− 1 and σ is an element of the following set

{(
1 2 3 4

1 2 3 4

)
,

(
1 2 3 4

2 1 3 4

)
,

(
1 2 3 4

3 1 2 4

)
,

(
1 2 3 4

4 1 2 3

)}
,

3. ψ(1) = n− 2, ψ(2) ≤ n− 2, ψ(3) = n− 1 and σ is an element of one

out of the following two sets

{(
1 2 3 4

1 2 3 4

)
,

(
1 2 3 4

2 1 3 4

)
,

(
1 2 3 4

3 1 2 4

)
,

(
1 2 3 4

4 1 2 3

)}
,

{(
1 2 3 4

1 3 2 4

)
,

(
1 2 3 4

1 4 2 3

)
,

(
1 2 3 4

2 3 1 4

)
,

(
1 2 3 4

2 4 1 3

)
,

(
1 2 3 4

3 4 1 2

)}
,

4. ψ(1) ≤ n− 3, ψ(2) ≤ n− 2, ψ(3) = n− 1 and σ is an element of one

out of the following three sets

{(
1 2 3 4

1 2 3 4

)
,

(
1 2 3 4

2 1 3 4

)
,

(
1 2 3 4

3 1 2 4

)
,

(
1 2 3 4

4 1 2 3

)}
,

{(
1 2 3 4

1 3 2 4

)
,

(
1 2 3 4

1 4 2 3

)
,

(
1 2 3 4

2 3 1 4

)
,

(
1 2 3 4

2 4 1 3

)
,

(
1 2 3 4

3 4 1 2

)}
,

{(
1 2 3 4

3 2 1 4

)
,

(
1 2 3 4

4 2 1 3

)
,

(
1 2 3 4

4 3 1 2

)}
,
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5. ψ(1) = n− 2, ψ(2) ≤ n− 2, ψ(3) ≤ n− 2 and σ is an element of one

