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Harmonicity, minimality, conformality,
in terms of horizontal and vertical Lee forms

By C. L. BEJAN (Iaşi), M. BENYOUNES (Brest) and T. Q. BINH (Debrecen)

Abstract. Let Φ be a holomorphic map of constant rank between almost Her-
mitian manifolds. We obtain a class of maps Φ for which harmonicity is equivalent with
minimal fibres, by extending to higher dimensions a result of Baird{Eells, [2]. The
holomorphic distributions V = KerΦ and H = V ⊥ allows us to attach the horizontal
and vertical Lee forms, in terms of which we characterize: harmonic maps and mor-
phisms, minimal fibres, the distribution H integrable and minimal. Obstructions to the
existence of a conformal change of metric rendering Φ harmonic or with minimal fibres
are provided.

1. Introduction

Large classes of maps between Riemannian manifolds for which har-
monicity is equivalent with minimality of fibres are exhibited by Baird–
Eells in [2] and Wood in [24]. In the case of holomorphic maps be-
tween almost Hermitian manifolds, we obtain a similar class in Theo-
rem 5.3 which extends to higher dimensions a well-known result of Baird–
Eells [2] (see Theorem 2.3 below). From [6], [1] it follows that any holo-
morphic map Φ : (M, g, J) → (N, g̃, J̃) of non-zero constant rank between
almost Hermitian manifolds defines on M two complementary orthogo-
nal holomorphic distributions, namely vertical V = Ker dΦ and horizontal
H = V ⊥, which are proper when the map is not immersive. (The distri-
bution V is zero if and only if Φ is immersive.) As V is integrable, we
give necessary and sufficient conditions for the integrability and minimal-
ity of H. Harmonic morphisms are a special subclass of harmonic maps
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[4], [10], [13]. We introduce horizontal and vertical Lee forms in terms of
which we characterize harmonic maps, harmonic morphisms, minimality
of fibres and cosymplectic manifolds.

As the holomorphicity of Φ and both distributions V and H are inde-
pendent of the conformal change of metrics, we use the above one-forms
to characterize the existence of a conformal change of g rendering V and
H minimal. Some examples are provided at the end.

All data are assumed to be smooth. For any distributions D on man-
ifold, Γ(D) will denote the module of its vector fields.

2. Background

We review some basic notions from the theory of harmonic maps, [7]–
[9]. Let Φ be a map between Riemannian manifolds and let ∇dΦ denote
its second fundamental form defined by (∇dΦ)(X,Y ) = ∇Φ−1TN

dΦ(X) dΦ(Y )−
dΦ(∇M

X Y ), ∀X, Y ∈ Γ(TM), where ∇M ,∇N ,∇Φ−1TN denote respectively
the Levi–Civita connections on M , N and the induced connection on the
pull-back bundle Φ−1TN from ∇N . Φ is called totally geodesic (resp.
harmonic) if ∇dΦ (resp. the tension τ = trace∇dΦ) vanishes on M .

A rich theory is devoted to a special class of harmonic maps, namely
harmonic morphisms, [4], [10], [13]. Defined as a map Φ : (M, g) → (N, g̃)
between Riemannian manifolds, which pulls back any local harmonic func-
tion f : U → R (on an open set U ⊂ N with Φ−1(U) non-empty) to a local
harmonic function f◦Φ : Φ−1(U) → R, the concept of harmonic morphisms
is characterized in [10], [13]. More precisely, the harmonic morphisms are
the harmonic maps which are horizontally weakly conformal. To recall this
notion, we first remark that any map Φ : (M, g) → N , from a Riemannian
manifold, defines at each point p ∈ M the vertical space Vp = Ker dΦp

and its g-orthogonal complement Hp = V ⊥
p , called the horizontal space.

When Φ is of constant rank, the vertical (resp. horizontal) distribution is
defined on M by p ∈ M → Vp (resp. Hp) ⊂ TpM . Otherwise, we sup-
pose Φ has constant rank on a subset (always open) M \ C of M , where
C = {p ∈ M | dΦp = 0}.

