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The jet prolongations of fibered fibered
manifolds and the flow operator

By W. M. MIKULSKI (Krokéw)

Abstract. A characterization of the flow operator lifting projectable vector fields
to (7, s, q)-jet prolongation functors over fibered fibered manifolds for r,s,q € N with
s > r < g as an unique in some sense natural operator is given. Similar result for
2-fibered manifolds is deduced.

0. Introduction

Natural bundles over n-manifolds were introduced by NIJENHUIS [13]
as a modern approach to the theory of geometric objects. The concept
of natural bundles was extended by KOLAR, MICHOR and SLOVAK [4] to
bundle functors over a local category over manifolds. Bundle functors over
some admissible categories were studied, [4].

The well-known example of an admissible category over manifolds is
the category of fibered manifolds and (more generally) the category of k-
fibered manifolds. Another example is the category of fibered fibered man-
ifolds. The objects of the last category are surjective fibered submersions
between fibered manifolds. They appear naturally in differential geometry
if we consider transverse natural bundles in the sense of WOLAK [14], see
Subsection 2.1.

The fibre product preserving bundle functors over fibered manifolds
play importrant role in differential geometry because to them one can lifts
many geometric structures. Such functors are classified, [5]. The most
importrant examples of such bundle functors are the r-jet prolongation
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functors. They play essential roles in the theory of higher order connec-
tions and LAGRANGIANS, [4]. They have the well-known universal property
with respect to operators of order r on sections of fibered manifolds, [4].
In the case of fibered fibered manifolds, using the concept of (r, s, q)-jets
on fibered manifolds, [1], [4], we extend the notion of r-jet prolongation
functors to the (r, s, ¢)-jet prolongation functors for r,s,q € N, s > r <q.
These prolongation functors have the similar universal property with re-
spect to operators of order (r,s,q) on fibered sections of fibered fibered
manifolds. In the case of 2-fibered manifolds, using the concept of (r, s)-
jets, [4], we can define the (r,s)-jet prolongation functors for r;s € N,
s > r. The respective universal property is satisfied.

Natural operators lifting functions, vector fields, etc. are used practi-
cally in all papers in which problem of prolongations of geometric struc-
tures was studied, [2], [4], [12]. That is why such natural operators are
classified by many authors, [3], [4], [6]-[11], [15], etc.

Let K be an admissible category (manifolds, fibered manifolds, k-
fibered manifolds, fibered fibered manifolds, etc.) with objects of fixed
(generalized) dimension and local isomorphisms. The most known natural
operator lifting projectable vector fields to bundle functors over K is the
flow operator. (A vector fields is called projectable if its flow is formed
by K-morphisms.) In the case of some bundle functors over manifolds
and fibered manifolds we have several characterizations of this operator,
[4]. The purpose of this paper is to characterize the flow operator lifting
projectable vector fields to the (7, s, q)-jet prolongation functor without
using constructions.

We say that a bundle functor F' over K is poor if every natural operator
lifting projectable vector fields to F' is a constant multiple of the flow
operator. The flow operator to poor bundle functors can be characterized
as the unique natural operator lifting every projectable vector field X into
a projectable vector field covering X.

The theorem of KOLAR and SLOVAK [7] says that the r-jet prolonga-
tion functors over fibered manifolds are poor. Another examples of poor
bundle functors are the ones of contact elements of order (r,s,q) and di-
mension (k,l) over fib. manifolds for respective r, s, ¢, k, [, [6].

The main result of this paper says that for r,s,q € N with s > r <g¢q
the (r, s, q)-jet prolongation bundle functors over fibered fibered manifolds
(with fixed their dimension and local isomorphisms) are poor. Formally,
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the result is a non-trivial extension of [7]. Since fibered foliated manifolds
(i.e. surjrective foliated submersions between foliated manifolds) are locally
fibered fibered manifolds, from the main result of the paper it follows that
the r-jet prolongation functors over fibered foliated manifolds (defined by
r-jets of foliated sections) are poor.

As a first application of the main result we dedduce that for r,s € N
with s > r the (r, s)-jet prolongation bundle functors over 2-fibered mani-
folds are poor.

As a second application of the main result we reobtain (in a simple
way) the cited above result from [6].

All manifolds and maps are assumed to be of class C'*°.

1. Functor J" and the flow operator.
The theorem of Kolar and Slovak

For a comfort let us cite the result of [7].

1.1. A fibered manifold is a surjective submersion my : Y7 — Yy
between manifolds. If 7o = Y; — Y is another fibered manifold, a
fibered map my — 7o is a map f : Y; — Y such that there is a map
fo:Yy — Yo with Tg o f = fo o mg. Thus all fibered manifolds form a
category which we will denote by F M. This category is over manifolds,
local and admissible, [4].

