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On φ-skew symmetric conformal vector fields

By DOROTEA NAITZA (Messina) and ADELA OIAGĂ (Bucharest)

Abstract. The notion of the J-skew symmetric vector field was introduced in
[MNR]. In the present paper, we deal with φ-skew symmetric conformal vector fields
on a Kenmotsu manifold M(φ, Ω, η, ξ, g). A necessary and sufficient condition for M
to admit such a vector field C is given. In this case, C defines an infinitesimal relative
conformal transformation of Ω and φC is a relatively integral invariant of Ω.

0. Introduction

Let M(φ, Ω, η, ξ, g) be a (2m + 1)-dimensional almost contact Rie-
mannian manifold, where the structure tensors φ, η and ξ are a (1, 1)-tensor
field, a closed 1-form and the Reeb vector field, respectively, satisfying

φ2 = −Id + η ⊗ ξ, η(ξ) = 1.

M is said to be a Kenmotsu manifold if the following conditions

(∇Zφ)Z ′ = −η(Z ′)φZ − g(Z, φZ ′)ξ,(0.1)

∇Zξ = Z − η(Z)ξ, Z, Z ′ ∈ ΓTM(0.2)

hold good.
In the present paper, we assume that M carries a φ-skew symmetric

conformal (abbr. SSC) vector field C (in the sense of [R1]), that is

(0.3) ∇C = fdp + C ∧ φC,
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where dp denotes the canonical vector valued 1-form and ∧ the wedge
product of vector fields on M .

It is known that (0.3) implies

LCg = ρg, ρ = 2f ∈ Λ0M.

We prove that the dual 1-form C[ of C with respect to g is an exterior
recurrent 1-form having (φC)[ as the recurrent form and that C[, (φC)[

and η belong to the same ideal I. In consequence, M is foliated by 3 sur-
faces tangent to the distributions spanned by {ξ, C}, {ξ, φC} and {C, φC}
respectively, and if Z is any vector field orthogonal to {ξ, φC}, then
LCR(C,Z) defines an infinitesimal conformal transformation for g(C,Z),
where R denotes the Ricci tensor field of M .

Finally, by using the Lie algebra induced by C[ and (φC)[, it is shown
that C defines an infinitesimal relative conformal transformation of Ω, i.e.

d(LCΩ) = (dρ + 2ρη) ∧ Ω

and that Ω is a relatively integral invariant [AM] of Ω, i.e.

d(LφCΩ) = 0.

1. Preliminaries

Let (M, g) be an n-dimensional connected manifold and let ∇ be the
covariant differential operator defined by the metric tensor g (we assume
that M is oriented and ∇ is the Levi–Civita connection).

Let ΓTM be the set of sections of the tangent bundle and [ : TM →
T ∗M and ] : T ∗M → TM the classical isomorphisms defined by g (i.e., [

is the index lowering operator and ] is the index raising operator).
We denote by

Aq(M, TM) = ΓHom (ΛqTM, TM)

the set of vector valued q-forms (q ≤ dim M) and following [P] we write
for the covariant derivative with respect to ∇

d∇ : Aq(M, TM) → Aq+1(M, TM)
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(it should be noticed that in general d∇
2
= d∇ ◦d∇ 6=0, unlike d2= d◦d=0).

If p ∈ M , then dp ∈ A1(M, TM) is the canonical vector valued 1-form
and is called the soldering form of M . Since ∇ is symmetric, one has
d∇(dp) = 0.

The cohomology operator [GL] is defined by

(1.1) dω = d + e(ω)

and is acting on ΛM , where e(ω) denotes the exterior product by the
closed 1-form ω. One has dω ◦ dω = 0 and a form ω ∈ ΛM with dωu = 0
is said to be dω-closed.

Let O = {eA | A = 1, . . . , n} be a local field of orthonormal frames
over M and let O∗ = {ωA} be its associated coframe. The E. Cartan’s
structure equation [C] written in the index-less manner are

∇e = θ ⊗ e,(1.2)

dω = −θ ∧ ω,(1.3)

dθ = −θ ∧ θ + Θ.(1.4)

In the above equations θ (resp. Θ) are the local connections forms in
the tangent bundle TM (resp. the curvature forms on M).