Any submersion Φ : (M, g) → (N, g̃) between Riemannian manifolds
is called horizontally conformal if it is conformal (i.e. λg = Φ∗g̃) on H, for a
positive function λ, called the conformal factor or dilation. In particular, Φ
is horizontally homothetic if grad λ ∈ V . A horizontally weakly conformal
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map between Riemannian manifolds can be now defined as a map which
is a horizontally conformal submersion on M \ C.

In the context of Riemannian manifolds, we recall some results of
Baird–Eells [2] and J. C. Wood [24], concerning the relation between
harmonic maps and minimal fibres. The vertical distribution of any map
Φ : (M, g) → N of constant rank on M \ C (for C possible empty) is
integrable. The leaves of the vertical foliation (called vertical leaves) are
the connected components of the fibres of V . The fibres of Φ are called
minimal if they have zero mean curvature.

The following Theorems 2.1 and 2.2 are essentially due to Baird–
Eells [2] with a slight extension (which allow critical points) by J. C.
Wood [24], [25], [4].

Theorem 2.1 [2]. Let Φ : (Mm, g) → (N2, g̃) be a non–constant
horizontally weakly conformal mapping to a Riemann surface. Then Φ is
harmonic if and only if it has minimal fibres at regular points.

The above result is extended for higher dimensions to:

Theorem 2.2 [2]. Let Φ : (M, g) → (N, g̃) be a non-constant horizon-
tally weakly conformal map and dim N > 2. Then any two of the following
conditions imply the third:

(i) Φ is harmonic (and so a harmonic morphism);

(ii) the fibres of Φ are minimal at regular points;

(iii) Φ is horizontally homothetic.

Another generalization of Theorem 2.1 is obtained by J. C. Wood [24],
where it is shown that the equivalence Φ is harmonic ⇐⇒ Φ has minimal
fibres is valid for a larger class of maps Φ, namely those with holomorphic
horizontal quadratic differential.

Several connections between harmonic and holomorphic maps are
given in [3], [12], [17], [18], [23].

Corresponding to Theorem 2.1 for Riemannian case, we recall the
following:

Theorem 2.3 [2]. Let Φ : (Mm, g, J) → (N2, g̃, J̃) be a non-constant
holomorphic map from an almost Hermitian manifold to a Riemann sur-
face. Then Φ is a harmonic morphism if and only if it has minimal fibres.

Corresponding to the Riemannian case, where Theorem 2.1 was ex-
tended to higher dimensions, our aim is to obtain an extension of Theo-
rem 2.3 in the almost Hermitian case.
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3. Horizontal and vertical associated 2-forms

Some basic notions are fixed by the following:

Lemma 3.1 [1]. Let Φ : (M2m, J) → (N, J̃) be a holomorphic map of

rank k between almost complex manifolds and write dim M = 2m. Then:

(i) k = 2q for some q ∈ N and the vertical distribution Φ is of dimension

2(m− q);

(ii) V is J-invariant, i.e. J(V ) = V ;

(iii) V is integrable and the vertical leaves are holomorphic submanifolds

of M ;

(iv) When the domain manifold (M, g, J) is almost Hermitian, the hori-

zontal distribution H defined as the orthogonal complement of V is

2q-dimensional and J-invariant. As H (resp. V ) carries the induced

Hermitian structure from M , then locally, one can always chose an

orthonormal frame of H (resp. V ) of the form

(3.1) {ei, Jei : i = 1, q } (resp. {εi, Jεi : i = q + 1,m }).

On the manifold M one can always choose a local orthonormal frame,
denoted by:

(3.2) {Yi, JYi : i = 1,m }.

From [6], any 2q-dimensional distribution D on a 2m-dimensional ori-
entable manifold M2m is called holomorphic, if the tangent bundle TM

admits a reduction of the structure group to a product U(m − q) × U(q)
of two unitary groups, with D corresponding to the U(q) factor.

As a consequence of Lemma 3.1, the next statement is the starting
point of our note.

Proposition 3.2. Any holomorphic map of non-zero constant rank

from an almost Hermitian manifold to an almost complex manifold is either

immersive, or it defines on the domain manifold two proper complementary

orthogonal holomorphic distributions.