out of the following three sets

{(
1 2 3 4

1 2 3 4

)
,

(
1 2 3 4

2 1 3 4

)
,

(
1 2 3 4

3 1 2 4

)
,

(
1 2 3 4

4 1 2 3

)}
,

{(
1 2 3 4

1 3 2 4

)
,

(
1 2 3 4

1 4 2 3

)
,

(
1 2 3 4

2 3 1 4

)
,

(
1 2 3 4

2 4 1 3

)
,

(
1 2 3 4

3 4 1 2

)}
,

{(
1 2 3 4

1 2 4 3

)
,

(
1 2 3 4

1 3 4 2

)
,

(
1 2 3 4

2 3 4 1

)}
,

6. ψ(1) ≤ n− 3, ψ(2) = n− 2, ψ(3) ≤ n− 2 and σ is an element of one

out of the following five sets

{(
1 2 3 4

1 2 3 4

)
,

(
1 2 3 4

2 1 3 4

)
,

(
1 2 3 4

3 1 2 4

)
,

(
1 2 3 4

4 1 2 3

)}
,

{(
1 2 3 4

1 3 2 4

)
,

(
1 2 3 4

1 4 2 3

)
,

(
1 2 3 4

2 3 1 4

)
,

(
1 2 3 4

2 4 1 3

)
,

(
1 2 3 4

3 4 1 2

)}
,

{(
1 2 3 4

1 2 4 3

)
,

(
1 2 3 4

1 3 4 2

)
,

(
1 2 3 4

2 3 4 1

)}
,

{(
1 2 3 4

3 2 1 4

)
,

(
1 2 3 4

4 2 1 3

)
,

(
1 2 3 4

4 3 1 2

)}
,

{(
1 2 3 4

2 1 4 3

)
,

(
1 2 3 4

3 1 4 2

)
,

(
1 2 3 4

3 2 4 1

)
,

(
1 2 3 4

4 1 3 2

)
,

(
1 2 3 4

4 2 3 1

)}
,

7. ψ(1) = n− 3, ψ(2) ≤ n− 3, ψ(3) ≤ n− 2 and σ is an element of one

out of the following six sets

{(
1 2 3 4

1 2 3 4

)
,

(
1 2 3 4

2 1 3 4

)
,

(
1 2 3 4

3 1 2 4

)
,

(
1 2 3 4

4 1 2 3

)}
,

{(
1 2 3 4

1 3 2 4

)
,

(
1 2 3 4

1 4 2 3

)
,

(
1 2 3 4

2 3 1 4

)
,

(
1 2 3 4

2 4 1 3

)
,

(
1 2 3 4

3 4 1 2

)}
,

{(
1 2 3 4

1 2 4 3

)
,

(
1 2 3 4

1 3 4 2

)
,

(
1 2 3 4

2 3 4 1

)}
,

{(
1 2 3 4

3 2 1 4

)
,

(
1 2 3 4

4 2 1 3

)
,

(
1 2 3 4

4 3 1 2

)}
,

{(
1 2 3 4

2 1 4 3

)
,

(
1 2 3 4

3 1 4 2

)
,

(
1 2 3 4

3 2 4 1

)
,

(
1 2 3 4

4 1 3 2

)
,

(
1 2 3 4

4 2 3 1

)}
,
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{(
1 2 3 4

1 4 3 2

)
,

(
1 2 3 4

2 4 3 1

)
,

(
1 2 3 4

3 4 2 1

)}
,

8. ψ(1) ≤ n− 4, ψ(2) ≤ n− 3, ψ(3) ≤ n− 2,

9. ψ(1) = n− 2, ψ(2) = 0, ψ(3) ≤ n− 2 and

σ =
(

1 2 3 4

3 1 4 2

)
,

10. ψ(1) = n− 2, ψ(2) = 0, ψ(3) ≤ n− 2 and

σ =
(

1 2 3 4

2 1 4 3

)

form a basis of the module E(1,1),(4,4),n.

We must give a lemma before we start to prove our theorem. Let us de-
note by Mr,n the set of all pairs (α, β) of maps α : {1, . . . , r} −→ {1, . . . , n}
and β : {1, . . . , r} −→ {1, . . . , n} such that for every i ∈ {1, . . . , n} the
numbers of elements of the sets α−1({i}) and β−1({i}) are equal. The
number of elements of Mr,n will be denoted by m(r, n).

Lemma. Let t ∈ T 1
1Rn be a linear endomorphism of Rn with n dif-

ferent complex eingenvalues. Then there is a vector subspace V ⊂ T r
rRn

such that dim V ≤ m(r, n) and that for every a ∈ E(1,1),(r,r),n we have

a(t) ∈ V .

A proof of the lemma can be found in [4].

Proof of the theorem. We will assume that the set

Kr,n = {0, . . . , n− 1}{1,...,r} × Sr

is equiped with the following order: for ψ, ω : {1, . . . , r} −→ {0, . . . , n− 1}
and σ, τ ∈ Sr we have (ψ, σ) < (ω, τ) if and only if

(ψ(1), σ(1), . . . , ψ(r), σ(r)) < (ω(1), τ(1), . . . , ω(r), τ(r))

with respect to the lexicographic order i.e.

(ψ, σ) < (ω, τ) ⇐⇒ ∃k∈{1,...,r}
(∀l∈{1,...,k−1} ψ(l) = ω(l) ∧ σ(l) = τ(l)

)

∧ (
ψ(k) < ω(k) ∨ (

ψ(k) = ω(k) ∧ σ(k) < τ(k)
))

.
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For z ∈ Rn the linear endomorphism tz : Rn −→ Rn is defined by imposing
the following conditions: tz(ei) = ei+1 for i ∈ {1, . . . , n− 1} and tz(en) =
−zne1−· · ·− z1en, where e1, . . . , en denotes the canonical basis of Rn, i.e.

(4) tz =




0 −zn

1
. . .

...
. . . 0 −z2

1 −z1




in the canonical basis. Finally, let us denote by Lr,n the set consisting of
all pairs (ψ, σ) ∈ Kr,n with the property that there exists any standard
coordinate on T r

rRn such that this coordinate of eψ,σ(tz) equals 1 for every
z ∈ Rn and that (ψ, σ) is the minimal element of Kr,n for which this
coordinate of eψ,σ(tz) does not vanish for some z ∈ Rn i.e.