1.2. A fibered manifold Y; — Y| has dimension (mq,n;) if Y7 has di-
mension mi +n1 and Yy has dimension m;. All fibered manifolds of dimen-
sion (mq,n1) and their local isomorphisms form a subcategory F M,,, n, C
FM. Every FM,,, n,-object is locally isomorphic to R™! x R™ — R™1,
the usual projection.

1.3. Let mp : Y =Y — Yy be an F M,,, »,-object. Denote the set
of (local) sections of mog by I'Y. J'Y = {jj o | o € 'Y, yo € Yo} is a
fibered manifold over Y; with respect to the target projection. If 79 : Y =
Y, — Y is another FM,,, n,-object and f : Y — Y is an F M, ;-
isomorphism with the underlying map fy, we have J"f : J'Y — J'Y,
I [(iy,0) = G5 oy (FoT 0 f), 0 €TY, yo € Yo. Then J™ : FMyp, 1y —
FM is a bundle functor, [4].
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1.4. Let mp : Y = Y7 — Yy be an FM,,, »,-object. A vector field Z
on Y; is projectable on Y if there exist a vector field Zy on Yy such that
Z is mp-related with Zy. If Z is projectable on Y, then its flow is formed
by local F M-isomorphisms. If F': FM,,, »,, — FM is a bundle functor,
we have a vector field F'Z = %H:OF ExptZ on FY. The flow operator
' Toroj | F Mo,y > TF s F Mo,y -natural, [4].

1.5. Theorem (KOLAR, SLOVAK, [7]). Every natural operator
Toroj| FMy, n, ~> T'J" Is a constant multiple of the flow operator J".

The rest of the paper is devoted to obtain extensions of the above
theorem.

2. The category of fibered fibered manifolds.
Functor J"%? and its flow operator. The main result

2.1. A fibered fibered manifold is a fibered surjective submersion
m:Y — X between fibered manifolds, i.e. a surjective submersion which
sends fibers into fibers such that the restricted and corestricted maps are
submersions. (We will write Y instead of 7 if 7 is clear.) If 7 : ¥ — X
is another fibered fibered manifold, a morphism m — 7 is a fibered map
f:Y — Y such that there is a fibered map fo : X — X with 7o f = fyom.
Thus all fibered fibered manifolds form a category which we will denote
by F2M. This category is over manifolds, local and admissible.

Fibered fibered manifolds appear naturally in differential geometry.
To see this, we consider a fibered manifold p : X — M. Then X has the
foliated structure F by fibres. Its normal bundle Y = N(X, F) = TX/TF
has the induced foliation, [14]. This foliation is by the fibered manifold
[Tp] : Y — TM, the quotient map of the differential Tp : TX — TM.
Clearly, the projection 7w : Y — X of the normal bundle is a fibered fibered
manifold. Considering other transverse natural bundles in the sense of [14]
instead of N (X, F) we can produce many fibered fibered manifolds.

2.2. A fibered fibered manifold 7 : Y — X has dimension
(m1, ma,n1,nz) if Y has dimension (my+n1,ma+ns) and X has dimension
(my, mg). All fibered fibered manifolds of dimension (mq,m2,n1,n2) and
their local isomorphisms form a subcategory .7:2Mm1,m27n17n2 c F2M.
Every F2 M, my.ny .np-0bject is locally isomorphic to R™! x R™2 x R™ x
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R"2 — R™ x R™2, the projection, where R™1 x R™2 x R™ x R" (or
R™ x R™2) is over R™* x R™ (or R™).

2.3. Let 7: Y — X be an F2 M, s ny .np-0bject. Denote the set of
(local) fibered maps o : X =Y with mo o =idgom(s) by I'apY. Let 7, 5, €N,
s >1r < q. By 12.19 in [4], 0,p € T'zpY represent the same (r, s, q)-jet
Jjosdo = jr59p at a point z € X if jTo = jlp, j3(o|Xz) = j2(p|Xz) and
Jjig = j&p, where Bx and By are the bases of X and Y, T € By is the
element under z, Xz is the fibre of X over = and o,p : Bx — By are
the underlying maps of p,o. J"®1Y = {j-%% | 0 € I'y,Y,z € X} is
a fibered manifold over Y with the target projection. If 7 : ¥ — X is
another F2 M, iy nymp-0bject and f 1Y — Y is an F2 My, my g na-
isomorphism with the underlying map fo, we define J"%4f : J"51Y —
Jrsay | Jrsdf(insdg) = %9 (foao fol), 0 € TapY, # € X. Then

= Jh@
J"50: F2 Mo, g name — FM is a bundle functor in the sense of [4].

