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The curvature of a curve and variational calculus

By M. CRAMPIN (Milton Keynes)

Abstract. The concept of the curvature of a curve is generalized, in order to
answer a question about the Euler–Lagrange equations in the calculus of variations
raised by Weinstein.

1. Introduction

In a recent paper [7], Weinstein raises the question of how one might
formulate the Euler–Lagrange equations for a calculus of variations prob-
lem on some manifold M by defining a function S on T 2M in terms of
the Lagrangian L, such that the second-order differential equation field
on TM corresponding to the equations, considered as a section of the fi-
bration T 2M → TM , is given fibre by fibre by the critical point of the
restriction of S to the fibre.

In the case of a regular Lagrangian the answer is clear, with hindsight:
we can take

S(x, ẋ, ẍ) = gab(x, ẋ)λa(x, ẋ, ẍ)λb(x, ẋ, ẍ),

where the λa are the coefficients of the Euler–Lagrange form,

λa =
d

dt

(
∂L

∂ẋa

)
− ∂L

∂xa
,

and the gab are the components of the inverse of the Hessian of L with
respect to the velocity variables (which is non-singular by assumption).
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This expression may be rewritten so as to put in evidence its dependence
on the fibre coordinates ẍa, by noting that λa takes the form

λa(x, ẋ, ẍ) = gab(ẍb − F b(x, ẋ)),

where the Euler–Lagrange equations solved for ẍa are ẍa = F a(x, ẋ); then

S(x, ẋ, ẍ) = gab(ẍa − F a(x, ẋ))(ẍb − F b(x, ẋ)).

The critical points of S, considered as a function of ẍa, are given exactly
by

λa(x, ẋ, ẍ) = 0.

Though S has been specified in terms of coordinates it is a well-defined
function on T 2M : this follows from the fact that the Euler–Lagrange
equations of a regular Lagrangian determine a well-defined vector field
on TM . Multiplying S by any non-vanishing function on TM gives a
new function on T 2M that would serve equally well to specify the Euler–
Lagrange equations in the desired manner.

However, this cannot be regarded as a satisfactory answer to Wein-
stein’s question in the absence of any justification for the choice of S, other
than that it is well-defined and gives the right answer. In this note I wish
to point out that there is a good reason for making this choice, which
is geometrically based in the concept of the curvature of a curve. In its
simplest version, the result outlined above says that in Euclidean space
the shortest curves are also the straightest. I shall show that a natural
sequence of generalizations of this observation leads to the formula above
for S, up to a scalar factor.

The derivation of the equations of motion of a dynamical system con-
sisting of a number of particles subject to Newtonian external forces, and
to possibly non-holonomic perfect constraints, from a principle which does
not involve integration, was already a subject of interest in the second
half of the nineteenth century. The results are described in Chapter IX of
Whittaker’s Analytical Dynamics [8], articles 105–107. The term “curva-
ture” was introduced by Hertz for the basic function of the theory. It is
defined as follows: let the mass of the r th particle be mr, its Cartesian co-
ordinates (xr, yr, zr), and the components of the total external force acting
on it (Xr, Yr, Zr); consider a kinematically possible path of the system, so
that the values of (xr, yr, zr) and (ẋr, ẏr, żr) represent possible positions
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and velocities of an actual path of the system; then the square of the
curvature of the path at any instant is

∑
mr

{(
ẍr − Xr

mr

)2

+
(

ÿr − Yr

mr

)2

+
(

z̈r − Zr

mr

)2
}

.

The principle of least curvature, to which the names of Gauss and Hertz are
attached, is expressed by Whittaker as follows: of all paths consistent with
the constraints (which are supposed to do no work), the actual trajectory is
that which has the least curvature. For holonomic constraints the square of
the curvature can be written in terms of generalized coordinates and their
derivatives, as was shown by Lipschitz; for conservative forces the result is
a particular case of the formula for S quoted above. In the course of the
derivation the definition of curvature is modified by dropping a term which
has the same value for all possible paths for which the particles have the
same positions and velocities; as a result, the curvature, when re-defined,
of the actual path is zero. Finally, Appell showed how to derive from
the principle of least curvature a way of writing the equations of motion,
applicable whether the constraints are holonomic or non-holonomic, which
comes close to that sought by Weinstein.