Lr,n = {(ψ, σ) ∈ Kr,n : ∃i1,...,ir,j1,...,jr∈{1,...,n}(∀z∈Rn eψ,σ(tz)
i1...,ir

j1...jr
= 1)

∧(∀(ω,τ)∈Kr,n
(ω, τ) < (ψ, σ) =⇒ (∀z∈Rn eω,τ (tz)

i1...,ir

j1...jr
= 0))}.

By (4),

(k ≤ n− j ∧ k 6= i− j) =⇒ (tkz)i
j = 0,

k = i− j =⇒ (tkz)i
j = 1

for every z ∈ Rn, every non-negative integer k and all i, j ∈ {1, . . . , n}.
Therefore from (3) we see that

(∃k∈{1,...,r}ψ(k)≤n− jk ∧ ψ(k) 6= iσ(k)− jk)=⇒ eψ,σ(tz)
i1,...,ir

j1,...,jr
=0,(5)

(∀k∈{1,...,r} ψ(k) = iσ(k) − jk) =⇒ eψ,σ(tz)
i1,...,ir

j1,...,jr
= 1(6)

for every (ψ, σ) ∈ Kr,n, every z ∈ Rn and all i1, . . . , ir, j1, . . . , jr ∈
{1, . . . , n}.

Fix i1, . . . , ir, j1, . . . , jr ∈ {1, . . . , n}. We now describe an algorithm
for finding the minimal pair (ψ, σ) ∈ Kr,n such that eψ,σ(tz)

i1,...,ir

j1,...,jr
6= 0 for

some z ∈ Rn. The construction of (ψ, σ) is by induction. Our algorithm
does not work for arbitrary i1, . . . , ir, j1, . . . , jr ∈ {1, . . . , n}. Necessary
conditions will be formulated in the course of the construction.
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Algorithm. Suppose that ψ(1), σ(1), . . . , ψ(k−1), σ(k−1) are defined,
where k ∈ {1, . . . , r}. We will define ψ(k) and σ(k). Let

Gk = {i ∈ {1, . . . , n} : ∃u∈{1,...,r} (∀v∈{1,...,k−1} u 6= σ(v))∧i = iu∧i ≥ jk}.

If the set Gk is empty, then our algorithm breaks down. If not, we define
gk = min Gk and put ψ(k) = gk − jk. Let

Hk = {u ∈ {1, . . . , r} : (∀v∈{1,...,k−1} u 6= σ(v)) ∧ iu = gk}.

We define hk = min Hk and put σ(k) = hk.

Of course, since gk ∈ Gk whenever gk is defined, Hk 6= ∅ whenever
Hk is defined. It is also seen at once that if it is possible to continue the
construction to the very end (i.e. if Gk 6= ∅ for every k ∈ {1, . . . , r}), then
we obtain (ψ, σ) ∈ Kr,n. We now show that such (ψ, σ) is the minimal
pair from Kr,n with the property that eψ,σ(tz)

i1,...,ir

j1,...,jr
6= 0 for some z ∈ Rn.

From (6) we have eψ,σ(tz)
i1,...,ir

j1,...,jr
= 1 for every z ∈ Rn, as hk ∈ Hk for

every k ∈ {1, . . . , r}. Suppose that (ω, τ) ∈ Kr,n and that (ω, τ) < (ψ, σ).
Thus there is k ∈ {1, . . . , r} such that ω(l) = ψ(l) and τ(l) = σ(l) for every
l ∈ {1, . . . , k − 1} and ω(k) < ψ(k) or ω(k) = ψ(k) and τ(k) < σ(k). We
have to prove that eω,τ (tz)

i1,...,ir

j1,...,jr
= 0 for every z ∈ Rn. If ω(k) < ψ(k)

