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1. Introduction

By Dirichlet’s unit theorem the unit group of an algebraic number
field is finitely generated. This theorem was later generalized for S-units
(see e.g. [9]). A maximal system of multiplicatively independent units or
S-units with bounded heights is often needed in the applications of Baker’s
theory to diophantine equations. Several results can be found in the liter-
ature (see e.g. [13] and [12] and the references given there) which provide
effective upper bounds for the heights of such units. It is, however, more
convenient to use systems of fundamental units with bounded heights. For
ordinary units Siegel [14], and for S-units Brindza [2] derived explicit
upper bounds for the heights of fundamental units. The purpose of this
paper is to give another, extended version of Brindza’s theorem. Thanks
to its supplements (included in our Theorem), this new version seems to be
even more applicable to effective investigation of diophantine problems. In
the proof we combine some arguments of the papers [14], [15], [7] and [2].

2. Notation and results

Let K be an algebraic number field of degree n ≥ 2 with discriminant
D and class number h. Let MK be the set of places on K (i.e. equivalence
classes of multiplicative valuations on K). The rational number field Q has
only one infinite place ∞, containing the ordinary absolute value, and a
finite place for each prime number p. In∞ we choose a representative | . |∞
which is equal to the ordinary absolute value. In the place corresponding
to p (which is also denoted by p) we choose the valuation | . |p such that
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| p |p = p−1 as representative. In each place v of MK we choose a valuation
as follows. Let p ∈ MQ be such that v | p (i.e. the restrictions to Q of the
valuations in v belong to p; in particular v is infinite if and only if v | ∞).
We put nv = [Kv : Qp], where Kv and Qp denote the completions of K
at v and Q at p, respectively. In v choose the valuation | . |v satisfying

| α |v = | α |nv/n
p for each α in Q.

By these choices for the valuations we have the product formula
∏

v∈MK

| α |v = 1 for α ∈ K \ {0} .

Let S∞ be the set of all infinite places on K, and let S be a finite subset
of MK containing S∞. Let s denote the cardinality of S, and let v1, . . . , vs
be the elements of S. Denote by OS and US the set of S-integers and
S-units of K, respectively. If α ∈ US then we have

∏

v∈S

| α |v = 1 .

Suppose that s ≥ 2. (That is, only the case of K = Q (
√−d ), d > 0,

S = S∞ is excluded. In this case the unit group US contains roots of unity
only.) For an element η of K let h(η) denote the absolute logarithmic
height and NS(η) the S-norm of η, that is

h(η) = log

( ∏

v∈MK

max(1, | η |v)

)
,

NS(η) =

(∏

v∈S

| η |v
)n

.

If S = S∞ then we clearly have NS(η) = |NK/Q(η)|. (For the
above definitions and notation we refer to [7] and [8].) Let p1, . . . , pt be
the prime ideals of K corresponding to the finite valuations of S. By
the above-mentioned generalization of Dirichlet’s unit theorem, US is of
ranks−1. Let {π1, . . . πs−1} be an arbitrary system of fundamental S-units
for K. Denote by RS the absolute value of the determinant of the matrix
(log |πi|vj )i,j=1,...,s−1. It is easy to verify that RS does not depend on the
choice of the system of fundamental S-units π1, . . . , πs−1. Then with the
above notation we have

Theorem. There exists a system {η1, . . . , ηs−1} of fundamental S-
units for K such that

(1) h(η1) . . . h(ηs−1) ≤ c1
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where
c1 = 2 (s− 1)! (s− 1)s−1

RS ,

and

h(ηi) ≤ c1

(
6n3

log n

)s−2

, 1 ≤ i ≤ s− 1.

Further, the elements eij of the inverse of the matrix (log |ηi|vj
)
i,j=1,...s−1

satisfy

(2) | eij | ≤ c2, i, j = 1, . . . , s− 1

with

c2 = 22−s (s− 1)! (s− 2)!
6n4

log n
.

Moreover, every S-integer α of K can be written in the form

(3) α = β ηk1
1 . . . η

ks−1
s−1 ,

where

h(β) <
s

5
2

2
c3 +

1
n

log NS(α) .

Here k1, . . . , ks−1 are rational integers satisfying

max
1≤i≤s−1

| ki | < c1 (s− 1)!

(
s

5
2

2
c3 +

1
n

log NS(α)

)
(
6n4/ log n

)s+2
h(α),

with

c3 =
(s− 1) c1

(log n/6n3)s−2 .

Remark. Put P = max
1≤j≤t

(e,Norm pj). It should be observed that our

estimates are independent of P .

Brindza [2] proved the estimate

h(π1) . . . h(πs−1) < s!
(
(6n3/ log n)

n|D| log P
)s

for a system of fundamental S-units π1, . . . , πs−1, where the upper bound
depends on D and P instead of RS . A similar estimate can be deduced
from (1) by estimating RS from above in terms of D and P . Indeed, denote
by ω the number of roots of unity in K and by r1 and 2r2, respectively,
the number of real and non-real embeddings of K into the field of complex



242 L. Hajdu

numbers. Following an argument of Pethő [12] one can estimate the
S-regulator RS in the following way:

RS ≤ 4ω

2r1+r2πr2h

(
e

n− 1

)n−1

(h log P )s−r1−r2 |D| 12 (log |D|)n−1
.

By the inequality ω ≤ 4n log log(n + 7) (see [11]) and by an upper bound
for hRS∞ obtained by Siegel [14] and a lower bound for RS∞ due to
Zimmert [16] we get

RS ≤
(

300 log P |D| 12
(e

2
log |D|

)n−1
)s−n

2

.