2.4. Let m: Y — X be an F*Mn, my.nine-0bject. A projectable
vector field Z on Y is projectable on 7 if there exists a w-related (with Z)
projectable vector field Zy on X. If Z is projectable on 7, then its flow is
formed by local F?M-isomorphisms. If F : ]—"QM,,“mLZmImZ — FMis a
bundle functor, we have a vector field FZ = %\t:OF ExptZ on FY. The
flow operator I : Tyroj |72 Mo, mynymg ~> 1 F' 18 natural in the sense of [4]

with respect to F2 M, my.ny np-morphisms.
The main result of this paper is the following theorem.

2.5. Theorem. Let mi,mo,n1,ny € NU {0}, m; > 1, r,s,q € N,
s > r < q. Every natural operator Tyoj|F2m ~ TJH% js a

mi,mg,nqi,ng

constant multiple of the flow operator J"%4.

The proof of Theorem 2.5 will occupy Sections 3-9.

From now on let mq, mo, ny, no, 7, s, ¢ be as in Theorem 2.5.
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3. The notations

I,1,T,7 € (my+1,my+my)NN, p,7,D € (1,n)NN, P,P, P € (n1+1,n,+
n2> mN7 047547& € Ngnla (ﬁ?’}/)?(ﬁfi)?(B?W) € N:nl,mQ and 57 575 € N,

where NI, = {a € (NU{O})™ [ 1 < o] < q}, Ny, 1, = {(B,7) €
(NU{0))™ x (NU{0})™ | 8] > 1, 18]+ ] < v} and N3, = {5
(NU{0})™=2 | 1 < |d] < s}. To these indices we shall apply the Einstein

sumation convention.

3.2. Let S™%% or Z*"4 denote the fiber of J™*4(R™! x R™2 x R™ x
R™) or TJ"2(R™ x R™2 x R™ x R"2) over 0 € R™ x R™2 x R™ x R"2,
respectively, where R xR™2 x R™ x R"2 is the standard F2 M, may.ny.ne-

object.

3.3. Let V¢ denotes the space of all d-jets of projectable vector fields
on the fibered fibered manifold R” x R™2 x R™ x R™ with source 0 €
R™ x R™ x R™ x R™. Let Vi C V¥ denotes the subset of all constant
vector fields with zero component in R™2 x R" x R"2,

3.4. Let G&f! . ., denotes the Lie group of (d + 1)-jets at 0 €
R™ xR™2 x R™ xR"2 of 0-preserving local F2 My, my.ny np-isomorphisms
R™ x R™2 x R™ x R™ — R™ x R™2 x R™ x R"™2. If d = max(s, ¢), then
anfm%nhnz acts on V4, §"%% and Z™* in obvious way. In this case, let

Ga+l denotes the subgroup in G%+1 of all g with ¢g.Vy C Vj.

my,m2,n1,n2 miy,m2,n1,N2

Then G&t1 acts on Vg, S™%4, Z754,

mi,ma,ny,n2

3.5. Let z%,z!,y?,y" be the usual coordinates on R™ x R™2 x
R™ x R™2. Let X* be the induced coordinates on V. Let y2 = Yo sreas
yg; v = y{)ﬁ’,y)lsr,s,q, yf = yéﬂsm,q be the induced coordinates on S %4

) — —I - =P
and W’L — WZ|Zr,syq, WI — WlZT,s,q, ZP - lezr,s,q, ZP = Z‘Zr,s,q,

=P P P .
Zg = ZQ‘ZT',S,q, Z(Pg’,y) = Z(ﬂ,’y)|Z7"s’q7 Z(SP = 25 |Z'r',s,q the addltlonal
coordinates on Z"*9 (see 3.1 for domains of the indices), where func-
tions T, 7, 9, 7", 7%, (3.4 U5 - J7TI(R™ X R™2 X R™ x R™) — R are
given by 7'(j;*%0) = z'(a), T (jy*90) = 2'(a), ¥ (j;>%0) = yP(o(a)),
g (jn10) = yP(0(a), TRUET0) = (3805 -+ sramyer (U7 © 0))(a),
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- 7,8 a° arm =P :rs

yfjﬁfy) (-70,7 7q0’) = (8(1,1;[31 et a($m1+m22)"{m2 (yP © U)) (a)7 yép(]a’ 7(10-) -
5 Sm .

<8(:13"?1i1)51 e 8(zm?+m22)5m2 (yP © J)) (CL), jg’s’qo- € JT’S’Q(le x R™2 x

R™ x R™) and where W' = dz’, w' = dz', Z" = dy®, 7h = dg®,

— P _ —P
Zo = dgh, Zisy = dijly .y, Zs = dyy .

4. The order estimation

4.1. Lemma. IfZ is a projectable vector field on an F*> Moy, myny na-
object m : Y — X and y € Y is a point such that the projection of Z,
onto the basis of X is non-zero, then f,Z = % near y for some local
.7:2Mm17m2,n1,n2-map f.

