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The jet prolongations of fibered fibered
manifolds and the flow operator

By W. M. MIKULSKI (Kroków)

Abstract. A characterization of the flow operator lifting projectable vector fields
to (r, s, q)-jet prolongation functors over fibered fibered manifolds for r, s, q ∈ N with
s ≥ r ≤ q as an unique in some sense natural operator is given. Similar result for
2-fibered manifolds is deduced.

0. Introduction

Natural bundles over n-manifolds were introduced by Nijenhuis [13]
as a modern approach to the theory of geometric objects. The concept
of natural bundles was extended by Kolář, Michor and Slovák [4] to
bundle functors over a local category over manifolds. Bundle functors over
some admissible categories were studied, [4].

The well-known example of an admissible category over manifolds is
the category of fibered manifolds and (more generally) the category of k-
fibered manifolds. Another example is the category of fibered fibered man-
ifolds. The objects of the last category are surjective fibered submersions
between fibered manifolds. They appear naturally in differential geometry
if we consider transverse natural bundles in the sense of Wolak [14], see
Subsection 2.1.

The fibre product preserving bundle functors over fibered manifolds
play importrant role in differential geometry because to them one can lifts
many geometric structures. Such functors are classified, [5]. The most
importrant examples of such bundle functors are the r-jet prolongation
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functors. They play essential roles in the theory of higher order connec-
tions and Lagrangians, [4]. They have the well-known universal property
with respect to operators of order r on sections of fibered manifolds, [4].
In the case of fibered fibered manifolds, using the concept of (r, s, q)-jets
on fibered manifolds, [1], [4], we extend the notion of r-jet prolongation
functors to the (r, s, q)-jet prolongation functors for r, s, q ∈ N, s ≥ r≤ q.
These prolongation functors have the similar universal property with re-
spect to operators of order (r, s, q) on fibered sections of fibered fibered
manifolds. In the case of 2-fibered manifolds, using the concept of (r, s)-
jets, [4], we can define the (r, s)-jet prolongation functors for r, s ∈ N,
s ≥ r. The respective universal property is satisfied.

Natural operators lifting functions, vector fields, etc. are used practi-
cally in all papers in which problem of prolongations of geometric struc-
tures was studied, [2], [4], [12]. That is why such natural operators are
classified by many authors, [3], [4], [6]–[11], [15], etc.

Let K be an admissible category (manifolds, fibered manifolds, k-
fibered manifolds, fibered fibered manifolds, etc.) with objects of fixed
(generalized) dimension and local isomorphisms. The most known natural
operator lifting projectable vector fields to bundle functors over K is the
flow operator. (A vector fields is called projectable if its flow is formed
by K-morphisms.) In the case of some bundle functors over manifolds
and fibered manifolds we have several characterizations of this operator,
[4]. The purpose of this paper is to characterize the flow operator lifting
projectable vector fields to the (r, s, q)-jet prolongation functor without
using constructions.

We say that a bundle functor F overK is poor if every natural operator
lifting projectable vector fields to F is a constant multiple of the flow
operator. The flow operator to poor bundle functors can be characterized
as the unique natural operator lifting every projectable vector field X into
a projectable vector field covering X.

The theorem of Kolář and Slovák [7] says that the r-jet prolonga-
tion functors over fibered manifolds are poor. Another examples of poor
bundle functors are the ones of contact elements of order (r, s, q) and di-
mension (k, l) over fib. manifolds for respective r, s, q, k, l, [6].

The main result of this paper says that for r, s, q ∈ N with s ≥ r ≤ q

the (r, s, q)-jet prolongation bundle functors over fibered fibered manifolds
(with fixed their dimension and local isomorphisms) are poor. Formally,



The jet prolongations of fibered fibered manifolds . . . 443

the result is a non-trivial extension of [7]. Since fibered foliated manifolds
(i.e. surjrective foliated submersions between foliated manifolds) are locally
fibered fibered manifolds, from the main result of the paper it follows that
the r-jet prolongation functors over fibered foliated manifolds (defined by
r-jets of foliated sections) are poor.

As a first application of the main result we dedduce that for r, s∈N
with s ≥ r the (r, s)-jet prolongation bundle functors over 2-fibered mani-
folds are poor.

As a second application of the main result we reobtain (in a simple
way) the cited above result from [6].

All manifolds and maps are assumed to be of class C∞.

1. Functor Jr and the flow operator.
The theorem of Kolář and Slovák

For a comfort let us cite the result of [7].

1.1. A fibered manifold is a surjective submersion π0 : Y1 → Y0

between manifolds. If π0 = Y 1 → Y 0 is another fibered manifold, a
fibered map π0 → π0 is a map f : Y1 → Y 1 such that there is a map
f0 : Y0 → Y 0 with π0 ◦ f = f0 ◦ π0. Thus all fibered manifolds form a
category which we will denote by FM. This category is over manifolds,
local and admissible, [4].

1.2. A fibered manifold Y1 → Y0 has dimension (m1, n1) if Y1 has di-
mension m1+n1 and Y0 has dimension m1. All fibered manifolds of dimen-
sion (m1, n1) and their local isomorphisms form a subcategory FMm1,n1 ⊂
FM. Every FMm1,n1 -object is locally isomorphic to Rm1 ×Rn1 → Rm1 ,
the usual projection.

1.3. Let π0 : Y = Y1 → Y0 be an FMm1,n1 -object. Denote the set
of (local) sections of π0 by ΓY . JrY = {jr

y0
σ | σ ∈ ΓY, y0 ∈ Y0} is a

fibered manifold over Y1 with respect to the target projection. If π0 : Y =
Y 1 → Y 0 is another FMm1,n1-object and f : Y → Y is an FMm1,n1 -
isomorphism with the underlying map f0, we have Jrf : JrY → JrY ,
Jrf(jr

y0
σ) = jr

f0(y0)
(f ◦ σ ◦ f−1

0 ), σ ∈ ΓY , y0 ∈ Y0. Then Jr : FMm1,n1 →
FM is a bundle functor, [4].