Some of these results have been put into a more modern framework
by Klein [3].

In contrast to the approach described by Whittaker, I shall attack
the problem in a more obviously geometrical manner, and I shall obtain a
function S for an arbitrary, possibly time-dependent, regular Lagrangian
whose Hessian with respect to the velocity variables is non-singular, and
not just for a Lagrangian of mechanical type. However, I shall not discuss
non-holonomic constraints. My function S is a natural generalization of
the square of the curvature of a curve in Euclidean space. It differs from
the one given above by an overall scalar factor, independent of ẍa, which
is due to the fact that the curves in question are not parametrized by arc-
length, in an appropriate sense. (I conclude that Hertz’s use of the term
“curvature” was not quite accurate.) Like Klein, I shall make use of the
homogeneous formalism.

I start by reminding the reader of some elementary facts about the
curvature of a curve.

The curvature of a curve in Euclidean 3-space, parametrized by arc-
length, is just the length of the acceleration vector. The justification for
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this terminology is that it is the integrand of the integral which gives the
length of the spherical image of a segment of the curve, and this integral
is a measure of the total change in direction of the tangent vector along
the segment (see, for example, the discussion in Chapter III of Stoker’s
Differential Geometry [5]).

Consider next a curve σ lying in a surface in Euclidean 3-space. The
square of its curvature can be written as the sum of two non-negative
terms κσ

2 + (nij σ̇
iσ̇j)2, where nij , i, j = 1, 2, are the components of the

second fundamental form of the surface; on the other hand κσ, the geodesic
curvature of the curve, is an intrinsic quantity. Now the second term takes
the same value for all curves on the surface through a given point, having
the same (unit) tangent vector there, so κσ is as satisfactory a measure
of the curvature of a curve on a surface as the Euclidean length of its
acceleration vector; so (just as in Lipschitz’s calculation referred to above)
it makes sense to change the definition of curvature to geodesic curvature.
Moreover, the latter generalizes naturally to Riemannian geometry.

In Riemannian geometry, the (geodesic) curvature vector of a curve
σ at the point σ(s) on it is c(s) = ∇σ̇(s)σ̇, where σ̇ is the tangent vector
field along σ, which is parametrized by arc-length. The curvature κσ(s) of
σ is given by κσ(s)2 = g(c(s), c(s)). In coordinates,

κσ
2 = gij

(
σ̈i + Γi

klσ̇
kσ̇l

) (
σ̈j + Γ j

mnσ̇mσ̇n
)
,

where the Γ i
jk are of course the Christoffel symbols of the Levi–Civita

connection.
The curvature vector can be interpreted as the vertical component

of the tangent vector to the natural lift of σ to TM , with respect to the
horizontal distribution determined by the Levi–Civita connection.

This construction generalizes easily to Finsler geometry. The key
point is that there is a horizontal distribution on the slit tangent bundle
TM , canonically associated with the Finsler structure. This horizontal
distribution is uniquely defined by the following conditions, where XH

and XV are the horizontal and vertical lifts of a vector field X on M to
TM :

1. the horizontal distribution is conservative: XH(E) = 0, where E is
the Finslerian energy function;

2. the horizontal distribution is homogeneous: [∆, XH ] = 0, where ∆ is
the dilation field;
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3. the horizontal distribution is torsion-free: for any vector fields X, Y

on M ,
[XH , Y V ]− [Y H , XV ]− [X, Y ]V = 0.