On an almost Hermitian manifold (M, g, J), the associated 2-form Ω
is defined by:

(3.3) Ω(X, Y ) = g(X,JY ), ∀X, Y ∈ Γ(TM).
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If Φ : (M, g, J) → (N, g̃, J̃) is a holomorphic map of constant rank, then
corresponding to the horizontal and vertical distributions on M , we put:

(3.4) X = hX + vX, ∀X ∈ Γ(TM),

where hX ∈ Γ(H) and vX ∈ Γ(V ). It follows that:

(3.5) Ω = Ωh + Ωv.

Notation 3.3. Ωh and Ωv denote the horizontal and vertical associated
2-forms on M , defined by:

(3.6)
Ωh(X, Y ) = Ω(hX, hY ) and

Ωv(X, Y ) = Ω(vX, vY ), respectively, ∀X,Y ∈ Γ(TM).

or equivalently:

(3.7)
Ωh(X, Y ) = Ω(hX, Y ) = Ω(X, hY ) and

Ωv(X, Y ) = Ω(vX, Y ) = Ω(X, vY ),

respectively ∀X,Y ∈ Γ(TM).

(3.8)
H = {X ∈ Γ(TM) | iXΩv = 0} and

V = {X ∈ Γ(TM) | iXΩh = 0}.
The horizontal conformality, horizontal homothety and weakly con-

formality, defined before by restricting to H, can be expressed globally, in
terms of Ωh and Ωv as follows:

Lemma 3.4. Let Φ : (M, g, J) → (N, g̃, J̃) be a holomorphic map and

let Ω̃ be the associated 2-form on N .

(a) When rankΦ is constant, Φ is an isometric immersion if and only if

Ωv = 0 and Ωh = Φ∗Ω̃;

(b) Suppose that Φ is submersive. Then:

(i) Φ is a Riemannian submersion if and only if Ωh = Φ∗Ω̃;

(ii) Φ is a horizontally conformal (resp. horizontally homothetic) sub-

mersion if and only if λΩh = Φ∗Ω̃ for a positive function (resp.
positive function with vertical gradient) λ on M ;

(c) Suppose that Φ is submersive on M \C. Then Φ is horizontally weakly

conformal if and only if λΩh = Φ∗Ω̃ for a positive function λ on M \C.
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The derivatives of Ωh and Ωv are given by the following:

Formulas 3.5. For any A,B, C ∈ Γ(H) and U,W ∈ Γ(V ), we have:

dΩh(A,B, C) = dΩ(A,B,C) and dΩv(A, B,C) = 0;(3.9)

dΩh(A,B, U) = dΩ(A,B,U) + Ω(v[A,B], U) and(3.10)

dΩv(A,B, U) = −Ω([A,B], U);

dΩh(U,W, ·) = 0 and dΩv(U,W, ·) = dΩ(U,W, ·).(3.11)

As a consequence, we obtain:

Proposition 3.6. For any holomorphic map of constant rank from an

almost Hermitian manifold to an almost complex manifold, H is integrable

if and only if

dΩv(A,B, ·) = 0 or equivalently(3.12)

dΩh(A,B, ·) = dΩ(A,B, ·), ∀A,B ∈ Γ(H).(3.13)

Remark 3.7. Thus the restriction of dΩv to H × H × TM measures
the obstruction to integrability of the horizontal distribution. When H is
integrable, the horizontal leaves are holomorphic submanifolds.

4. Harmonicity in terms of horizontal and
vertical Lee forms

On any 2m-dimensional almost Hermitian manifold (M2m, g, J) with
Levi–Civita connection denoted by ∇, the divergence of J is defined by

(4.1) δJ =
m∑

i=1

{(∇YiJ)Yi + (∇JYi
J)JYi)},

and from [22], [12], modulo a constant, the vector field JδJ is the dual to
the Lee form α ∈ Γ(T ∗M), [16] defined by α = 0 if m = 1 and otherwise
by

(4.2) αp(X) =
1

2(m− 1)

m∑

i=1

dΩ(Yi, JYi, X), ∀X ∈ Tp(M), p ∈ M.
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Any almost Hermitian manifold whose Lee form (or equivalently δJ)
vanishes, is called cosymplectic as in [12, p. 188], [20], or semi-Kähler as
in [11] (or like in [15]).