then ω(k) < gk − jk. Since τ(l) = σ(l) for every l ∈ {1, . . . , k− 1}, it must
be either iτ(k) < jk or iτ(k) ∈ Gk. Since gk = min Gk, the last condition
implies gk ≤ iτ(k). Therefore eω,τ (tz)

i1,...,ir

j1,...,jr
= 0 for every z ∈ Rn as

follows from (5). If ω(k) = ψ(k) and τ(k) < σ(k) then ω(k) = gk − jk and
τ(k) < hk. Since hk = min Hk, the last inequality implies that τ(k) /∈ Hk,
and since τ(l) = σ(l) for every l ∈ {1, . . . , k − 1}, it must be iτ(k) 6= gk.
Therefore eω,τ (tz)

i1,...,ir

j1,...,jr
= 0 for every z ∈ Rn as follows from (5). This is

the desired conclusion. Actually, we have proved that (ψ, σ) ∈ Lr,n.
Our next goal is to show that all pairs (ψ, σ) ∈ K4,n specified in the

theorem can be obtain as a result of applying our algorithm.
We first observe that if (ψ, σ) ∈ Kr,n, if m1, . . . , mr ∈ {1, . . . , n} are

such that m1 ≤ · · · ≤ mr and if we set i1 = mσ−1(1), . . . , ir = mσ−1(r),
j1 = m1 − ψ(1), . . . , jr = mr − ψ(r), then our algorithm applying to
i1, . . . , ir, j1 . . . , jr yields (ψ, σ), whenever

∀k,l∈{1,...,r} (k < l ∧mk = ml) =⇒ σ(k) < σ(l)
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and whenever j1, . . . , jr ∈ {1, . . . , n}. This remark facilitate us to produce
(ψ, σ) from items 1–8 of the theorem.

1. In order to obtain by our algorithm any (ψ, σ) from item 1 of the
theorem it suffices to take m1 = n, m2 = n, m3 = n, m4 = n.

2. Suppose ψ is as in item 2 of the theorem. If σ is an element of the set
from item 2 of the theorem then in order to obtain by our algorithm
(ψ, σ) it suffices to take m1 = n− 1, m2 = n, m3 = n, m4 = n.

3. Suppose ψ is as in item 3 of the theorem.
If σ is an element of the first set from item 3 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n, m3 = n, m4 = n.
If σ is an element of the second set from item 3 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n− 1, m3 = n, m4 = n.

4. Suppose ψ is as in item 4 of the theorem.
If σ is an element of the first set from item 4 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n, m3 = n, m4 = n.
If σ is an element of the second set from item 4 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n− 1, m3 = n, m4 = n.
If σ is an element of the third set from item 4 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 2,
m2 = n− 1, m3 = n, m4 = n.

5. Suppose ψ is as in item 5 of the theorem.
If σ is an element of the first set from item 5 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n, m3 = n, m4 = n.
If σ is an element of the second set from item 5 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n− 1, m3 = n, m4 = n.
If σ is an element of the third set from item 5 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n− 1, m3 = n− 1, m4 = n.

6. Suppose ψ is as in item 6 of the theorem.
If σ is an element of the first set from item 6 of the theorem then in
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order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n, m3 = n, m4 = n.
If σ is an element of the second set from item 6 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n− 1, m3 = n, m4 = n.
If σ is an element of the third set from item 6 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n− 1, m3 = n− 1, m4 = n.
If σ is an element of the fourth set from item 6 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 2,
m2 = n− 1, m3 = n, m4 = n.
If σ is an element of the fifth set from item 6 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 2,
m2 = n− 1, m3 = n− 1, m4 = n.

7. Suppose ψ is as in item 7 of the theorem.
If σ is an element of the first set from item 7 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n, m3 = n, m4 = n.
If σ is an element of the second set from item 7 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n− 1, m3 = n, m4 = n.
If σ is an element of the third set from item 7 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 1,
m2 = n− 1, m3 = n− 1, m4 = n.
If σ is an element of the fourth set from item 7 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 2,
m2 = n− 1, m3 = n, m4 = n.
If σ is an element of the fifth set from item 7 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 2,
m2 = n− 1, m3 = n− 1, m4 = n.
If σ is an element of the sixth set from item 7 of the theorem then in
order to obtain by our algorithm (ψ, σ) it suffices to take m1 = n− 2,
m2 = n− 2, m3 = n− 1, m4 = n.