444 W. M. Mikulski

1.4. Let π0 : Y = Y1 → Y0 be an FMm1,n1-object. A vector field Z

on Y1 is projectable on Y if there exist a vector field Z0 on Y0 such that
Z is π0-related with Z0. If Z is projectable on Y , then its flow is formed
by local FM-isomorphisms. If F : FMm1,n1 → FM is a bundle functor,
we have a vector field FZ = ∂

∂t |t=0
F Exp tZ on FY . The flow operator

F : Tproj |FMm1,n1
Ã TF is FMm1,n1-natural, [4].

1.5. Theorem (Kolář, Slovák, [7]). Every natural operator

Tproj|FMm1,n1
Ã TJr is a constant multiple of the flow operator Jr.

The rest of the paper is devoted to obtain extensions of the above
theorem.

2. The category of fibered fibered manifolds.
Functor Jr,s,q and its flow operator. The main result

2.1. A fibered fibered manifold is a fibered surjective submersion
π : Y → X between fibered manifolds, i.e. a surjective submersion which
sends fibers into fibers such that the restricted and corestricted maps are
submersions. (We will write Y instead of π if π is clear.) If π : Y → X

is another fibered fibered manifold, a morphism π → π is a fibered map
f : Y → Y such that there is a fibered map f0 : X → X with π◦f = f0◦π.
Thus all fibered fibered manifolds form a category which we will denote
by F2M. This category is over manifolds, local and admissible.

Fibered fibered manifolds appear naturally in differential geometry.
To see this, we consider a fibered manifold p : X → M . Then X has the
foliated structure F by fibres. Its normal bundle Y = N (X,F) = TX/TF
has the induced foliation, [14]. This foliation is by the fibered manifold
[Tp] : Y → TM , the quotient map of the differential Tp : TX → TM .
Clearly, the projection π : Y → X of the normal bundle is a fibered fibered
manifold. Considering other transverse natural bundles in the sense of [14]
instead of N (X,F) we can produce many fibered fibered manifolds.

2.2. A fibered fibered manifold π : Y → X has dimension
(m1,m2, n1, n2) if Y has dimension (m1+n1,m2+n2) and X has dimension
(m1,m2). All fibered fibered manifolds of dimension (m1,m2, n1, n2) and
their local isomorphisms form a subcategory F2Mm1,m2,n1,n2 ⊂ F2M.
Every F2Mm1,m2,n1,n2 -object is locally isomorphic to Rm1 ×Rm2 ×Rn1 ×
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Rn2 → Rm1 × Rm2 , the projection, where Rm1 × Rm2 × Rn1 × Rn2 (or
Rm1 × Rm2) is over Rm1 × Rn1 (or Rm1).

2.3. Let π : Y → X be an F2Mm1,m2,n1,n2-object. Denote the set of

(local) fibered maps σ : X→Y with π ◦σ = iddom(σ) by ΓfibY. Let r, s, q∈N,

s ≥ r ≤ q. By 12.19 in [4], σ, ρ ∈ ΓfibY represent the same (r, s, q)-jet

jr,s,q
x σ = jr,s,q

x ρ at a point x ∈ X if jr
xσ = jr

xρ, js
x(σ|Xx) = js

x(ρ|Xx) and

jq
xσ = jq

xρ, where BX and BY are the bases of X and Y , x ∈ BX is the

element under x, Xx is the fibre of X over x and σ, ρ : BX → BY are

the underlying maps of ρ, σ. Jr,s,qY = {jr,s,q
x σ | σ ∈ ΓfibY, x ∈ X} is

a fibered manifold over Y with the target projection. If π : Y → X is

another F2Mm1,m2,n1,n2-object and f : Y → Y is an F2Mm1,m2,n1,n2 -

isomorphism with the underlying map f0, we define Jr,s,qf : Jr,s,qY →
Jr,s,qY , Jr,s,qf(jr,s,q

x σ) = jr,s,q
f0(x)(f ◦ σ ◦ f−1

0 ), σ ∈ ΓfibY , x ∈ X. Then
Jr,s,q : F2Mm1,m2,n1,n2 → FM is a bundle functor in the sense of [4].

2.4. Let π : Y → X be an F2Mm1,m2,n1,n2-object. A projectable

vector field Z on Y is projectable on π if there exists a π-related (with Z)

projectable vector field Z0 on X. If Z is projectable on π, then its flow is

formed by local F2M-isomorphisms. If F : F2Mm1,m2,n1,n2 → FM is a

bundle functor, we have a vector field FZ = ∂
∂t |t=0

F Exp tZ on FY . The
flow operator F : Tproj |F2Mm1,m2,n1,n2

Ã TF is natural in the sense of [4]

with respect to F2Mm1,m2,n1,n2-morphisms.

The main result of this paper is the following theorem.

2.5. Theorem. Let m1,m2, n1, n2 ∈ N ∪ {0}, m1 ≥ 1, r, s, q ∈ N,

s ≥ r ≤ q. Every natural operator Tproj|F2Mm1,m2,n1,n2
Ã TJr,s,q is a

constant multiple of the flow operator Jr,s,q.

The proof of Theorem 2.5 will occupy Sections 3–9.

From now on let m1, m2, n1, n2, r, s, q be as in Theorem 2.5.
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3. The notations

3.1. We shall use the indices running as follows: i, ĩ, ˜̃i, i, i ∈ 〈1,m1〉∩N,
I, Ĩ, I, I ∈ 〈m1+1,m1+m2〉∩N, p, p, p ∈ 〈1, n1〉∩N, P, P , P ∈ 〈n1+1, n1+
n2〉 ∩ N, α, ˜̃α, α ∈ Nq

m1
, (β, γ), (˜̃β, ˜̃γ), (β, γ) ∈ Nr

m1,m2
and δ,

˜̃
δ, δ ∈ Ns

m2
,

where Nq
m1

= {α ∈ (N ∪ {0})m1 | 1 ≤ |α| ≤ q}, Nr
m1,m2

= {(β, γ) ∈
(N ∪ {0})m1 × (N ∪ {0})m2 | |β| ≥ 1, |β| + |γ| ≤ r} and Ns

m2
= {δ ∈

(N ∪ {0})m2 | 1 ≤ |δ| ≤ s}. To these indices we shall apply the Einstein
sumation convention.