A variant of (1) and (2) was obtained by Stark [15], but only for ordi-
nary, multiplicatively independent units. For multiplicatively independent
S-units, analogues of (3) were given by Coates [5], Evertse and Győry
[7] and Pethő [12].

3. Proof

We keep the notation of Section 2. For η ∈ K put

| η |S = max
1≤i≤s

| η |vi .

Further, for η ∈ US write

L(η) = max
1≤i≤s−1

| log |η|vi
| .

To the proof of the Theorem we need two lemmas.

Lemma 1. There exists a system {ξ1, . . . , ξs−1} of multiplicatively
independent S-units in K for which

L(ξ1) . . . L(ξs−1) ≤ RS .

Proof. In the special case S=S∞, Lemma 1 is proved in [13] (cf.
Lemma A.13, p.22). The whole argument can trivially be adapted to the
general case, and Lemma 1 follows.

Lemma 2. Let η be an S-unit, which is not a root of unity. Then we
have

(4)
6n4

log n
L(η) ≥ 1 .
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Proof. If η is an ordinary unit, then |η|vj
= 1 for all finite valua-

tions vj ∈ S. Then
log | η |S ≤ n L(η)

(see [13] p.22), and by a result of Dobrowolski [6] we have

L(η) ≥ log n

6n4
,

which implies (4). Next suppose that | η |vj
6= 1 for some finite valuation

vj ∈ S. If | η |vj
≤ 1, then | η |vj

≤ 1
21/n , whence

− log | η |vj
≥ 1

n
log 2 .

While if | η |vj
> 1, then | (η−1) |vj

< 1 and so

log | η |vj
≥ 1

n
log 2 .

Thus we get L(η) ≥ 1
n log 2, whence (4) follows.

Proof of the Theorem. By Lemma 1 there are multiplicatively
independent S-units ξ1, . . . , ξs−1 for which

(5) L(ξ1) . . . L(ξs−1) ≤ RS .

We can suppose that

L(ξ1) ≤ · · · ≤ L(ξs−1) .

Denote by R the set of real numbers. The function L(x) = max
1≤i≤s−1

| xi |,
x ∈ Rs−1, x = (x1, . . . , xs−1), is a convex distance function on Rs−1 (see
the proof of Lemma 3 in [3]), hence there are η1, . . . , ηs−1 fundamental
S-units with

(6) L(ηi) ≤ max
(

1,
i

2

)
L(ξi) , i = 1, . . . , s− 1

(cf. [4], Lemma 8, p.135 and [2]). By h(ηi) ≤ 2(s−1)L(ηi), i = 1, . . . , s−1,
(5) and (6), we have

(7) h(η1) . . . h(ηs−1) ≤ 2 (s− 1)! (s− 1)s−1
RS .

For any nonzero (η ∈ OS) which is not a root of unity the inequality

(8) h(η) ≥ log | η |S ≥ min
(

log n

6n3
,
1
n

log 2
)

=
log n

6n3
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holds. Together with (7) this implies

(9) h(ηi) ≤ 2 (s− 1)! (s− 1)s−1

(
6n3

log n

)s−2

RS , 1 ≤ i ≤ s− 1,

and the first part of the Theorem is proved.
To the proof of (2) denote by E the matrix (log | ηi |vj

)
i,j=1,...,s−1

,

and by eij the elements of the inverse of E i, j = 1, . . . , s−1 . By Lemma
2 and (5), (6) we obtain

s−1∏

i=1
i 6=k

L(ηi) ≤ 6n4

log n

(s− 1)!
2s−2

RS .

Hence we get by Cramer’s rule

| eij | ≤ 6n4

log n
22−s (s− 1)! (s− 2)! = c2 ,

and (2) is proved.
Now we turn to the proof of the third part of the Theorem. For a given

S-integer α of K we denote by V(α) the vector (log |α|v− 1
sn log NS(α))v∈S

(see [7])., The image of the S-units of K under this map is a lattice in the
logarithmic space (see [1], Chapter 2 and [2]). The diameter of the fun-
damental domain of this lattice spanned by the basis (log | η1 |v)v∈S , . . . ,

(log | ηs−1 |v)v∈S is clearly less than

s−1∑

j=1

√√√√
s∑

i=1

log2 | ηj |vi .

Then, by (8) and (9), we have

| log | ηi |v| ≤ (s− 1) log | ηi |S ≤ (s− 1) h(ηi) ≤ c3

for v ∈ S and i = 1, . . . , s− 1 . Thus we have

1
2

s−1∑

j=1

√√√√
s∑

i=1

log2 | ηj |vi ≤ 1
2

c3 (s− 1)
√

s .

Hence there are rational integers k1, . . . , ks−1 with

| V (α)− V
(
η1

k1 . . . ηs−1
ks−1

) | ≤ 1
2

c3 (s− 1)
√

s .
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It yields

h
(
α η1

−k1 . . . . ηs−1
−ks−1

)
<

s
5
2

2
c3 +

1
n

log NS(α) .

To obtain a bound for | ki |, i=1, . . . , s−1, put β = α η−k1
1 . . . η

−ks−1
s−1 and

consider the following equation:

1 =
α

β
η−k1
1 . . . η

−ks−1
s−1 .

Now using a theorem of [10] and following an argument of [2], we get

max
1≤i≤s−1

| ki | ≤ c1 (s− 1)! ω (6n4/ log n)
s+1

h(α) h(β) .

Since ω ≤ 4n log log (n + 7), the Theorem is proved.

I would like to thank B. Brindza, K. Győry, A. Pethő and
Á. Pintér for their valuable remarks.
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