Let Φ : (M2m, g, J) → (N, J̃) be a holomorphic map of constant rank
from an almost Hermitian manifold to an almost complex manifold. To
exclude the case when either the horizontal or the vertical distribution is
trivial, we work under the following:

Hypothesis 4.1. Throughout the rest of the paper, the maps are nei-
ther constant, nor immersive. Then the Lee form has the following split-
ting:

(4.3) 2(m− 1)α = αh + αv,

where:

Notation 4.2. αh and αv denote the horizontal and vertical Lee forms
on M , defined respectively by:

(4.4)

αv(X) =
m∑

i=1

dΩv(Yi, JYi, X), and

αh(X) =
m∑

i=1

dΩh(Yi, JYi, X), ∀X ∈ TpM, p ∈ M.

Remark 4.3.
(i) Defined pointwise by (4.4), αh and αv are 1-forms and (4.4) is inde-

pendent of the choice of orthonormal frame.
(ii) Writing rankΦ = 2q, then from (3.9), (3.11) we obtain the following

condition equivalent to (4.4):

αh(X) =
q∑

i=1

dΩh(ei, Jei, X), and(4.5)

αv(X) =
q∑

i=1

dΩv(ei, Jei, X) +
m∑

i=q+1

dΩv(εi, Jεi, X)

=
q∑

i=1

dΩv(ei, Jei, X) +
m∑

i=q+1

dΩ(εi, Jεi, X), ∀X ∈ Γ(TM)
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In particular, for horizontal vector fields, (4.5) becomes

(4.6)

αh(A) =
q∑

i=1

dΩh(ei, Jei, A) =
q∑

i=1

dΩ(ei, Jei, A) and

αv(A) =
m∑

i=q+1

dΩv(εi, Jεi, A) =
m∑

i=q+1

dΩ(εi, Jεi, A),

∀A ∈ Γ(H).

(iii) In a similar way to (4.3), the divergence δJ splits:

δJ = δhJ + δvJ, where(4.7)

δhJ =
q∑

i=1

{(∇ei
J)ei + (∇Jei

J)Jei} and(4.8)

δvJ =
m∑

i=q+1

{(∇εi
J)εi + (∇Jεi

J)Jεi}.

On H the following dualities hold:

(4.9)
αh(A) = g(JδhJ,A) = Ω(A, δhJ) and

αv(A) = g(JδvJ,A) = Ω(A, δvJ), ∀A ∈ Γ(H).

The (1, 2)-symplectic manifolds [12, p. 188], [20] are also called quasi-
Kähler [11] (or see [15]). An almost Hermitian manifold is (1, 2)-symplectic
if and only if [1]

(4.10) dΩ(X, JX, Y ) = 0, ∀X, Y ∈ Γ(TM).

Lemma 4.4. If Φ : (M, g, J) → (N, g̃, J̃) is a holomorphic map of con-

stant rank and the target (N, g̃, J̃) is (1, 2)-symplectic, then Φ is harmonic

if and only if

(4.11) αh = −αv on H.

Proof. The relation (4.3) yields the following equivalence:

The relation (4.11) ⇐⇒ α = 0 on H ⇐⇒ JδJ ∈ V .
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Now the assertion follows from a result of [12], stating that under the
above conditions, Φ is harmonic if and only if dΦ(JδJ) = 0. ¤

Definition 4.5. A one-form is called D-annihilator, if it vanishes on
any vector field of a distribution D.

Lemma 4.6. A holomorphic map Φ : (M2m, g, J) → (N2, g̃, J̃) from
an almost Hermitian manifold to a Riemann surface is a harmonic mor-
phism if and only if αv is an H-annihilator at any regular point of M .