3.2. Let Sr,s,q or Zs,r,q denote the fiber of Jr,s,q(Rm1 ×Rm2 ×Rn1 ×
Rn2) or TJr,s,q(Rm1 ×Rm2 ×Rn1 ×Rn2) over 0 ∈ Rm1 ×Rm2 ×Rn1 ×Rn2 ,
respectively, where Rm1×Rm2×Rn1×Rn2 is the standard F2Mm1,m2,n1,n2 -
object.

3.3. Let V d denotes the space of all d-jets of projectable vector fields
on the fibered fibered manifold Rm1 × Rm2 × Rn1 × Rn2 with source 0 ∈
Rm1 × Rm2 × Rn1 × Rn2 . Let V0 ⊂ V d denotes the subset of all constant
vector fields with zero component in Rm2 × Rn1 × Rn2 .

3.4. Let Gd+1
m1,m2,n1,n2

denotes the Lie group of (d + 1)-jets at 0 ∈
Rm1×Rm2×Rn1×Rn2 of 0-preserving local F2Mm1,m2,n1,n2-isomorphisms
Rm1 ×Rm2 ×Rn1 ×Rn2 → Rm1 ×Rm2 ×Rn1 ×Rn2 . If d = max(s, q), then
Gd+1

m1,m2,n1,n2
acts on V d, Sr,s,q and Zr,s,q in obvious way. In this case, let

G̃d+1
m1,m2,n1,n2

denotes the subgroup in Gd+1
m1,m2,n1,n2

of all g with g.V0 ⊂ V0.
Then G̃d+1

m1,m2,n1,n2
acts on V0, Sr,s,q, Zr,s,q.

3.5. Let xi, xI , yp, yP be the usual coordinates on Rm1 × Rm2 ×
Rn1 × Rn2 . Let Xi be the induced coordinates on V0. Let yp

α = yp
α|Sr,s,q ,

yP
(β,γ) = yP

(β,γ)|Sr,s,q , yP
δ = yP

δ |Sr,s,q be the induced coordinates on Sr,s,q

and W i = W
i
|Zr,s,q , W I = W

I

|Zr,s,q , Zp = Z
p

|Zr,s,q , ZP = Z
P

|Zr,s,q ,

Zp
α = Z

p

α|Zr,s,q , ZP
(β,γ) = Z

P

(β,γ)|Zr,s,q , ZP
δ = Z

P

δ |Zr,s,q the additional
coordinates on Zr,s,q (see 3.1 for domains of the indices), where func-
tions xi, xI , yp, yP , yp

α, yP
(β,γ), y

P
δ : Jr,s,q(Rm1 ×Rm2 ×Rn1 ×Rn2) → R are

given by xi(jr,s,q
a σ) = xi(a), xI(jr,s,q

a σ) = xI(a), yp(jr,s,q
a σ) = yp(σ(a)),

yP (jr,s,q
a σ) = yP (σ(a)), yp

α(jr,s,q
a σ) = ( ∂α1

∂(x1)α1 . . . ∂αm1

∂(xm1 )αm1 (yp ◦ σ))(a),
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yP
(β,γ)(j

r,s,q
a σ) =

(
∂β1

∂(x1)β1
. . . ∂γm2

∂(xm1+m2 )γm2 (yP ◦ σ)
)

(a), yP
δ (jr,s,q

a σ) =(
∂δ1

∂(xm1+1)δ1
. . . ∂δm2

∂(xm1+m2 )δm2
(yP ◦ σ)

)
(a), jr,s,q

a σ ∈ Jr,s,q(Rm1 × Rm2 ×
Rn1 × Rn2) and where W

i
= dxi, W

I
= dxI , Z

p
= dyp, Z

P
= dyP ,

Z
p

α = dyp
α, Z

P

(β,γ) = dyP
(β,γ), Z

P

δ = dyP
δ .

4. The order estimation

4.1. Lemma. If Z is a projectable vector field on an F2Mm1,m2,n1,n2 -

object π : Y → X and y ∈ Y is a point such that the projection of Zy

onto the basis of X is non-zero, then f∗Z = ∂
∂x1 near y for some local

F2Mm1,m2,n1,n2-map f .

Proof. The proof is a simple modification of the proof of the sim-

ilar well-known fact for non-vanishing vector fields on manifolds. In the

oryginal proof we apply the fact that the flow of Z is formed by local

F2Mm1,m2,n1,n2-isomorphisms. ¤

4.2. Lemma. If Z1 and Z2 are projectable vector fields on an

F2Mm1,m2,n1,n2-object π : Y → X and y ∈ Y is a point such that the

projection of Z1|y onto the basis of X is non-zero and jd
yZ1 = jd

yZ2, then

there exists a local F2Mm1,m2,n1,n2 -isomorphism f : Y → Y with jd+1
y f =

id and f∗Z1 = Z2 near y.

Proof. The proof is a simple modification of the proof of Lemma 42.4

in [4]. It is sufficient to observe that f from the proof of Lemma 42.4

in [4] (for Z1 and Z2 instead of X and Y ) is a local F2Mm1,m2,n1,n2 -

isomorphisms. ¤

4.3. Proposition. Let F : F2Mm1,m2,n1,n2 → FM be a bundle

functor of order ≤ d. Every natural operator Tproj|F2Mm1,m2,n1,n2
Ã TF

is of order ≤ d.

Proof. We use Lemmas 4.1 and 4.2 and modify 42.5 in [4]. ¤
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5. The reduction of the problem

From now on d := max(s, q).

5.1. Proposition. The natural operators Tproj|F2Mm1,m2,n1,n2
Ã

TJr,s,q are in bijection with the Gd+1
m1,m2,n1,n2

-maps V d × Sr,s,q → Zr,s,q

over the identity of Sr,s,q.