8. Suppose ψ is as in item 8 of the theorem. If σ is an arbitrary per-
mutation from S4 then in order to obtain by our algorithm (ψ, σ) it
suffices to take m1 = n− 3, m2 = n− 2, m3 = n− 1, m4 = n.



The natural operators transforming affinors . . . 373

9. In order to obtain any (ψ, σ) from item 9 of the theorem it suffices to
apply our algorithm to i1 = n, i2 = n, i3 = n− 1, i4 = n− 1, j1 = 1,
j2 = n, j3 = n− 1− ψ(3), j4 = n− ψ(4).

10. In order to obtain any (ψ, σ) from item 10 of the theorem it suffices to
apply our algorithm to i1 = n, i2 = n− 1, i3 = n, i4 = n− 1, j1 = 1,
j2 = n, j3 = n− 1− ψ(3), j4 = n− ψ(4).

It is easy to check that ten conditions formulated in the theorem
exclude each other and that the sets specified in each item are pairwise
disjoint.

Let Pn denote the set consisting of all pairs (ψ, σ) ∈ K4,n specified in
the theorem. The set of the sequences of integers (i1, i2, i3, i4, j1, j2, j3, j4),
which we used above to obtain by our algorithm the elements of Pn, will
be denoted by Qn. We will write (i1, i2, i3, i4, j1, j2, j3, j4) = π(ψ, σ) if
(ψ, σ) ∈ Pn is the result of our algorithm applied to
(i1, i2, i3, i4, j1, j2, j3, j4) ∈ Qn. Therefore π : Pn −→ Qn is a bijection.
We have proved that Pn ⊂ L4,n. The definition of L4,n makes it obvious
that there is an injection ρ : L4,n −→ {1, . . . , n}8 such that ρ|Pn = π

and that if (i1, i2, i3, i4, j1, j2, j3, j4) = ρ(ψ, σ) for any (ψ, σ) ∈ L4,n then
eψ,σ(tz)i1i2i3i4

j1j2j3j4
= 1 for every z ∈ Rn and eω,τ (tz)i1i2i3i4

j1j2j3j4
= 0 for every

(ω, τ) ∈ K4,n such that (ω, τ) < (ψ, σ) and for every z ∈ Rn.

Let z ∈ Rn. We now show that the vectors eψ,σ(tz) ∈ T 4
4Rn for

(σ, ψ) ∈ L4,n are linearly independent. Suppose that λψ,σ ∈ R for (ψ, σ) ∈
L4,n are such that ∑

(ψ,σ)∈L4,n

λψ,σeψ,σ(tz) = 0.

We have to prove that λψ,σ = 0 for (ψ, σ) ∈ L4,n. The proof is by induction
on (ψ, σ). Fix (ψ, σ) ∈ L4,n and assume λω,τ = 0 for (ω, τ) ∈ L4,n such
that (ω, τ) > (ψ, σ). Taking (i1, i2, i3, i4, j1, j2, j3, j4) = ρ(ψ, σ) we get

λψ,σ =
∑

(ψ,σ)∈L4,n

λψ,σeψ,σ(tz)i1i2i3i4
j1j2j3j4

= 0,

which is our claim.
If z ∈ Rn is such that tz has n different complex eingenvalues then,

by our lemma, there is a subspace V ⊂ T 4
4Rn such that dim V ≤ m(4, n)