Proof. As Φ is non-constant (from Hypothesis 4.1) and holomorphic,
then it is horizontally weakly conformal. Since on regular points H is 2-
dimensional, we obtain from (4.6) that αh = 0 on H and the statement
follows from Lemma 4.4. ¤

Under Hypothesis 4.1, we have:

Proposition 4.7. Let Φ : (M, g, J) → (N, g̃, J̃) be a horizontally ho-
mothetic holomorphic map onto N . Then N is cosymplectic if and only if
αh is an H-annihilator on any regular point of M .

Proof. As Φ is horizontally homothetic, it is submersive on M \ C

and hence dim N = rankΦ (= 2n). If Ω̃ (resp. α̃) denotes the associated
2-form (resp. the Lee form) on N , then from Lemma 3.4 the following
equivalences hold on M \ C:

αh = 0 on H ⇐⇒
n∑

i=1

dΩh(ei, Jei, A) = 0, ∀A ∈ Γ(H) ⇐⇒

⇐⇒
n∑

i=1

dΩ̃(dΦ(ei), J̃dΦ(ei), dΦ(A)) = 0, ∀A ∈ Γ(H) ⇐⇒

⇐⇒ α̃ = 0 on Φ(M \ C),

since {dΦ(ei), J̃Φ(ei) : i = 1, n } is a multiple of an orthonormal frame on
Φ(M \ C).

If we suppose N be cosymplectic, i.e. α̃ = 0 on N , then the above
equivalence yields αh = 0 on H at any point of M \ C.

Conversely, if we suppose αh be an H-annihilator on M \ C, which
is equivalent to α̃ = 0 on Φ(M \ C), then by Sard, Φ(M \ C) is dense
in Φ(M) = N so by continuity, α̃ = 0 on the whole of N , i.e. N is
cosymplectic. ¤

Remark 4.8. In Proposition 4.7 (resp. Lemma 4.6) the restriction of
αh (resp. αv) to H measures the obstruction of N to be cosymplectic (resp.
the obstruction of Φ to be a harmonic morphism).
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5. Minimal foliations

If D is a k-dimensional distribution on a Riemannian manifold (M, g),
then its mean curvature vector field is defined by [5, p. 7]:

(5.1) µD =
1
k

k∑

i=1

nor(∇ZiZi),

where {Zi : i = 1, k } is any local orthonormal frme of D, ∇ denotes the
Levi–Civita connection and nor(∇XY ) denotes the component of ∇XY

orthogonal to D, ∀X,Y ∈ Γ(D).
When D is integrable, then its foliation is called minimal (resp. totally

geodesic) provided its leaves are minimal (resp. totally geodesic) submani-
folds of M , or equivalently if µD = 0 (resp. nor(∇XY ) = 0, ∀X, Y ∈ Γ(D)).
Minimal foliations are also called harmonic foliations [14].

In this section, our goal is to characterize the minimality of H, V in
terms of αh, αv.

Under the Hypothesis 4.1, we have:

Proposition 5.1. Any holomorphic map of constant rank

Φ : (M, g, J) → (N, J̃) has minimal fibres if and only if αv is an H-anni-

hilator.

In other words, the restriction of αv to H measures the obstruction
of Φ to have minimal fibres.

Proof. If we denote rank Φ = 2q, then the mean curvature vector
field of V is given by:

(5.2) µV =
1

m− q

m∑

i=q+1

nor(∇εiεi +∇JεiJεi).

From (4.8) we obtain:

JδvJ =
m∑

i=q+1

{J(∇εiJ)εi + J(∇JεiJ)Jεi}

=
m∑

i=q+1

{∇εiεi +∇JεiJεi + J [εi, Jεi]}.
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As V is an integrable J-invariant distribution, from (4.9) we obtain:

αv(A) = g(JδvJ,A) = (m− q)g(µV , A), ∀A ∈ Γ(H),

which completes the proof. ¤
We may give another proof of Proposition 5.1, by using the Rummler–