Proof. It is a consequence of the general theory (see [4]) and Propo-

sition 4.3. ¤

5.2. Lemma. Let A : V d × Sr,s,q → Zr,s,q be a Gd+1
m1,m2,n1,n2

-map.

Then A is determined by its restriction A0 to V0×Sr,s,q. Moreover, A0 is

a G̃d+1
m1,m2,n1,n2

-map and A0(0, .) (0 ∈ V0) is a Gd+1
m1,m2,n1,n2

-map.

Proof. It is a simple consequence of Lemma 4.1. ¤

5.3. Lemma. Every A0 : V0 × Sr,s,q → Zr,s,q covering the identity

of Sr,s,q can be written in the form W i = f i(Xi, yp
α, yP

(β,γ)
, yP

δ
), W I =

f I(Xi, yp
α, yP

(β,γ)
, yP

δ
), Zp=gp(Xi, yp

α, yP
(β,γ)

, yP
δ

), ZP =gP(Xi, yp
α, yP

(β,γ)
, yP

δ
),

Zp
α = gp

α(Xi, yp
α, yP

(β,γ)
, yP

δ
), ZP

(β,γ) = gP
(β,γ)(X

i, yp
α, yP

(β,γ)
, yP

δ
), ZP

δ =

gP
δ (Xi, yp

α, yP
(β,γ)

, yP
δ

).

Proof. The lemma is obvious. ¤

Now, Theorem 2.5 is a simple consequence of the following proposi-

tion.

5.4. Proposition. Let A0 : V0 × Sr,s,q → Zr,s,q be a G̃d+1
m1,m2,n1,n2

-

map over the identity of Sr,s,q such that A0(0, .) : Sr,s,q → Zr,s,q is a

Gd+1
m1,m2,n1,n2

-map, d = max(s, q). Let f i, f I , gp, gP , gp
α, gP

(β,γ) and gP
δ

be as in Lemma 5.3. Then there is k ∈ R such that f i = kXi and

f I = gp = gP = gp
α = gP

(β,γ) = gP
δ = 0.

The proof of this proposition will occupy Sections 6–9.
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6. The beginning of the proof

6.1. Lemma. f i = kXi for some k ∈ R .

Proof. By the equivariance of f i with respect to the homotheties in
G1

n1
×G1

n2
⊂ G̃d+1

m1,m2,n1,n2
we obtain f i(Xi, yp

α, yP
(β,γ)

, yP
δ

) =

f i(Xi, typ
α, tyP

(β,γ)
, tyP

δ
) for every t ∈ R+, so that f i depends on Xi only.

Then the equivariance of f i with respect to G1
m1

yelds f i = kXi for some
k, see 44.3 in [4]. ¤

6.2. Lemma. f I = 0.

Proof. By the similar argument as in the proof of Lemma 6.1, f I

depends only on Xi. Then using the equivariance of f I with respect to
the homotheties in G1

m2
⊂ G̃d+1

m1,m2,n1,n2
we obtain tf I(Xi) = f I(Xi) for

t ∈ R+, i.e. f I = 0. ¤

6.3. Lemma. gp = gp(Xi, yp
α), gp

α = gp
α(Xi, yp

α),
gP = gP (Xi, yP

(β,γ)
, yP

δ
), gP

(β,γ) = gP
(β,γ)(X

i, yP
(β,γ)

, yP
δ

) and

gP
δ = gP

δ (Xi, yP
(β,γ)

, yP
δ

).

Proof. By the equivariance of gp with respect to the homotheties in
G1

n2
we get gp(Xi, yp

α, tyP
(β,γ)

, tyP
δ

) = gp(Xi, yp
α, yP

(β,γ)
, yP

δ
) for t ∈ R+, so

gp depends on Xi and yp
α only. By the same argument gp

α = gp
α(Xi, yp

α).
Similarly, by the equivariance of gP , gP

(β,γ) and gP
δ with respect to the

homotheties in G1
n1

, gP = gP (Xi, yP
(β,γ)

, yP
δ

), gP
(β,γ) = gP

(β,γ)(X
i, yP

(β,γ)
, yP

δ
)

and gP
δ = gP

δ (Xi, yP
(β,γ)

, yP
δ

). ¤

6.4. Lemma. gp = 0.

Proof. The element from G̃d+1
m1,m2,n1,n2

given by

(xi, xI , yp + (yp)q+1, yP ) preserves Xi and yp
α, and if α = (α1, . . . , αm1) is

such that |α| = q then it sends Zp
α into Zp

α+(q+1)!Zp(yp
e1

)α1 . . . (yp
em1

)αm1 ,
where ei = (0, . . . , 1, . . . , 0) ∈ Nq

m1
, 1 in i-th position. Now, by the

equivariance of gp
α with respect to this element we get gp

α = gp
α + (q +

1)!gp(yp
e1

)α1 . . . (yp
em1

)αm1 if |α| = q. So, gp = 0. ¤
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6.5. Lemma. gP = 0.

Proof. The element from G̃d+1
m1,m2,n1,n2

corresponding to

(xi, xI , yp, yP +(yP )s+1) preserves Xi, yP
(β,γ)

and yP
δ

, and if δ=(δ1, . . . , δm2)

is such that |δ| = s then it sends ZP
δ into ZP

δ + (s + 1)!ZP (yP
em1+1

)δ1 . . .

. . . (yP
em1+m2

)δm2 , where eI = (0, . . . , 1, . . . , 0) ∈ Ns
m2

, 1 in (I−m1)-th posi-
tion. This gives the equivariant condition gP

δ = gP
δ +(s+1)!gP (yP

em1+1
)δ1 . . .

. . . (yP
em1+m2

)δm2 if |δ| = s. Hence gP = 0. ¤

To prove gp
α = gP

(β,γ) = gP
δ = 0 we shall proced by induction on

d = max(s, q).

7. The first inductive step

Now, d = r = s = q = 1. Let ei ∈ N1
m1

and eI ∈ N1
m2

be as in 6.4
and 6.5.