and a(tz) ∈ V for every a ∈ E(1,1),(4,4),n. Consequently eψ,σ(tz) ∈ V
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for every (ψ, σ) ∈ L4,n. A trivial computation shows that m(4, n) =
24n4− 72n3 +82n2− 33n. Since ten conditions formulated in the theorem
exclude each other and the sets specified in each item are pairwise disjoint,
we see that the number of elements of Pn equals n3+4n2(n−1)+9n(n−1)+
12n(n− 1)(n− 2) + 12n(n− 1)2 + 20n(n− 1)(n− 2) + 23n(n− 1)(n− 2) +
24n(n− 1)(n− 2)(n− 3)+ n(n− 1) +n(n− 1) = 24n4− 72n3+82n2− 33n,
which is equal to m(4, n). Since Pn ⊂ L4,n and the vectors eψ,σ(tz)
for (ψ, σ) ∈ L4,n are linearly independent, we deduce that eψ,σ(tz) for
(ψ, σ) ∈ Pn form a basis of V . Furthermore, we see that Pn = L4,n,
which is worth pointing out. We now prove that if x ∈ V is such that
xi1i2i3i4

j1j2j3j4
= 0 for every (i1, i2, i3, i4j1, j2, j3, j4) ∈ Qn, then x = 0. The

vector x is a linear combination of the vectors of our basis of V , i.e.

x =
∑

(ψ,σ)∈Pn

xψ,σeψ,σ(tz),

where xψ,σ ∈ R for (ψ, σ) ∈ Pn. Thus it is sufficient to show that xψ,σ = 0
for every (ψ, σ) ∈ Pn. The proof is by induction on (ψ, σ). Fix (ψ, σ) ∈ Pn

and assume xω,τ = 0 for (ω, τ) ∈ Pn such that (ω, τ) > (ψ, σ). Taking
(i1, i2, i3, i4, j1, j2, j3, j4) = π(ψ, σ) we get

xψ,σ =
∑

(ψ,σ)∈Pn

xψ,σeψ,σ(tz)i1i2i3i4
j1j2j3j4

= 0,

which is our claim.
We next prove that if a, b ∈ E(1,1),(4,4),n are such that a(tz)i1i2i3i4

j1j2j3j4
=

b(tz)i1i2i3i4
j1j2j3j4

for every (i1, i2, i3, i4, j1, j2, j3, j4) ∈ Qn and every z ∈ Rn,
then a = b. Clearly, it suffices to show that if a ∈ E(1,1),(4,4),n is such
that a(tz)i1i2i3i4

j1j2j3j4
= 0 for every (i1, i2, i3, i4, j1, j2, j3, j4) ∈ Qn and every

z ∈ Rn, then a = 0. Let u ∈ T 1
1Rn. We have to prove that a(u) = 0.

We first consider the case that u has n different complex eingenvalues.
An easy computation shows that for every z ∈ Rn the coefficients of the
characteristic polynomial of tz coincide with the coordinates of z, i.e.

(7) det




λ zn

−1
. . .

...
. . . λ z2

−1 λ + z1


 = λn +

n∑

i=1

ziλn−i
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for every λ ∈ R, where (z1, . . . , zn) = z. Thus, writing c(u) for the vector
(c1(u), . . . , cn(u)) ∈ Rn, where c1(u), . . . , cn(u) are the coefficients of the
characteristic polynomial of u, we see that the characteristic polynomial
of u is the same as that of tc(u). Combining this with the fact that both
u and tc(u) have n different complex eingenvalues we conclude, by Jor-
dan’s theorem, that there is A ∈ GL(n,R) such that u = tc(u) · A. Since
a(tc(u))= 0, which is due to the fact proved in the previous paragraph, we
have a(u) = a(tc(u) · A) = a(tc(u)) · A = 0 · A = 0 as desired. We now
turn to the case of an arbitrary u. Let v ∈ T 1

1Rn be an arbitrary matrix
with n different complex eingenvalues and let R be an n-dimensional affine
subspace in T 1

1Rn such that u ∈ R and v ∈ R. Suppose that D(Z) denotes
the discriminant of the characteristic polynomial of a matrix Z ∈ T 1

1Rn.
Then D : T 1

1Rn −→ R is a polynomial and D(Z) 6= 0 if and only if Z has
n different complex eingenvalues. Of course, D|R 6= 0, because D(v) 6= 0.
Therefore S = {Z ∈ R : D(Z) 6= 0} is a dense subset of R. We known that
a|S = 0. Suppose that P : Rn −→ T 1

1Rn is an affine parametrization of R.
By the definition of equivariant maps, the composition a◦P is smooth and
so is a|R = (a ◦ P ) ◦ P−1. Since each continous map vanishing on a dense
subset vanishes everywhere, we have a|R = 0. In particular a(u) = 0 as
required.