Sullivan criterion. On a Riemannian manifold M , any k-dimensional
foliation F (0 < k < dim M) is minimal if and only if the local vol-
ume form along the leaves is the restriction of a k-form χ on M which
is relatively closed, i.e. dχ(X1, . . . , Xk+1) = 0 whenever k of the vec-
tor fields X1, . . . , Xk+1 are tangent to F , [19], [21]. Assuming the hy-
pothesis of Proposition 5.1, we write dim M = 2m and rank Φ = 2q.
If we take the characteristic form χ = ΩΛ . . . ΛΩ to be (m − k) times
the exterior product of the associated 2-form Ω, then its restriction to
V is χ|V = Ωv ∧ · · · ∧ Ωv, which gives the volume form on the vertical
leaves. χ is relatively closed ⇐⇒ dχ(εq+1, Jεq+1, . . . , εm, Jεm, X) = 0,
∀X ∈ Γ(TM). Being trivial for X ∈ Γ(V ), the last relation is equivalent
to dχ(εq+1, Jεq+1, . . . , εm, Jεm, A) = 0, ∀A ∈ Γ(H). For any A ∈ Γ(H),
the equivalence follows:

dχ(εq+1, Jεq+1, . . . , εm, Jεm, A) = 0 ⇐⇒

⇐⇒ (dΩΛΩΛ...ΛΩ)(εq+1, Jεq+1, . . . , εm, Jεm, A) = 0

⇐⇒ (from (3.1), (3.3))
m∑

i=q+1

dΩ(εi, Jεi, A)= 0 ⇐⇒ (from (4.6)) αv(A)= 0

and Proposition 5.1 is proved again.

Remark 5.2. From Lemma 4.6 and Proposition 5.1, we recover the
result of Baird–Eells contained in Theorem 2.3.

Based on Lemma 4.4 and Proposition 5.1, we provide now an extension
of Theorem 2.3 in higher dimensions, under Hypothesis 4.1:

Theorem 5.3. Let Φ : (M, g, J) → (N, g̃, J̃) be a holomorphic map
of constant rank and suppose that N is (1, 2)-symplectic, with dim N > 2.
Then any two of the following conditions imply the other:

(i) Φ is a harmonic map;

(ii) Φ has minimal fibres;

(iii) αh is an H-annihilator.
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Remark 5.4. When dim N = 2 (iii) is obviously satisfied and the re-
sulting equivalence (i) ⇐⇒ (ii) gives Theorem 2.3.

In [24, Theorem 2.9], a relation between harmonicity and minimality
of fibres is given for dim N = rank Φ.

Lemma 5.5. Any holomorphic map of constant rank Φ : (M, g, J) →
(N, J̃) defines a minimal horizontal foliation if and only if (3.12) holds and

αh is a V -annihilator.

Proof. From Proposition 3.6, the integrability of H is equivalent to
(3.12), in which case the horizontal foliation is minimal if and only if the
mean curvature vector field of H:

(5.3) µH =
1
q

q∑

i=1

nor(∇eiei +∇JeiJei)

is identically zero. From (4.8) it follows:

JδhJ =
q∑

i=1

{J(∇eiJ)ei+J(∇JeiJ)ei} =
q∑

i=1

{∇eiei+∇JeiJei+J [ei, Jei]}.

Since (3.12) is equivalent to (3.13) and H is J-invariant then from
(4.5) and the definition of Levi–Civita connection, it follows:

qg(µH , U) = g(JδhJ, U) = g

(
q∑

i=1

(∇eiei +∇JeiJei), U

)

=
q∑

i=1

dΩ(ei, Jei, U)=
q∑

i=1

dΩh(ei, Jei, U) = αh(U), ∀U ∈ Γ(V ),

which complete the proof. ¤

From Proposition 5.1 and Lemma 5.5, we obtain:

Corollary 5.6. Any holomorphic map of constant rankΦ : (M, g, J) →
(N, J̃) defines transversal minimal horizontal and vertical foliations if and

only if (3.12) holds, αh is a V -annihilator and αv is an H-annihilator.

In low dimensions, it follows:
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Proposition 5.7. Any holomorphic submersion from a 4-dimensional

almost Hermitian manifold to a Riemann surface defines a minimal hori-

zontal foliation if and only if αh and αv are V -annihilators.