2. φ-skew symmetric conformal vector fields

Let M(φ, Ω, η, ξ, g) be a (2m+1)-dimensional Kenmotsu manifold [K],
[MRV].

As is known, the quintuple of the structure tensor fields (φ, Ω, η, ξ, g)
satisfies the following equations:

(2.1)





φ2 = −Id + η ⊗ ξ, φξ = 0, η(ξ) = 1,

g(Z, Z ′) = g(φZ, φZ ′) + η(Z)η(Z ′), η(Z) = g(ξ, Z),

(∇φ)Z = −η(Z)φdp− (φZ)[ ⊗ ξ,

∇ξ = dp− η ⊗ ξ,

Ω(Z,Z ′) = g(φZ, Z ′),

for any vector fields Z,Z ′ ∈ ΓTM , and moreover we have

(2.2) dη = 0, dΩ = 2η ∧ Ω.
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It should be noted that the equations (2.2) show that the pairing
(η, Ω) defines a conformal cosymplectic structure 1×CS(m,R) [R1], [BR].
We also recall [R2] that the structure vector field ξ is (as in the case of a
Sasakian manifold) always exterior concurrent (abbr. EC), that is

(2.3) d∇(∇ξ) = ∇2ξ = ξ ∧ dp.

In the present paper, we assume that M carries a vector field C such
that its covariant differential satisfies

(2.4) ∇C = fdp + C ∧ φC, f ∈ Λ0M.

As an extension of the concept of J-skew symmetric vector field [MNR],
we agree to define C as a φ-skew symmetric conformal vector field.

Let Z be any vector field on M . If we denote by ZA (A∈{0, . . . , 2m})
its components with respect to an orthonormal frame O = {e0 = ξ, e1, . . . ,

em, em+1 = φe1, . . . , e2m = φem}, then, on behalf of the 4-th equation of
(2.1), its covariant derivative is expressed by

(2.5) ∇Z = (dZA + ZBθA
B + Z0ωA)⊗ eA + (dZ0 + Z[)⊗ ξ, Z0 = η(Z).

With respect to O∗, we have

(2.6) Ω =
m∑

a=1

ωa ∧ ωa∗ , a∗ = a + m.

We come back to the case under discussion. Since (2.4) is expressed
as

(2.7) ∇C = fdp + (φC)[ ⊗ C − C[ ⊗ φC,

one quickly finds

g(∇ZC, Z ′) + g(∇Z′C, Z) = 2fg(Z, Z ′),

which is equivalent to LCg = 2fg.
This, as is known, shows that C is a conformal vector field having

ρ = 2f as the conformal scalar.
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Further by (2.5) and (2.7) one may write

(2.8)





dCa + CAθa
A = (f − Ca)ωa + Ca(φC)[ + Ca∗C[,

dCa∗ + CAθa∗
A = θ − C0ωa∗ + Ca∗(φC)[ − CAC[,

dC0 = (f − 1)η + C0(φC)[ + C[.

Since C[ = C0η +
∑2m

A=1 CAωA, then by E. Cartan’s structure equa-
tions one infers from (2.8)

(2.9) dC[ = 2(φC)[ ∧ C[.

This proves that C[ is a recurrent form [D] having 2(φC)[ as the
recurrence form, and so one refinds Rosca’s lemma induced by the concept
of skew symmetric vector fields [R1], [R2].

Next, since

(2.10) (φC)[ =
m∑

a=1

(Caωa∗ − Ca∗ωa),

one infers by (2.8) and E. Cartan’s structure equations

(2.11) d(φC)[ = 2(f − C0)Ω + η ∧ (C[ + (φC)[).

Now by the exterior differentiation of (2.11), one derives on behalf
of (2.2)

f = C0(2.12)

and

η ∧ C[ ∧ (φC)[ = 0.(2.13)

Hence by (2.13) one may say that the forms η, C[ and (φC)[ belong
to the same ideal I.

Conversely, by straightforward computations, one may prove that if a
vector field C on M satisfies (2.9) and (2.13), then it implies (2.4).

By (2.12) one has

(2.14) d(φC)[ = η ∧ (C[ + (φC)[) = 0.