7.1. Lemma. gp
ei

= 0.

Proof. By Lemma 6.3, gp
ei

= gp
ei

(Xi, yp
e

i
). The equivariance of gp

ei

with respect to the homotheties in G1
n1

yields the homogeneity condition
tgp

ei
(Xi, yp

e
i
) = gp

ei
(Xi, typ

e
i
) for t ∈ R+. This type of homogeneity implies

that gp
ei

= h
pe

i

eip
(X ĩ)yp

e
i
. (We use the Einstein sumation convention, see

3.1 for the domain of the indices.) Now, using the equivariance of gp
ei

with
respect to the homotheties in G1

m1
we get that h

pe
i

eip
(tX ĩ) = h

pe
i

eip
(X ĩ), i.e.

h
pe

i

eip
= const. So, gp

ei
= h

pe
i

eip
yp

e
i
. Next, we shall apply the equivariance

of A0(0, .). Consider ξ(ap
˜̃i
) ∈ G2

m1,m2,n1,n2
corresponding to (xi, xI , yp +

ap
˜̃i
x
˜̃i, yP ) for ap

˜̃i
∈ R. Every ξ(ap

˜̃i
) sends yp

e
i
into yp

e
i
+ap

i
and preserves Zp

ei
.

Then we obtain the equivariant condition h
pe

i

eip
yp

e
i

= h
pe

i

eip
(yp

e
i
+ ap

i
). Then

h
pe

i

eip
= 0. So, gp

ei
= 0. ¤

7.2. Lemma. gP
ei

= 0.

Proof. By Lemma 6.3, gP
ei

= gP
ei

(XiyP
e

i
, yP

e
I
). Similarly as in the

proof of Lemma 7.1, the equivariance of gP
ei

with respect to the homotheties

in G1
n2

yields gP
ei

= h
Pe

i

eiP
(X ĩ)yP

e
i
+ h̃

Pe
I

eiP
(X ĩ)yP

e
I
. If we use the equivariance
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of gP
ei

with respect to the homotheties in G1
m2

we get the homogeneity

condition h̃
Pe

I

eiP
(X ĩ) = 1

t h̃
Pe

I

eiP
(X ĩ), i.e. h̃

Pe
I

eiP
= 0. Then if we use the

equivariance of gP
ei

with respect to the homotheties in G1
m1

we get h
Pe

i

eiP
=

const. So, gP
ei

= h
Pe

i

eiP
yP

e
i
. Next, we shall apply the equivariance of A0(0, .).

Consider ξ(aP
˜̃i

) ∈ G2
m1,m2,n1,n2

corresponding to (xi, xI , yp, yP + aP
˜̃i

x
˜̃i) for

aP
˜̃i
∈ R. Every ξ(aP

˜̃i
) sends yP

e
i

into yP
e

i
+ aP

i
and preserves ZP

ei
. Then the

equivariance of gP
ei

gives h
Pe

i

eiP
yP

e
i

= h
Pe

i

eiP
(yP

e
i
+ aP

i
). Then h

Pe
i

eiP
= 0. So,

gP
ei

= 0. ¤

7.3. Lemma. gP
eI

= 0.

Proof. By Lemma 6.3, gP
eI

= gP
eI

(Xi, yP
e

i
, yP

e
I
) = 0. Similarly as

in the proof of Lemma 7.2, the equivariance of gP
eI

with respect to the

homotheties in G1
n2

yields gP
eI

= h
Pe

i

eIP
(X ĩ)yP

e
i
+ h̃

Pe
I

eIP
(X ĩ)yP

e
I
. If we use

the equivariance of gP
eI

with respect to the homotheties in G1
m2

and next
the equivariance of gP

eI
with respect to the homotheties in G1

m1
we get

h
Pe

i

eIP
= 0 and h̃

Pe
I

eIP
= const. So, gP

eI
= h̃

Pe
I

eIP
yP

e
I
. Next, we shall apply the

equivariance of A0(0, .). Consider ξ(aP
˜̃I
) ∈ G2

m1,m2,n1,n2
corresponding to

(xi, xI , yp, yP +aP
˜̃I
x

˜̃I) for aP
˜̃I
∈ R. Every ξ(aP

˜̃I
) sends yP

e
I

into yP
e

I
+aP

I
and

preserves ZP
eI

. Then, by equivariance of gP
eI

, h̃
Pe

I

eIP
yP

e
I

= h̃
Pe

I

eIP
(yP

e
I

+ aP
I

),

i.e. h̃
Pe

I

eIP
= 0. So, gP

eI
= 0. ¤

We have finished the proof for d = 1.

8. Some preparations

We assume d = max(s, q) ≥ 2. ei ∈ Nq
m1

, eI ∈ Ns
m2

are as in 6.4
and 6.5.

8.1. Lemma. If |α| ≤ min(d−1, q), gp
α is independent of yp

α for |α| = d.

Proof. We can assume that d = q as if q < d the yp
α for |α| = d do

not occur. Let |α| ≤ d − 1. Using the equivariance of gp
α = gp

α(Xi, yp
α)

with respect to the homotheties in G1
n1

we get gp
α = hpα

αp(X
i)yp

α. Consider
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η ∈ G̃d+1
m1,m2,n1,n2

corresponding to (xi, xI , yp + (yp)d, yP ). It preserves Xi

and yp
α with |α| < d, and it sends yp

α into yp
α + d!(yp

e1
)α1 . . . (yp

em1
)αm1 for

α = (α1, . . . , αm1) with |α| = d. Moreover it sends Zp
α into Zp

α + Zp · (. . . )
because of |α| ≤ d− 1.

Now, since gp = 0, the equivariance of gp
α with respect to η yields

hpα
αp(X

i)yp
α = hpα

αp(X
i)yp

α + d!
∑
|α|=d hpα

αp(X
i)(yp

e1
)α1 . . . (yp

em1
)αm1 . Then∑

|α|=d hpα
αp(X

i)(yp
e1

)α1 . . . (yp
em1

)αm1 = 0. Then hpα
αp(X

i) = 0 if |α| = d, so

gp
α is independent of the yp

α for |α| = d. ¤

8.2. Lemma. gP
(β,γ) is independent of the yP

δ
with |δ| = d.