PROOF. The proof is a simple modification of the proof of the sim-
ilar well-known fact for non-vanishing vector fields on manifolds. In the
oryginal proof we apply the fact that the flow of Z is formed by local

F2Mony ma.ni ne-isomorphisms. 0

4.2. Lemma. If Zy and Z5 are projectable vector fields on an
F2Mony mamyma-0bject m 1Y — X and y € Y is a point such that the
projection of Zy|, onto the basis of X is non-zero and ijl = j;ng, then
there exists a local F2 M, my.ny np-isomorphism f : Y — Y with jg“f =
id and f.Z, = Z5 near y.

PROOF. The proofis a simple modification of the proof of Lemma 42.4
in [4]. It is sufficient to observe that f from the proof of Lemma 42.4
in [4] (for Z; and Z, instead of X and Y) is a local F2 M, my.ny na-

isomorphisms. O

4.3. Proposition. Let F : F2My, mynims — FM be a bundle
functor of order < d. Every natural operator Toroj| 72 Mo, iy myny > LF
is of order < d.

PrROOF. We use Lemmas 4.1 and 4.2 and modify 42.5 in [4]. O
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5. The reduction of the problem

From now on d := max(s, q).

5.1. Proposition. The natural operators Toroj|F2 M, mymyny ™
TJ"*4 are in bijection with the Gﬁlﬂm%nhng—maps Vd x §rsd — Zmsa

over the identity of S"™*1.

PROOF. It is a consequence of the general theory (see [4]) and Propo-
sition 4.3. O

. d TS, TS, d+1
5.2. Lemma. Let A : V% x S"%1 — Z"%9 be a G\, ., -map.

Then A is determined by its restriction Aq to Vo x S™%4. Moreover, Ag is
a Gl -map and Ay(0,.) (0 € Vp) is a G&H1 -map.

miy,mz,ny,n2 mi,mz2,ny1,N2

PRrROOF. It is a simple consequence of Lemma 4.1. O

5.3. Lemma. Every Ag : Vo x §7%1 — Z"%49 covering the identity
of S™%4 can be written in the form W' = f{(X% 2, y{%ﬁ),y?), wl =
PO vyl uE), 2= (X ko yl b)), ZP=gP (X7 Ry uh),
78 = g (X yl e ¥E)s 2y = 9l (X ymyl s b 25 =
95 (X' yly o uE).

PROOF. The lemma is obvious. O

Now, Theorem 2.5 is a simple consequence of the following proposi-

tion.

5.4. Proposition. Let Ay : Vo x 8759 — Z"%49 be a égﬁ}m%m,m—
map over the identity of S™%% such that Ay(0,.) : S™%9 — Z"™%9 is a
Gt -map, d = max(s,q). Let f', f', g*, ", g8, g{3 ., and g5’

miy,mz2,ni,n2

be as in Lemma 5.3. Then there is k € R such that f' = kX' and
fI:gp:gP:gg:g(}Dﬂ”y):gg):O

The proof of this proposition will occupy Sections 6-9.
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6. The beginning of the proof

6.1. Lemma. f'=kX® for somek € R .

PROOF. By the equivariance of f? with respect to the homotheties in
GL xGL c G ., weobtain fi(X% g, y%ﬁ)jyg) =
f (Xz,tya, ty(ﬁ 7),tyg ) for every t € Ry, so that f? depends on X only.
Then the equivariance of f? with respect to G}n1 yelds f* = kX for some
k, see 44.3 in [4]. O

6.2. Lemma. f! =

PROOF. By the similar argument as in the proof of Lemma 6.1, f!
depends only on X?. Then using the equivariance of f! with respect to

the homotheties in G1 C ngl}mQ nme We obtain th(X{) = fI(X{) for
teRy,ie fl=0. O
6.3. Lemrila gi (X{ y;) gh = ga(XZi y;)7
P _ i P
g (X7y@,y)’y7) (ﬂ’y) g(ﬁ’y)(X’y(B )7y5) and

c«)\hg‘

Ys )-

PROOF. By the equivariance of gP with respect to the homotheties in
G}, we get gP (X" yb, ty%ﬁ),tyg) = gP(X?, 42, y%ﬁ),yg) for t € Ry, so
gP depends on X' and yg only. By the same argument g2 = g2 (X i,yg).

95 =95 (X\y5G00y

Similarly, by the equivariance of g, gg; ) and ggj with respect to the
o] 1 P_ P(yi ,P Py P _ _P i P P
homotheties in Gnlig _f (X Y Y5 ), 95 = 96 (X ,y(gﬁ),yg)

P_ P(yi,P P
and g5 = g5 (X Y G Y5 ) O
6.4. Lemma. ¢P = 0.
PRrROOF. The element from GiqumQ ny.my 8iven by
(mi,w P+ (yﬁ)‘”l, y ) preserves X¢ and y2, and if o = (ay,...,Qm,) is

such that || = ¢ then it sends Zf into ZE+(q+1)!ZP(yf )™ ... (£ )*m1,
where e; = (0,...,1,...,0) € N¢
equivariance of g2 with respect to this element we get g2 = g2 + (¢ +
1)!gp(y§1)a1 . (ygml)aml if || =¢. So, g? = 0. O

1 in ¢-th position. Now, by the

mi)
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6.5. Lemma. g~ = 0.