Then by (2.9) and (2.13) it is seen that the three 2-forms (φC)[ ∧C[,
η ∧ C[ and η ∧ (φC)[ are closed. Therefore, if the Kenmotsu manifold M
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under consideration carries a φ-SSC vector field C, then it is foliated by
3 surfaces tangent to the distributions spanned by {ξ, C}, {ξ, φC} and
{C, φC}, respectively.

Next by (2.12) and the third equation of (2.8) one may write

(2.15) grad ρ = (ρ− 2)ξ + ρφC + 2C.

On the other hand, by the third equation of (2.1) one derives

(2.16) ∇φC = (φC)[ ⊗ φC + C[C −
(
(φC)[ +

ρ

2
C[

)
⊗ ξ

and by a standard calculation one gets

(2.17) div φC = ‖C‖2 − ρ2

4
.

Since C is a conformal vector field on M , one has as is known div C =
2m+1

2 ρ and also finds

(2.18) 〈dp, φC〉 = ρ

(
2f − ρ2

4

)
, 〈dp, ξ〉 = 2(ρ− 1).

Hence by (2.15) and (2.16) one gets

∆ρ = −div(grad ρ) = 2(1 + 2m)− (3 + 4m + 4l)ρ +
ρ

2
,

where 2l = ‖C‖2.
Now by Yano’s formula [B], that is

LCK = 2m∆ρ−Kρ,

one may write

LCK = 2(1 + 2m)2m− [2m(3 + 4m + 2l) + K]ρ− ρ3

2
,

where K denotes the scalar curvature of M .
Next, by the general formula for conformal vector fields (see [B]), since

we know that

2LCR(Z, Z ′) = (∆ρ)g(Z,Z ′)− (2m− 1)Hessρ(Z, Z ′),
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where R means the Ricci tensor of M , one finds, after some calculation,
that

2LCR(C, Z) = [∆ρ− 2ρ(1 + l)(2m− 1) + (2m− 1)]g(C,Z)

− (2m− 1)
ρ

2
(ρ− 2)g(φC, Z) + 4l

(
1− ρ2

4

)
η(Z).

Hence for any Z orthogonal to the surface S tangent to the distribu-
tion spanned by {ξ, φC}, LCR(C, Z) defines an infinitesimal transforma-
tion for g(C, Z).

On the other hand, by (2.1) one has

(2.19) LCΩ = ρΩ + η ∧ (C[ − (φC)[).

From (2.19) and (2.13) one derives

(2.20) d(LCΩ) = (dρ + 2ρη) ∧ Ω

and so, according to the definition, it follows that C is an infinitesimal
relative conformal transformation of Ω.

It should be noticed that since η is closed, then making use of the
cohomological transformation operator dη (see Section 1), one may also
write

(2.21) dη(LCΩ) = η ∧ LCΩ

and say that C defines an infinitesimal conformal cohomological transfor-
mation of Ω.

Next, by a short calculation, one gets from (2.2)

LφCΩ =
1
2
dρ ∧ η − d(φC)[,

and consequently
d(LφCΩ) = 0.

Hence, following the definition (see also [AM]), the above equation
says that φC is a relatively integral invariant of Ω.
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Summarizing, up these computations, we have the following

Theorem. Let M(φ, Ω, η, ξ, g) be a (2m + 1)-dimensional Kenmotsu

manifold. Then the necessary and sufficient condition in order that M

carries a φ-skew symmetric conformal vector field C, that is

∇ZC = fZ + g(Z, φC)C − g(Z, C)φC, Z ∈ ΓTM,

is that

dC[ = 2(φC)[ ∧ C[, C[ ∧ (φC)[ ∧ η = 0

(i.e. C[ is exterior recurrent with (φC)[ as the recurerence form and C[,

(φC)[ and η belong to the same ideal).

Any such a Kenmotsu manifold is foliated by 3 surfaces tangent to

the distributions spanned by {ξ, C}, {ξ, φC} and {C, φC} respectively.

If Z it is any vector field orthogonal to the surface S tangent to the

distribution spanned by {ξ, φC}, then LCR(C, Z) defines an infinitesimal

conformal transformation for g(Z, C).
In addition, C defines an infinitesimal relative conformal transforma-

tion of Ω, i.e.,

d(LCΩ) = (dρ + 2ρη) ∧ Ω, ρ = 2f

and φC is a relatively integral invariant of Ω, i.e.

d(LφCΩ) = 0.
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