Fix a ∈ E(1,1),(4,4),n. Our next goal is to determine smoth functions
fψ,σ : Rn −→ R for (ψ, σ) ∈ Pn such that

(8) a(tz)i1i2i3i4
j1j2j3j4

=
∑

(ψ,σ)∈Pn

fψ,σ(z)eψ,σ(tz)i1i2i3i4
j1j2j3j4

for every (i1, i2, i3, i4, j1, j2, j3, j4) ∈ Qn and every z ∈ Rn. The defi-
nition is by induction on (ψ, σ) ∈ Pn. Suppose that (ψ, σ) ∈ Pn and
that fω,τ for (ω, τ) ∈ Pn such that (ω, τ) > (ψ, σ) are defined. We take
(i1, i2, i3, i4, j1, j2, j3, j4) = π(ψ, σ) and put

(9) fψ,σ(z) = a(tz)i1i2i3i4
j1j2j3j4

−
∑

(ω,τ)∈Pn

(ω,τ)>(ψ,σ)

fω,τ (z)eω,τ (tz)i1i2i3i4
j1j2j3j4

for every z ∈ Rn. It is easily seen that, by the smoothness of the map
Rn 3 z −→ a(tz) ∈ T 4

4Rn, we obtain smooth functions which satisfy the
claimed conditions (8). Write

ã : T 1
1Rn 3 t −→

∑

(ψ,σ)∈Pn

fψ,σ(c1(t), . . . , cn(t))eψ,σ(t) ∈ T 4
4Rn,
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where c1, . . . , cn are given by (2). Clearly, ã ∈ E(1,1),(4,4),n. By (7) and (8),
we have ã(tz)i1i2i3i4

j1j2j3j4
= a(tz)i1i2i3i4

j1j2j3j4
for every (i1, i2, i3, i4, j1, j2, j3, j4)∈Qn

and every z ∈ Rn. Hence ã = a, which is due to the fact proved in
the previous paragraph. Therefore eψ,σ for (ψ, σ) ∈ Pn are generators
of E(1,1),(4,4),n, because for every smooth map f : Rn −→ R formula (1)
defines an equivariant map from E(1,1),(0,0),n.

It remains to prove that they are linearly independent. Assume that
∑

(ψ,σ)∈Pn

gψ,σ(c1(t), . . . , cn(t))eψ,σ(t) = 0

for every t ∈ T 1
1Rn, where gψ,σ : Rn −→ R for (ψ, σ) ∈ Pn are smooth

functions and c1, . . . , cn are given by (2). Hence, according to (7),
∑

(ψ,σ)∈Pn

gψ,σ(z)eψ,σ(tz) = 0

for every z ∈ Rn. We have to prove that gψ,σ = 0 for (ψ, σ) ∈ Pn.
The proof will be by induction on (ψ, σ). Suppose that (ψ, σ) ∈ Pn

and that gω,τ = 0 for (ω, τ) ∈ Pn such that (ω, τ) > (ψ, σ). We take
(i1, i2, i3, i4, j1, j2, j3, j4) = π(ψ, σ). Then

0 =
∑

(ω,τ)∈Pn

gω,τ (z)eω,τ (tz)i1i2i3i4
j1j2j3j4

= gψ,σ(z)

for every z ∈ Rn, and so gψ,σ = 0. This proves the theorem. ¤

It is worth pointing out that the final part of the proof (formula (9))
yields a method of calculating the coordinates of an arbitrary equivariant
map (for instance eψ,σ with an arbitrary ψ : {1, 2, 3, 4} −→ N and an
arbitrary σ ∈ S4) in our basis.

Recall that we have proved the equality Pn = L4,n. It enables us to
write our theorem in the following equivalent form.

Theorem. The equivariant maps eψ,σ for (ψ, σ) ∈ L4,n form a basis

of the module E(1,1),(4,4),n.