PROOF. The element from G&H! corresponding to

mi, m2 mny,n2
y(??) and y?, and if 6=(01,...,0m,)
is such that || = s then it sends Zf into ZI' + (s + 1)!ZP(yfml+l)‘51

(yfmﬁmg)‘smz where ey = (0,...,1,. O) e N?

mo?

(ﬂfiaﬂ«" P, yP+(y )5+1) preserves X ¢,

1 in (I —m;)-th posi-
tion. This gives the equivariant condition g¥ = gF+(s+1)!g (yfm1+l)51 e
..(yem1+m2) m2 if |§| = s. Hence g’ = 0. O

To prove gt = g(%m = gf = 0 we shall proced by induction on
d = max(s, q).

7. The first inductive step

Now,d=r=s=¢q=1 Lete €N, ande; € N;,_ be asin 6.4
and 6.5.

7.1. Lemma. g2 =0.

PROOF. By Lemma 6.3, g?, = g%, (X?,yP). The equivariance of gk,
with respect to the homotheties in G}Ll yieldslthe homogeneity condition
tgk. (X7, yﬁ) = g% (X7, g tyﬁ_) for t € Ry. This type of homogeneity implies
that g? = hp (X ’)ye (We use the Einstein sumation convention, see
3.1 for the domam of the indices.) Now, using the equivariance of gp with
respect to the homotheties in G}, we get that hp (tX’) = hp (X ), 1.

hp§ = const. So, gf. = hp g, Next, we shall apply the equlvarlance
of Ap(0,.). Consider f(a~) € G2, 1nyny.my corresponding to (a: al yP +

a? ; 7) for a~ PeR. Every &(a ) sends yﬁ, into yP_ +a and preserves Z? .
€; pyef - heiﬁ(yg? + CL;) Then
heiﬁ = 0 SO, ggz = 0 I:l

Then we obtam the equwarlant condition h”

7.2. Lemma. gg =0.

PrROOF. By Lemma 6.3, g7 = g7 (X?yeﬁ,y?). Similarly as in the
proof of Lemma 7.1, the equlvarlance of ge Wlth respect to the homotheties
in Gy, yields g& = h (X D) e,—i— h (X Nyl Ye - 1f we use the equivariance
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of gf with respect to the homotheties in G}m we get the homogeneity
condition h (XZ) = %BPSE(X%), ic. BT = 0. Then if we use the
eiP e,jP

equivariance of ge with respect to the homotheties in G}nl we get hf% =

const. So, gel —n" Pye, Next, we shall apply the equivariance of 4 (0, .).
Consider &(al) e G2\ sy .y COTTEsponding to (', 2T, yP,yP +alz?) for
) ? ) %

a? € R. Every & (a~ ) sends ye into y? + a? and preserves Z P Then the

Pye,—h (ye,—i—a ). Thenh izO So,
geizo. O

equivariance of ge gives n"

7.3. Lemma. gg = 0.

PROOF. By Lemma 6.3, g© = gg(Xz, yé,y?}) = 0. Similarly as
in the proof of Lemma 7.2, the equivariance of gf with respect to the
homotheties in G} yields g7 = h (X’) Py h (X’)ye, If we use
the equivariance of gt , with respect to the homothetles in G}m and next
the equivariance of gf with respect to the homotheties in G}nl we get

Pe

heli =0 and h 1 = const. So, geI . Next, we shall apply the

ye,
erP
equivariance of .Ao( ). Con51der &(ax ) € G?

s ma.nama corresponding to

(mi al yP, yﬁ—i—a ) for a 3 Every &(az ) sends ye, into ye,—i—af and
P _ s Pe
preserves Z, . Then, by equivariance of geI, 5 Pye, = heI P(ye, + a3 )

ie. he;? =0. So, g& =0. O
We have finished the proof for d = 1.

8. Some preparations

We assume d = max(s,q) > 2. e¢; € N , ey € N} are as in 6.4
and 6.5.

8.1. Lemma. If|a| < min(d—1,q), ¢ is independent of yZ for |a| = d.

PrOOF. We can assume that d = q as if ¢ < d the y2 for [@| = d do
not occur. Let |a| < d —1. Using the equivariance of gf = g&(X k)
with respect to the homotheties in G}, we get g¥, = h® a( )yg Consider



452 W. M. Mikulski

ne Gﬁjﬁmz,nl n, corresponding to (:Lj 9:7, y§+ (yﬁ)d yﬁ) It preserves X
and y2 with [@| < d, and it sends y~ into y& + d!(y? )™ ..(y?ml)am for
a = (ay,...,0n,) with |a| = d. Moreover it sends Z2 into Z2 + ZP - (...)
because of |a] < d — 1.