(See [6], where this result is called the fundamental lemma of Finsler ge-
ometry.) When the Finsler structure is actually Riemannian, these condi-
tions determine, via its horizontal distribution, the Levi–Civita connection.
There is a unique horizontal second-order differential equation field: it is
the one whose base integral curves are the affinely parametrized geodesics
of the Finsler structure. (The horizontal distribution is induced by this
second-order differential equation field, and this property is often used to
define it, as in [2]; but in the present context to define it in this way would
be to beg the question, and it is important to know that it can be defined
directly in terms of the Finsler structure.)

Let me briefly indicate how the horizontal distribution may be spec-
ified, given the defining conditions above. I shall take a somewhat broad
interpretation of the expression “Finsler structure”: I shall assume merely
that the Finsler function F is defined (and smooth) on an open subset of
TM which is invariant under dilations, and that the induced Finsler metric
is non-singular. Take coordinates (xi, ẋi) on TM . Recall that the com-
ponents gij of the Finsler metric tensor are given in terms of the Finsler
function F and the energy E = 1

2F 2 by

gij =
∂2E

∂ẋi∂ẋj
= F

∂2F

∂ẋi∂ẋj
+

∂F

∂ẋi

∂F

∂ẋj
,

and that by homogeneity

E =
1
2
gij ẋ

iẋj .

The horizontal distribution may be defined by giving a local basis of hor-
izontal vector fields of the form

∂

∂xi
− Γj

i

∂

∂ẋj
.

The functions Γj
i must be homogeneous of degree 1 in the velocity coordi-

nates ẋi by the homogeneity condition, and they must satisfy

∂Γi
j

∂ẋk
=

∂Γi
k

∂ẋj
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by the condition of absence of torsion. The condition that the horizontal
distribution is conservative is equivalent to

Γj
igjkẋk =

1
2

∂gjk

∂xi
ẋj ẋk,

from which the Γj
i can be found by repeated differentiation with respect

to the velocity coordinates and use of the other conditions. One finds that

Γj
i = Γj

ikẋk − C j
imΓm

klẋ
kẋl

where

Γ i
jk =

1
2
gil

(
∂gjl

∂xk
+

∂gkl

∂xj
− ∂gjk

∂xl

)

is formally the same as a Christoffel symbol, and

C i
jk =

1
2
gil ∂gjk

∂ẋl
=

1
2
gil

(
∂gjl

∂ẋk
+

∂gkl

∂ẋj
− ∂gjk

∂ẋl

)

is the first Cartan tensor.
The curvature vector of a curve σ, parametrized by arc-length as de-

termined by the Finsler function, can be defined as before as the vertical
component of the tangent vector to the natural lift of σ (as in [3]). It
follows from the homogeneity of the gij that the formula for the curvature
scalar is formally identical to that for Riemannian geometry, but of course
gij and Γ i

jk now depend on velocity as well as position. Moreover, the equa-
tions of geodesics of the Finsler structure, parametrized by arc-length, are
formally identical to the corresponding equations in Riemannian geometry.
Thus the (rough and ready) dictum that the shortest curves are also the
straightest continues to apply.

I now generalize further to a general time-dependent Lagrangian. The
base manifold M will now be assumed to be fibred over the real line, which
represents the time axis; the Lagrangian is a function on the first jet bundle
J1π of this fibration, which can be regarded as the subbundle of TM given
by ẋ0 = 1, where x0 is the time coordinate. A Lagrangian can be used to
define a Finsler structure (in the broad sense) by using the homogenization
trick. Let a, b, . . . range and sum from 1 to n, and i, j, . . . range and sum
from 0 to n. Take coordinates (xi, ẋi) on TM and (t, xa, x́a) on J1π, such
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that the imbedding of J1π in TM is given by (t, xa, x́a) → (t, xa, 1, x́a).
The Lagrangian L(t, xa, x́a) defines a Finsler function F (xi, ẋi) by

F (xi, ẋi) = ẋ0L(x0, xa, ẋa/ẋ0).

I wish to compute the curvature of a curve, as it is determined by the
Finsler structure, but expressing the answer in terms of the Lagrangian,
and reparametrizing the curve from arc-length s to time t.