Proof. Using the equivariance of gP
(β,γ) = gP

(β,γ)(X
i, yP

(β,γ)
, yP

δ
) with

respect to the homotheties in G1
n2

we can write gP
(β,γ) = h

P,(β,γ)

(β,γ),P
(Xi)yP

(β,γ)
+

h̃Pδ
(β,γ)P

(Xi)yP
δ

. Then by the equivariance of gP
(β,γ) with respect to the

homotheties in G1
m2

we deduce that the second sum is over δ with |δ| = |γ|
(if |δ| 6= |γ|, then h̃Pδ

(β,γ)P
(Xi) = 0). Cleary, |γ| ≤ r − |β| ≤ r − 1 < d.

Then gP
(β,γ) is independent of the yP

δ
with |δ| = d. ¤

8.3. Lemma. If |β|+ |γ| ≤ min(d− 1, r) then gP
(β,γ) is independent of

the yP
(β,γ)

with |β|+ |γ| = d.

Proof. We can assume that d = r as if r < d then the yP
(β,γ)

with |β| + |γ| = d do not occur. Let |β| + |γ| ≤ d − 1. We can write

gP
(β,γ) = h

P,(β,γ)

(β,γ),P
(Xi)yP

(β,γ)
+ h̃Pδ

(β,γ)P
(Xi)yP

δ
, where in the second sum we

have |δ| < d, see Proof of Lemma 8.2. The element ξ ∈ G̃d+1
m1,m2,n1,n2

cor-

responding to (xi, xI , yp, yP + (yP )d) preserves Xi and yP
δ

with |δ| < d

and yP
(β,γ)

with |β| + |γ| < d, sends yP
(β,γ)

with |β| + |γ| = d into yP
(β,γ)

+

d!(yP
e1

)β1 . . . (yP
em1

)βm1 (yP
em1+1

)γ1 . . . (yP
em1+m2

)γm2 , where β=(β1, . . . , βm1
)

and γ = (γ1, . . . , γm2
), and sends ZP

(β,γ) into ZP
(β,γ) + ZP · (. . . ) because

of |β| + |γ| ≤ d − 1. Now, since gP = 0, the equivariance of gP
(β,γ) yields

∑
|β|+|γ|=d h

P,(β,γ)

(β,γ),P
(Xi)(yP

e1
)β1 . . . (yP

em1
)βm1 (yP

em1+1
)γ1 . . . (yP

em1+m2
)γm2 =0.

Consequently h
P,(β,γ)

(β,γ),P
(Xi) = 0 if |β| + |γ| = d. Therefore gP

(β,γ) is inde-

pendent of the yP
(β,γ)

with |β|+ |γ| = d. ¤
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8.4. Lemma. If |δ| ≤ min(d− 1, s) then gP
δ is independent of the yP

δ

with |δ| = d and of the yP
(β,γ)

with |β|+ |γ| = d.

Proof. We can assume that d = s as if s < d then the yP
δ

with

|δ| = d and the yP
(β,γ)

with |β| + |γ| = d do not occur. Let |δ| ≤
d − 1. Using the equivariance of gP

δ with respect to the homotheties in

G1
n2

we can write gP
δ = h

P,(β,γ)

δP
(Xi)yP

(β,γ)
+ h̃Pδ

δP
(Xi)yP

δ
. The element

ξ ∈ G̃d+1
m1,m2,n1,n2

as in the proof of Lemma 8.3 has additionally the fol-
lowing properties. It preserves Xi and yP

δ
with |δ| ≤ d − 1 and yP

(β,γ)

with |β| + |γ| ≤ min(d − 1, r). If d = r, it sends yP
(β,γ)

with |β| +

|γ| = d into yP
(β,γ)

+ d!(yP
e1

)β1 . . . (yP
em1

)βm1 (yP
em1+1

)γ1 . . . (yP
em1+m2

)γm2 ,

where β = (β1, . . . , βm1
) and γ = (γ1, . . . , γm2

). It sends yP
δ

with |δ| =

d into yP
δ

+ d!(yP
em1+1

)δ1 . . . (yP
em1+m2

)δm2 , where δ = (δ1, . . . , δm2). It
sends ZP

δ into ZP
δ + ZP · (. . . ) because of |δ| ≤ d − 1. Hence (similarly

as in 8.3) the equivariance of gP
δ yields

∑
|β|+|γ|=d h

P,(β,γ)

δP
(Xi)(yP

e1
)β1 . . .

(yP
em1

)βm1 (yP
em1+1

)γ1 . . . (yP
em1+m2

)γm2 +
∑
|δ|=d h̃Pδ

δP
(Xi)(yP

em1+1
)δ1 . . .

. . . (yP
em1+m2

)δm2 = 0 (if r < d the first sum do not occur). This implies gP
δ

is independent of the yP
δ

with |δ| = d and of the yP
(β,γ)

with |β|+ |γ| = d.
¤

9. The second inductive step

9.1. Lemma. By the inductive assumption, gp
α=0 if |α|≤min(d−1, q),

gP
(β,γ) = 0 if |β|+ |γ| ≤ min(d− 1, r), and gP

δ = 0 if |δ| ≤ min(d− 1, q).

Proof. Section 8 shows that by the projectability the system f i =
kXi, f I = 0, gp = 0, gP = 0, gp

α with |α| ≤ min(d − 1, q), gP
(β,γ) with

|β|+|γ| ≤ min(d−1, r) and gP
δ with |δ| ≤ min(d−1, q) corresponds to some

G̃d
m1,m2,n1,n2

-map A0 : V0 × Sr,s,q → Zr,s,q such that A0(0, .) : Sr,s,q →
Zr,s,q is a Gd

m1,m2,n1,n2
-map, where r = min(d − 1, r), s = min(d − 1, s)

and q = min(d− 1, q). ¤
So, it remains to show that gp

α = 0 if |α| = d = q, gP
(β,γ) = 0 if

|β|+ |γ| = d = r, and gP
δ = 0 if |δ| = d = s.
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9.2. Lemma. If |α| = d = q, then gp
α = 0.