Proof. The domain manifold being 4-dimensional, then (3.12) is
equivalent to αv = 0 on V . Then the statement comes from Lemma 5.5.

¤

6. Conformal and bi-conformal change of metric

On an almost Hermitian manifold (M, g, J), any conformal change
of g, being compatible with J , provides an almost Hermitian structure on
M , as an element of the family ρ = {(λg, J) : λ > 0} indexed by the
conformal factor λ. For any almost complex manifold (N, J̃), the map
Φ : M → (N, J̃) is holomorphic and in the case when Φ is of constant
rank, the horizontal and vertical distributions on M do not depend on the
choice of the almost Hermitian structure in ρ.

As any holomorphic map Φ : (M, g, J) → (N, J̃) of constant rank
induces the horizontal H and vertical V distributions on M , then any
bi-conformal change of g is defined by:

(6.1) ĝ(X, Y ) = λg(hX, hY ) + µg(vX, vY ), ∀X, Y ∈ Γ(TM),

for some positive functions λ, µ on M . Note that after any bi-conformal
change ĝ of g, the holomorphic map Φ : (M, ĝ, J) → (N, J̃) defines the
same horizontal and vertical distributions H and V on M . Obviously, any
conformal change of g is a special sort of bi-conformal change with λ = µ.

By a horizontally (resp. vertically) exact one-form ω, we mean that ω

restricted to H (resp. V ) is exact i.e. ω = df on H (resp. V ), for a function
f on M .

Lemma 6.1. If Φ : (M, g, J) → (N, J̃) is a holomorphic map of con-

stant rank, then the following assertions are equivalent:

(i) αh is a V -annihilator;

(ii) there is a conformal change ĝ = λg (λ > 0) of g with respect to which

the horizontal Lee form α̂h is vertically exact;



402 C. L. Bejan et al.

(iii) there is a family of bi-conformal changes {ĝ = λg|H+µg|V : µ> 0} of g,
for a certain λ > 0, with respect to which α̃h is vertically exact. (Here
g|H and g|V denote the restrictions of g to H and V , respectively).

A similar statement is valid to characterize αv as an H-annihilator.

Proof. Any bi-conformal change ĝ of g given by (6.1), induces Ω̂ =
Ω̂h+Ω̂v, where Ω̂h = λΩh and Ω̂v = µΩv from which dΩ̂h = dλ∧Ωh+λdΩh

and dΩ̂v = dµ ∧ Ωv + µdΩv. The local orthonormal frames with respect
to ĝ, which correspond to those given by (3.1), are obtained by taking
êi = λ−1/2ei, ε̂j = µ−1/2εj for i = 1, q, j = q + 1,m, where rankΦ = 2q
and dim M = 2m. As in (4.5), we deduce:

α̂h(X) =
q∑

i=1

dΩ̂h(êi, Jêi, X)(6.2)

=
q∑

i=1

d(ln λ) ∧ Ωh(ei, Jei, X) + αh(X), ∀X ∈ Γ(TM).

By (3.7) it follows that:

(6.3) α̂h(U) = −q d(lnλ)(U) + αh(U), ∀U ∈ Γ(V ).

From (4.6), in a similar way, we obtain:

(6.4) α̂v(A) = (q −m) d(lnµ)(A) + αv(A), ∀A ∈ Γ(H),

which complete the proof. ¤
As a consequence of Proposition 5.1 and Lemma 6.1, under Hypoth-

esis 4.1, it follows:

Proposition 6.2. Let Φ : (M, g, J) → (N, J̃) be a holomorphic map
of constant rank. Then the existence of a conformal change of g rendering
the fibres minimal is equivalent to the condition that αv be horizontally
exact.

From Theorem 5.3, a particular case of Proposition 6.2 states:

Proposition 6.3. A holomorphic map Φ : (M2m, g, J) → (N2, g̃, J̃)
into a Riemann surface is a harmonic morphism with respect to a conformal
change of g if and only if αv is horizontally exact at regular points.