Now, , since g? = 0, the equivariance of g2 with respect to n yields

M XS = WX + 'S g BN )™ - 0, /¥ Then
> PR (X (WP, )™ .. (2, )% = 0. Then Ag(X") = 0/if [a] = d, so
g is independent of the y2 for [a| = d. O

8.2. Lemma. g(% ) 18 independent of the y? with |6 = d.

Proor. Using the equivariance of 9y = g(ﬁﬁ)(XZ, y(Bﬁ),yg) with
P,(BA) (v

e’ G P X WG+
hfﬁ‘;w)P(XZ)yg. Then by the equivariance of g(%m with j"espectito the
homotheties in G1,, we deduce that the second sum is over ¢ with |6] = ||

(if |3 # ||, then hfﬁ‘s )P(X?') = 0). Cleary, |y| <r— |8 <r—1<d.

Then g@ﬁ) is independent of the y? with |§| = d. O

respect to the homotheties in G}LZ we can write g(Pﬁ g = h

8.3. Lemma. If|3|+|y| < min(d—1,r) then g(% ) 18 independent of
the y(%ﬁ) with 8] + [7] = d.

PROOF. We can assume that d = r as if » < d then the y(%ﬁ)
with |3| + || = d do not occur. Let 8] + |7] < d — 1. We can write
P _ pP(BA) (vi\, P P3

537 = oy B X W) T 055
have |§| < d, see Proof of Lemma 8.2. The element ¢ € G+1 cor-

m17m2 ni,n2

(X{)ygﬁ , where in the second sum we

responding to (37 x ,yp yP + (y )4 ) preserves X' and yr with |6] <d
and y(ﬁ - with |B] + [7] < d, sends y( 3.7) with |B] + || = d into y(ﬁ 5+

d!<yel )181 : (yenLl )ﬁ (yem1+1)71 (yem1+m2 )’Ym27 Where ﬁ (51’ LR 6777,1)
and 7 = (F1,.-.,%m,), and sends Z(B ) into Z(Ig ot zZP (.. ) because
of |B] + || < d — 1. Now, since g¥ = 0, the equivariance of g(ﬁ ) Yields

P,(8,

Z\/B\—Hﬂ:d h(ﬁ V)W;(Xl)(yel)ﬁl e (yem1 )ﬂml (yem1+1)71 e (yem1+m2 ),YMQ =0.
Consequently h(ﬁ(ﬁ)vl)j(X’) = 0 if |3| + [5J] = d. Therefore g(Pﬁm is inde-
pendent of the y(ﬂ ) with 8] + |7 = d. O
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8.4. Lemma. If|§| < min(d — 1,s) then g is independent of the y?
with [8| = d and of the y{% -, with [B] + 7] = d.

PROOF. We can assume that d = s as if s < d then the ygﬁ with
|6| = d and the y(%ﬁ) with |B] + [§] = d do not occur. Let |§] <
d — 1. Using the equivariance of g’ with respect to the homotheties in
Gl, we can write g} = h?’ﬁ(gﬁ) (Xz)y(%ﬁ) + ﬁ?g(X{)ygﬁ . The element
§ € ég:fm%nhm as in the proof of Lemma 8.3 has additionally the fol-
lowing properties. It preserves X° and yg’ with [0 < d — 1 and y(%ﬁ)
with |B] + [¥] < min(d — 1,7). If d = r, it sends y(%m with |B] +

1= dinto yf )+ dwE)™ o () Wl )T W)
where 8 = (B1,...,0,,,) and ¥ = (F1,---,7ym,)- It sends y? with |§] =
d into yg + d!(yfm1+1)51 .”(yfm,1+m,2)67n27 where § = (81,...,0m,). It
sends ZF into ZF + Z% - (...) because of || < d — 1. Hence (similarly

as in 8.3) the equivariance of g yields > (Bl+[7]=d hép’%gﬁ) (Xf)(yz)ﬁ

Wh, ), Wl )T+ e hp (X, )
. (yfm1+m2 )®m2 = 0 (if r < d the first sum do not occur). This implies g¥
is independent of the y? with |§| = d and of the y(% - with |3| + |7] = d.

’ 0

9. The second inductive step

9.1. Lemma. By the inductive assumption, g©=0 if |o|<min(d—1, q),
g(% 5 =0if |B[ + 7] < min(d - 1,7), and gf =0if 6] < min(d — 1,q).