The relevant partial derivatives of F are given by

∂F

∂ẋa
=

∂L

∂x́a
,

∂F

∂ẋ0
= L− x́a ∂L

∂x́a
= −H,

where it must be understood that quantities derived from L are evaluated
at t = x0, x́a = ẋa/ẋ0; here H is the Hamiltonian corresponding to L, but
considered as a function on J1π. Of course

∂F

∂xa
= ẋ0 ∂L

∂xa
,

∂F

∂x0
= ẋ0 ∂L

∂t
.

Furthermore,

∂2F

∂ẋa∂ẋb
=

1
ẋ0

∂2L

∂x́a∂x́b
,

∂2F

∂ẋ0∂ẋa
= − x́b

ẋ0

∂2L

∂x́a∂x́b
,

∂2F

∂(ẋ0)2
=

x́ax́b

ẋ0

∂2L

∂x́a∂x́b
.

Set

Gab =
∂2L

∂x́a∂x́b
.

Recall that the Finsler metric tensor gij is given in terms of F by

gij = F
∂2F

∂ẋi∂ẋj
+

∂F

∂ẋi

∂F

∂ẋj
.

It follows that

gab = LGab + papb

g0a = −LGabv
b −Hpa

g00 = LGabv
avb + H2,
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where pa = ∂L/∂x́a. In other words,

g = LGab(dxa − x́adt)⊗ (dxb − x́bdt) + θL
2

where θL is the Cartan 1-form of L,

θL = Ldt− pa(dxa − x́adt) = padxa −Hdt.

It follows that if G is non-singular and L is non-vanishing, g will be non-
singular. Furthermore, this formula expresses g as direct sum of an n-
dimensional metric on the space annihilated by the Cartan 1-form and
a 1-dimensional metric on the space annihilated by the contact 1-forms
dxa− x́adt, these two subspaces being orthogonal. We can take advantage
of this when computing the inverse gij of gij , considered as a symmetric
bilinear form on the covector space spanned by the dxi: the covector space
is the orthogonal direct sum of the n-dimensional subspace spanned by the
contact 1-forms and the 1-dimensional subspace spanned by the Cartan 1-
form, and the inverse of g will also be a direct sum. In particular, the
restriction of the inverse to the contact subspace will have components
Gab/L with respect to the basis dxa− x́adt, a = 1, 2, . . . , n, where the Gab

are the components of the inverse of G.
Let σ be a curve in M parametrized by Finsler arc-length s, such that

σ̇0 > 0. Let φ = φidxi be the Euler–Lagrange 1-form defined along σ

corresponding to the Finsler function F , so that

φi =
d

ds

(
∂F

∂ẋi

)
− ∂F

∂xi
.

Then the curvature κσ of σ is given by

κσ
2 = gijφiφj .

Since σ is parametrized by arc-length

F (σi, σ̇i) = 1 = σ̇0L(σ0, σa, σ̇a/σ̇0).

Thus if σ0 = t is used as parameter on σ rather than s, dt/ds = 1/L; and
so

φa =
1
L

(
d

dt

(
∂L

∂va

)
− ∂L

∂xa

)
,
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while

φ0 = − 1
L

(
dH

dt
+

∂L

∂t

)
.

In fact φ = φidxi is a linear combination of contact 1-forms:

φ = φa(dxa − x́adt) = φa

(
dxa − dσa

dt
dt

)
.

To confirm that this is so, I have to show that φ0 = −φava, or equivalently
that

dσa

dt

(
d

dt

(
∂L

∂va

)
− ∂L

∂xa

)
=

dH

dt
+

∂L

∂t
.

But

dH

dt
=

d

dt

(
dσa

dt

∂L

∂x́a
− L

)

=
d2σa

dt2
∂L

∂x́a
+

dσa

dt

d

dt

(
∂L

∂x́a

)
− dL

dt

=
dσa

dt

(
d

dt

(
∂L

∂x́a

)
− ∂L

∂xa

)
− ∂L

∂t
,

as required.
Bearing in mind the remarks about the inverse of g made earlier, it

follows that
κσ

2 = gijφiφj = gabφaφb =
1
L

Gabφaφb.