Proof. Let d = q, |α| = d. By the equivariance of gp
α = gp

α(Xi, yp
α)

with respect to the homotheties in G1
n1

we deduce that gp
α = hpα

αp(X
i)yp

α.
Now, using the equivariance of gp

α with respect to the homotheties in G1
m1

we deduce that hpα
αp = 0 if |α| < d, and hpα

αp = const if |α| = d. Next,

we shall apply the equivariance of A0(0, .). Consider ξ(ap
˜̃α
) ∈ Gd+1

m1,m2,n1,n2

corresponding to (xi, xI , yp +
∑
| ˜̃α|=d ap

˜̃α
x

˜̃α, yP ) for ap
˜̃α
∈ R, where x

˜̃α =

(x1) ˜̃α1 . . . (xm1) ˜̃αm1 . Every ξ(ap
˜̃α
) preserves Zp

α (because of |α| = d) and
sends yp

α with |α| = d into yp
α + α!ap

α. Then using the equivariance of gp
α

we get hpα
αpy

p
α = hpα

αp(y
p
α + α!ap

α) where the sums are over α with |α| = d

and over p. Hence hpα
αp = 0. Therefore gp

α = 0. ¤

9.3. Lemma. If |β|+ |γ| = d = r, then gP
(β,γ) = 0.

Proof. Let d = r, |β| + |γ| = d. Then s = r = d. By the
equivariance of gP

(β,γ) = gP
(β,γ)(X

i, yP
(β,γ)

, yP
δ

) with respect to the homo-

theties in G1
n2

we can write gP
(β,γ) = h

P,(β,γ)

(β,γ),P
(Xi)yP

(β,γ)
+ h̃Pδ

(β,γ)P
(Xi)yP

δ
.

Now, by the equivariance of gP
(β,γ) with respect to the homotheties in

G1
m1
× G1

m2
we deduce that h

P,(β,γ)

(β,γ),P
= 0 if |β| + |γ| < d, h

P,(β,γ)

(β,γ),P
= const

if |β| + |γ| = d, and h̃Pδ
(β,γ)P

= 0 if |δ| < d. Similarly, by the equiv-

ariance of gP
(β,γ) with respect to the homotheties in G1

m2
we deduce that

h̃Pδ
(β,γ)P

= 0 if |δ| = d (for |γ| = d−|β| ≤ d−1). So, gP
(β,γ) = h

P,(β,γ)

(β,γ),P
yP
(β,γ)

,

where the sum is over (β, γ) with |β|+ |γ| = d and over P . Next, we shall

apply the equivariance of A0(0, .). Consider ξ(aP

(
˜̃
β,˜̃γ)

) ∈ Gd+1
m1,m2,n1,n2

corre-

sponding to (xi, xI , yp, yP +
∑
|˜̃β|+|˜̃γ|=d

aP

(
˜̃
β,˜̃γ)

x(
˜̃
β,˜̃γ)) for aP

(
˜̃
β,˜̃γ)

∈ R, where

x(
˜̃
β,˜̃γ) = (x1)

˜̃
β1 . . . (xm1)

˜̃
βm1 (xm1+1)˜̃γ1 . . . (xm1+m2)

˜̃γm2 . Every ξ(aP

(
˜̃
β,˜̃γ)

)

preserves ZP
(β,γ) (because of |β|+ |γ| = d) and sends yP

(β,γ)
with |β|+ |γ| =

d into yP
(β,γ)

+ β!γ!aP
(β,γ)

. Then by the equivariance of gP
(β,γ) we get

h
P,(β,γ)

(β,γ),P
yP
(β,γ)

= h
P,(β,γ)

(β,γ),P
(yP

(β,γ)
+β!γ!aP

(β,γ)
), where the sums are over (β, γ)

with |β|+ |γ| = d and over P . Hence h
P,(β,γ)

(β,γ),P
= 0. So, gP

(β,γ) = 0. ¤
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9.4. Lemma. If |δ| = d = s, then gP
δ = 0.

Proof. Let d = s, |δ| = d. If we use the equivariance of gP
δ =

gP
δ (Xi, yP

(β,γ)
, yP

δ
) with respect to the homotheties in G1

n2
we can write

gP
δ = h

P,(β,γ)

δP
(Xi)yP

(β,γ)
+ h̃Pδ

δP
(Xi)yP

δ
. Now, if we apply the equivariance of

gP
δ with respect to the homotheties in G1

m2
we deduce that h

P,(β,γ)

δP
= 0 (as

|γ| ≤ r−1 < d = |δ|), and h̃Pδ
δP

(Xi) = 0 if |δ| < d. Similarly, if we apply the
equivariance of gP

δ with respect to the homotheties in G1
m1

we deduce that
h̃Pδ

δP
(Xi) = const. So, gP

δ = h̃Pδ
δP

yP
δ

, where the sum is over δ with |δ| = d

and over P . Next, we shall apply the equivariance of A0(0, .). Consider

ξ(aP
˜̃
δ

) ∈ Gd+1
m1,m2,n1,n2

corresponding to (xi, xI , yp, yP +
∑
|˜̃δ|=d

aP
˜̃
δ

x
˜̃
δ) for

aP
˜̃
δ
∈ R where x

˜̃
δ = (xm1+1)

˜̃
δ1 . . . (xm1+m2)

˜̃
δm2 . Every ξ(aP

˜̃
δ

) preserves ZP
δ

(because of |δ| = d) and sends yP
δ

with |δ| = d into yP
δ

+ δ!aP
δ

. Then using

the equivariance of gP
δ we get h̃Pδ

δP
yP

δ
= h̃Pδ

δP
(yP

δ
+ δ!aP

δ
), where the sums

are over δ with |δ| = d and over P . Hence h̃Pδ
δP

= 0. So, gP
δ = 0.