PROOF. Section 8 shows that by the projectability the system f? =
kX fI =0,¢7 =0, g =0, g2 with |a|] < min(d — 1,q), ggjﬁw) with
|8l+]v| < min(d—1,r) and g with |§| < min(d—1, q) corresponds to some

égﬁ@?’”l’”?_map Ay 2 Vo x ™59 — 7754 such that Ap(0,.) : S757 —
7754 ig a G%hmz,nl,nz‘map, where 7 = min(d — 1,7), § = min(d — 1, s)
and § = min(d — 1, q). ?

So, it remains to show that g2 = 0 if |a] = d = ¢, g@”y) —0if
1B+ |y =d=r,and g =0if |§| =d =s.
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9.2. Lemma. If || =d = ¢, then g£ = 0.

PRrROOF. Let d = ¢, |a| = d. By the equivariance of gf, = ga(XZ,ya)
with respect to the homotheties in G we deduce that g8 = hPS C(X)yE
Now, using the equivariance of g2 with respect to the homothetles in G,ln1
we deduce that k22 = 0 if [@| < d, and hLS = const if [@] = d. Next,

we shall apply the equivariance of Ay (0, .). Consider £(a ) € G+l

- o m17m27n17n2
corresponding to (2, 2!, yP + Z‘&l_da:xa,y ) for a@ € R, where 2% =
(xl)g‘l ...(xml)&m Every 5( ) preserves ZP (because of |a| = d) and

sends yg with [a@| = d into y& + a!aa. Then using the equivariance of g2

we get hapya = hi%(yg + @lal) where the sums are over @ with |a@| = d

and over p. Hence hgg = 0. Therefore g2 = 0. O
9.3. Lemma. If ||+ |y| =d =r, then gfﬁ ., =0.

PROOF. Let d = \5] + ]’y[ = d. Then s = r = d. By the

equivariance of g(}; gy = g(ﬁ 7)(X ,y(ﬁ 5 Y5 ) with respect to the homo-
1 P,(BA) (v, P P§ i\, P
theties in G, we can write g(ﬁ g = h(/6 W, (X )y(B ) h(@ W)P(X )Ys -
Now, by the equivariance of g(ﬁ ) with respect to the homotheties in
1 1 P,(B.7) P(BA) _
G,,, x G, we deduce that h(ﬂ NP —E) if 8]+ 7] < d, h(ﬁ oy.p = const
if |3+ 7] = d, and hﬁf N 0 if |§] < d. Similarly, by the equiv-
ariance of gfﬁ ) with respect to the homotheties in G}m we deduce that
P6 0t IS — g _ P :P(577)P
Where the sum is over ((,7%) with |3| + |7 = d and over P. Next7 we shall

apply the equivariance of AO( .). Consider & ( ) € Gaft corre-

mi,mz,n1,Nn2

sponding to (mi x! ,y y + >

"UH
Qllﬁ
Qn Ql

(
Bl+i=a 455"

2B = (1) __.(g;ml)ﬁml( mil) iy (gmitma)ima | Every §( ))

preserves Z(Ig ) (because of |3| +[y| = d) and sends y{% ) with |3+ \'y| =

)
)) for b, € R, where
B7)

@

. . P
d into y(@ + ﬂ'ya(ﬁ’ ) Then by the equivariance of 9(3.) We get
PG P _ PG
(8,7),P7(B7) B, P

with |3| + 7] = d and over P. Hence hfﬂ(fﬁ% = 0. So, g(’;m =0. O

P 4Bl 3.~
(y(ﬁﬁ) +ﬂ.’y.a(ﬁﬁ)), where the sums are over (3,7%)
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9.4. Lemma. If|§| =d = s, then g¥ = 0.

PrROOF. Let d = s, |§| = d. If we use the equivariance of gf =
gf(Xi7y% )7y§) with respect to the homotheties in G}, we can write
P(B ) 1), P

(X e
gF with respect to the homotheties in G},, we deduce that h?’ﬁ(ﬁ’w =0 (as
5l <r—1<d=|d]), and hE5(X7) = 0if [§| < d. Similarly, if we apply the
equivariance of gf” with respect to the homotheties in G}nl we deduce that
ﬁg(Xi) = const. So, gf = hflgyéj, where the sum is over § with |§| = d
and over P. Next, we shall apply the equivariance of Ap(0,.). Consider

5(@(;) € Gitl corresponding to (z%,z!, 4P, yF + 3 = af 5)

mi,ma,ny1,Nn2

gt = hss +ﬁfg(X ZT)y? . Now, if we apply the equivariance of

> 51 . for

a? € R where z° = (x m1+1)51 (xm1+m2) . Every &(az ) preserves ZI
(because of |§] = d) and sends yf with |§| = d into y + 5!a3. Then using
Pyg hpé(y(s + 5‘a P where the sums
are over § with |0| = d and over P. Hence h?g =0. So, gt =0.

the equivariance of 95 we get hE

The inductive proof of Proposition 5.4 is complete.