So if we denote by λa the components of the Euler–Lagrange 1-form of the
Lagrangian L, so that

λa =
d

dt

(
∂L

∂x́a

)
− ∂L

∂xa
= Lφa,

then
κσ

2 =
1
L3

Gabλaλb.

Finally, I must explain how κσ
2 defines a function on T 2M (or more

properly, the restriction of T 2M to an appropriate submanifold of TM ,
though I shall leave this qualification to be understood). I first consider
the Finsler case. It is clear that two curves in M which are second-order
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tangent at a point have the same value of κσ
2, assuming that both are

parametrized by arc-length. So there is a well-defined function, say κ2, on
the submanifold of T 2M consisting of those points (xi, ẋi, ẍi) such that

gij ẋ
iẋj = 1, gij ẋ

i(ẍj + Γj
klẋ

kẋl) = 0,

such that for any curve σ parametrized by arc-length, κ2(σ(s), σ̇(s), σ̈(s))=
κσ

2(s). To extend the definition of κ2 to the rest of T 2M one can make use
of what might be called the reparametrization group. This group consists
of pairs of real numbers (k, l) with k > 0 (corresponding to sense-preserving
reparametrizations) with the multiplication

(k1, l1) · (k2, l2) = (k1k2, l1 + k1
2l2)

(so the group is a semi-direct product). The group acts on T 2M by

(xi, ẋi, ẍi) → (xi, kẋi, k2ẍi + lẋi) = ϕ(k,l)(xi, ẋi, ẍi).

For any point (xi, ẋi, ẍi) ∈ T 2M with (xi, ẋi) ∈ TM , there is a unique
(k, l), k > 0, such that ϕ(k,l)(xi, ẋi, ẍi) = (xi, ẏi, ÿi) satisfies

gij ẏ
iẏj = 1, gij ẏ

i(ÿj + Γj
klẏ

kẏl) = 0;

we make use here of the fact that gij is homogeneous of degree zero in the
velocity variables. We define κ2 generally by setting

κ2(xi, ẋi, ẍi) = κ2(xi, ẏi, ÿi).

Thus curvature becomes a property of the curve as point set, not just of
the curve with a particular form of parametrization, as it should be. We
find that

κ2(xi, ẋi, ẍi)= F (xi, ẋi)−4
(
gij(ẍi+Γi

klẋ
kẋl)(ẍj+Γ j

mnẋmẋn)− Ḟ (xi, ẋi)2
)

=
gij(ẍi + Γi

klẋ
kẋl)(ẍj + Γ j

mnẋmẋn)gpqẋ
pẋq − (gij ẋ

i(ẍj + Γj
klẋ

kẋl))2

(gij ẋiẋj)3
.

The condition for a critical point with respect to ẍi is

ẍi + Γ i
jkẋj ẋk ∝ ẋi,
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as expected. The expression for κ2 in terms of the coefficients φi of the
Euler–Lagrange form is simply

κ2 = F−2gijφiφj .

In order to obtain the corresponding formula for a Lagrangian L we re-
strict to the submanifold of T 2M given by ẋ0 = 1, ẍi = 0; noting that
L(t, xa, x́a) = F (t, xa, 1, x́a), we find that

κ2(t, xa, x́a) =
1
L3

Gabλaλb,

in agreement with the result already obtained by consideration of curves.
The results obtained here should be relevant to the larger issues raised

by Weinstein in [7], which are concerned with relations between varia-
tional problems on Lie algebroids and Lie groupoids. Some progress in an-
swering the questions posed by Weinstein is reported on in [4]. Techniques
for obtaining results about general Lagrangians from those for Finsler
structures, similar to those employed here, have been used previously in a
discussion of the second variation formula in [1].
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