The inductive proof of Proposition 5.4 is complete.

The proof of Theorem 2.5 is complete. ¤

10. The category of 2-fibered manifolds.
Functor Jr,s and its flow operator. The second main result

10.1. A 2-fibered manifold is a sequence Y = Y2
π1−→ Y1

π0−→ Y0 of
surjective submersions between manifolds. If Y = Y 2

π1−→ Y 1
π0−→ Y 0 is

another 2-fibered manifold, a morphism Y → Y is a map f : Y2 → Y 2

such that there are maps f0 : Y0 → Y 0 and f1 : Y1 → Y 1 with π0 ◦ f1 =
f0 ◦ π0 and π1 ◦ f = f1 ◦ π1. Thus all 2-fibered manifolds form a category
which we will denote by 2-FM. This category is over manifolds, local and
admissible.

2-fibered manifolds appear naturally in differential geometry. If E is
a bundle functor on manifolds (for example, E = T ) and Y1 → Y0 is a
fibered manifold, then EY1 → Y1 → Y0 is a 2-fibered manifold.

10.2. A 2-fibered manifold Y = Y2 → Y1 → Y0 has dimension
(m1, n1, n2) if Y2 has dimension m1 + n1 + n2, Y1 has dimension m1 + n1
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and Y0 has dimension m1. All 2-fibered manifolds of dimension (m1, n1, n2)
and their local isomorphisms form a subcategory 2-FMm1,n1,n2 ⊂ 2-FM.
Every 2-FMm1,n1,n2 -object is locally isomorphic to Rm1 × Rn1 × Rn2 →
Rm1 × Rn1 → Rm1 , the usual projections.

10.3. Let Y = Y2
π1−→ Y1

π0−→ Y0 be an 2−FMm1,n1,n2 -object. Denote
the set of (local) sections of π1 : Y2 → Y1 by ΓY . Let r, s,∈ N, s ≥ r.
By 12.19 in [12], σ, ρ ∈ ΓY represent the same (r, s)-jet jr,s

x σ = jr,s
x ρ

at a point y1 ∈ Y1 if jr
y1

σ = jr
y1

ρ and js
y1

(σ|Y1y0) = js
y1

(ρ|Y1y0), where
y0 = π1(y1) ∈ Y0 and Y1y0 is the fibre of π0 : Y1 → Y0 over y0. Jr,sY =
{jr,s

y1
σ | σ ∈ ΓY, y1 ∈ Y1} is a fibered manifold over Y2 with respect to the

target projection. If Y = Y 2 → Y 1 → Y 0 is another 2-FMm1,n1,n2 -object
and f : Y → Y is an 2-FMm1,n1,n2 -isomorphism with the underlying maps
f1, f0, we define Jr,sf : Jr,sY → Jr,sY , Jr,sf(jr,s

y1
σ) = jr,s

f1(y1)
(f ◦σ ◦ f−1

1 ),
σ ∈ ΓY , y1 ∈ Y1. Then Jr,s : 2-FMm1,n1,n2 → FM is a bundle functor.

10.4. Let Y = Y2
π1−→ Y1

π0−→ Y0 be an 2-FMm1,n1,n2-object. A
vector field Z on Y2 is projectable on Y if there exist a vector field Z1 on
Y1 and a vector field Z0 on Y0 such that Z is π1-related with Z1 and Z1

is π0-related with Z0. If Z is projectable on Y , then its flow is formed
by local 2-FM-isomorphisms. If F : 2-FMm1,n1,n2 → FM is a bundle
functor, we have a vector field FZ = ∂

∂t |t=0
F Exp tZ on FY . The flow

operator F : Tproj |2−FMm1,n1,n2
Ã TF is 2-FMm1,n1,n2-natural.

10.5. Theorem. Let m1, n1, n2 ∈ N ∪ {0}, m1 ≥ 1, r, s ∈ N, s ≥ r.

Every natural operator Tproj|2−FMm1,n1,n2
Ã TJr,s is a constant multiple

of the flow operator Jr,s.

Proof. 2-FMm1,n1,n2 is a full subcategory in F2Mm1,n1,0,n2 . (A
2-fibered manifold Y = Y2

π1−→ Y1
π0−→ Y0 is a fibered fibered manifold

π1 : Y2 → Y1, where Y2 and Y1 are the fibered manifolds π0 ◦ π1 and π0,
respectively.) Every natural operator Tproj|F2Mm1,n1,0,n2

Ã TJr,s,q is de-
termined by its restriction to the F2Mm1,n1,0,n2-object Rm1×Rn1×{0}×
Rn2 = Rm1 × Rn1 × Rn2 . Every natural operator Tproj|2−FMm1,n1,n2

Ã
TJr,s is also determined by its restriction to the 2-FMm1,n1,n2-object
Rm1 × Rn1 × Rn2 . So, applying Theorem 2.5 we end the proof. ¤
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11. Theorem 1.5 as a consequence of Theorem 2.5

Proof of Theorem 1.5. FMm1,n1 is a subcategory in F2
m1,0,n1,0. (A

fibered manifold π0 : Y1 → Y0 can be considered as a fibered fibered
manifold π0 : Y1 → Y0, where Y1 and Y0 are the fibered manifolds id :
Y1 → Y1 and id : Y0 → Y0, respectively.) Now, we use the arguments
similar to the one of Theorem 10.5. ¤

12. An application

In [6], we defined the bundle functor Kr,s,q
k,l of contact elements of

dimension (k, l) and of order (r, s, q) over fibered manifolds, and we proved
the following theorem.

12.1. Theorem ([6]). Let r, s, q, k, l, m, n ∈ N, s ≥ r ≤ q, k ≥ m,

l ≥ n. Every natural operator A : Tproj |FMm,n
Ã TKr,s,q

k,l is a constant

multiple of the flow operator.

Proof. We can deduce this theorem from Theorem 2.5 by the (ob-
viously adapted) proof of Proposition 44.4 in [4]. ¤
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