Moreover, the proof of our theorem leads to the following corollary.

Corollary. E(1,1),(4,4),n is a free module of dimension 24n4 − 72n3 +
82n2 − 33n.
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Remark. Using the same arguments we can obtain the classification
of equivariant maps from E(0,0),(r,r),n for r = 1, 2, 3, as it is described in
[4]. On the other hand the method presented here is essentialy stronger
than that from [4], because applying the algorithm from [4] in the case
r = 4 we can obtain only the pairs (ψ, σ) ∈ K4,n specified in items 1–8
of our theorem, omitting those from items 9–10. Unfortunately, for r ≥ 5
also the new method brakes down. For instance, applying our algorithm
in the case r = 5 and n = 3 we can obtain only 4644 equivariant maps,
while m(5, 3) = 4653.

We are ending off the paper with some remarks about possibile ap-
plications of our result. Generally, it seems that classifications of the nat-
ural operators transforming affinors to tensor fields of type (r, r), where r

is a non-negative integer, can be applied to investigate other type natu-
ral operators transforming affinors. For instance, in [3] a classification of
the natural operators transforming affinors to tensor fields of type (2, 2)
enabled us to find a classification of the natural operators transforming
affinors to tensor fields of type (0, 1). If we try to use the same meth-
ods for the natural operators transforming affinors to tensor fields of type
(r−2, r−1), where r is a non-negative integer and r ≥ 2, there will appear
just natural operators transforming affinors to tensor fields of type (r, r).

As a more complicated example we consider natural operators lifting
affinors to the cotangent bundle. Such a natural operator is, by definition,
a family of maps AM : X1

1M −→ X1
1 (T ∗M), where M is an arbitrary n-

dimensional smooth manifold and T ∗ denotes the functor of the cotangent
bundle, such that for every injective imersion ϕ : M −→ N between two n-
dimensional smooth manifolds, for every t ∈ X1

1M and every u ∈ X1
1N the

affinors AM (t) and AN (u) are T ∗ϕ-related whenever t and u are ϕ-related.
(This is a special case of a general definition of natural operators, see [5].)
For such A and all t ∈ X1

1Rn, p ∈ T ∗0Rn put a(j∞0 t, p) = ARn(t)(0, p).
It can be proved that a is well defined. Suppose a(j∞0 t, p) depends on
a finite jet only and a is smooth. Then, by the homogeneous function
theorem (see [5]), we have

a(j∞0 t, p) =
[

b(t(0)) 0
c(j2

0t, p) d(t(0))

]
,
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where

cj1j2(j
2
0t, p) = ei1i2

j1j2
(t(0))pi1pi2 + f i1i2i3

j1j2j3
(t(0))

∂tj3i1
∂xi2

(0)pi3

+ gi1i2i3
j1j2j3

(t(0))
∂2tj3i1

∂xi2∂xi3
(0) + hi1i2i3i4

j1j2j3j4
(t(0))

∂tj3i1
∂xi2

(0)
∂tj4i3
∂xi4

(0)

for all j1, j2 ∈ {1, . . . , n}, t ∈ X1
1Rn, p ∈ T ∗0Rn. Of course, we may

assume that ei2i1
j1j2

= ei1i2
j1j2

for i1, i2, j1, j2 ∈ {1, . . . , n}, gi1i3i2
j1j2j3

= gi1i2i3
j1j2j3

for
i1, i2, i3, j1, j2, j3 ∈ {1, . . . , n}, hi3i4i1i2

j1j2j4j3
= hi1i2i3i4

j1j2j3j4
for i1, i2, i3, i4, j1, j2, j3,

j4∈{1, . . . , n}. Now a standard computation shows that b, d∈E(1,1),(1,1),n,
e∈E(1,1),(2,2),n, f, g ∈E(1,1),(3,3),n, h∈E(1,1),(4,4),n. Therefore b, d, e, f , g,
h are elements of the modules we have described in this paper. This may
be helpful in further studying the natural operators lifting affinors to the
cotangent bundle.
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