Since the horizontal distribution is independent of any conformal
change of metric, then from Lemmas 5.5 and 6.1, we obtain:
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Proposition 6.4. Let Φ : (M, g, J) → (N, J̃) be a holomorphic map

of constant rank defining an integrable horizontal distribution. Then there

is a conformal change of g, rendering the horizontal foliation minimal if

and only if αh is vertically exact.

By means of bi-conformal changes of metric, as a direct consequence
of Proposition 5.1 and Lemmas 5.5 and 6.1, it follows that the statements
of Propositions 6.2 and 6.4 can be combined as follows:

Corollary 6.5. Let Φ : (M, g, J) → (N, J̃) be a holomorphic map of

constant rank defining an integrable horizontal distribution. Then there

is a bi-conformal change of g rendering the horizontal and vertical foli-

ation minimal if and only if αh and αv are respectively, vertically and

horizontally exact.

7. Examples

We show here some particular cases when the associated Lee forms
αh and αv are annihilators.

Example 7.1. The associated Lee forms αh and αv are both H-annihi-
lators, when they are defined by a holomorphic map Φ : (M, g, J) → (N, J̃)
of constant rank, from an almost Kähler manifold, as we deduce from (4.6).

Example 7.2. Even if the associated Lee forms αh and αv are both
H-annihilators, the horizontal distribution H may not be integrable, as
follows.

Let K = Γ \ G be Kodaira–Thurston manifold, where G is the real
Lie group of complex matrices expressed by:




1 z̄1 z2

0 1 z1

0 0 1




(with zk = xk + iy + k ∈ C, k ∈ 1, 2 ) and Γ denotes the subgroup of
G containing all matrices of G whose entries are Gaussian integers. Note
that the Lie algebra of the Kodaira–Thurston manifold may be described
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as the 4-dimensional Lie algebra with basis {E1, E2, E3, E4} expressed by:

E1 =
(

A 03

03 A

)
, E2 =

(
03 B

−B 03

)
,

E3 =
(

03 C

−C 03

)
, E4 =

(
C 03

03 C

)

where 03 is the zero-matrix of order 3,

A =




0 1 0
0 0 1
0 0 0


 , B =




0 −1 0
0 0 1
0 0 0


 , C =




0 0 1
0 0 0
0 0 0


 .

A left invariant almost complex structure on this manifold may be defined
by:

JE1 = E2, JE2 = −E1, JE3 = E4, JE4 = −E3.

Let g be a Riemannian metric compatible with J . Then (K, g, J) is almost
Hermitian. Define an equivalent relation on C by u ∼ v ⇐⇒ u − v is a
Gaussian integer, so that C/∼ is a torus. Define a map Φ : K → C/∼ by:




1 z̄1 z2

0 1 z1

0 0 1


 −→ [z1].

Then we obtain that Φ is holomorphic.
The vertical distribution V is spanned by {E3, E4} and the horizontal

distribution H is spanned by {E1, E2}. We have [E1, E2] = E3 and all the
other brackets are trivial. By direct calculation αh = 0 on M , αv(E4) = 1
and αv(Ei) = 0, i = 1, 3. As αv is an H-annihilator, then from Propo-
sition 5.1 it follows that the vertical foliation is minimal (moreover it is
totally geodesic). This agrees with [6], where the authors obtained that
on the Kodaira–Thurston manifold, the distribution spanned by {E3, E4}
is totally geodesic.

From Theorem 2.3 it follows that Φ is a harmonic morphism. Since
(3.12) is not verified, the horizontal distribution M is not integrable which
agrees with [6], where the non-integrability of the distribution spanned by
{E1, E2} was shown.
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Example 7.3. This is to provide an example for Propositions 4.7, 5.1
and Theorem 5.3. Let M = S2p+1 × S2q+1 be the Calabi–Eckmann man-
ifold, where S2p+1 ⊂ Cp+1 and S2q+1 ⊂ Cq+1 are unit spheres with their
standard metrics.

If Φ : M → CP p × CP q is the holomorphic map as in [12], we ob-
tain that αh and αv are H-annihilators. However, they are not both V -
annihilators. By Propositions 4.7, 5.1 and Theorem 5.3 we reobtain here
a result of [12], namely that Φ is harmonic with minimal fibres.
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