The proof of Theorem 2.5 is complete. O

10. The category of 2-fibered manifolds.
Functor J™° and its flow operator. The second main result

10.1. A 2-fibered manifold is a sequence Y = Y5 LYy Y, of
surjective submersions between manifolds. f Y = Yy -5 Yy —% Yo is
another 2-fibered manifold, a morphism ¥ — Y isamap f : Yo — Y,
such that there are maps fo: Yy — Yo and f; : Y7 — Y with Tp o f; =
foomy and Ty o f = f1 omy. Thus all 2-fibered manifolds form a category
which we will denote by 2-F M. This category is over manifolds, local and
admissible.

2-fibered manifolds appear naturally in differential geometry. If FE is
a bundle functor on manifolds (for example, £ = T') and Y; — Y} is a

fibered manifold, then FY; — Y7 — Y} is a 2-fibered manifold.

10.2. A 2-fibered manifold ¥ = Y5 — Y7 — Y has dimension
(m1,n1,n9) if Yo has dimension m; + ny + ng, Y7 has dimension mq + ng
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and Yy has dimension m;. All 2-fibered manifolds of dimension (mq,n1,n3)
and their local isomorphisms form a subcategory 2-F M, ny.n, C 2-FM.
Every 2-F M, ny ny-object is locally isomorphic to R™* x R"t x R"? —
R™ x R™ — R™ the usual projections.

10.3. Let Y = Y5, 25 Y] =5 Y, be an 2—F M, ny,no-object. Denote
the set of (local) sections of 71 : Yo — Y7 by I'Y. Let r,5,€ N, s > r.
By 12.19 in [12], 0,p € T'Y represent the same (r,s)-jet joc = j%p
at a point y1 € Yy if j; 0 = j; p and j; (o|Y1y,) = js (p|Y1y,), where
yo = mi1(y1) € Yo and Y7, is the fibre of mp : Y1 — Y{ over yo. J"°Y =
{j;’lsa | c € T'Y,y; € Y1} is a fibered manifold over Y2 with respect to the
target projection. If Y =Yy — Y — Y is another 2-F M,,,, 1, n,-0object
and f: Y — Y isan 2-F M, n, n,-isomorphism with the underlying maps
J1. fo, we define J75f 1 Y — TV, R f(jnia) = 15 (fooo fih),
ocl'Y,y; €Yq. Then J™* : 2-F My, nyn, — FM is a bundle functor.

10.4. Let Y = Yy, 5% V) 7% Yy be an 2-F My, ., mp-object. A
vector field Z on Y3 is projectable on Y if there exist a vector field Z; on
Y;: and a vector field Zy on Yj such that Z is m-related with Z; and Z;
is mg-related with Zy. If Z is projectable on Y, then its flow is formed
by local 2-FM-isomorphisms. If F': 2-F M, n, n, — FM is a bundle
functor, we have a vector field F'Z = %\t:OF ExptZ on FY. The flow
operator F': Tioi12- FMo, 0y ny ~ TF 18 22-F My, iy np-natural.

10.5. Theorem. Let mi,ni,ny € NU{0}, my > 1, r,s € N, s > r.

Every natural operator Tyroj2— 7 ~» T J"™% is a constant multiple

mq,ny,ngy

of the flow operator J"*.

PROOF. 2-F M, nym, is a full subcategory in F> Mo, ny 0.ny- (A
2-fibered manifold Y = Y, =5 V; =% Y] is a fibered fibered manifold
w1 : Yo — Y7, where Y5 and Y; are the fibered manifolds 7y o w1 and g,
respectively.) Every natural operator Tprofj 72, ) 00, ~ 1757 is de-
termined by its restriction to the F2 M, n; 0.n,-0bject R™1 x R™ x {0} x
R™ = R™ x R™ x R™. Every natural operator Tpiojja—# My, 0y my ~
TJ™® is also determined by its restriction to the 2-FM,,, n, n,-object
R™ x R™ x R"2. So, applying Theorem 2.5 we end the proof. O
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11. Theorem 1.5 as a consequence of Theorem 2.5

PROOF of Theorem 1.5. FM,p, n, is a subcategory in F7, o, o- (A
fibered manifold 7 : Y7 — Yy can be considered as a fibered fibered
manifold 7 : Y7 — Yy, where Y7 and Yy are the fibered manifolds id :
Y1 — Y7 and id : Yy — Y, respectively.) Now, we use the arguments

similar to the one of Theorem 10.5. O

12. An application

In [6], we defined the bundle functor K, ;"* of contact elements of
dimension (k, 1) and of order (r, s, q) over fibered manifolds, and we proved
the following theorem.

12.1. Theorem ([6]). Let r,s,q,k,l,m,n € N, s > r < q, k > m,
I > n. Every natural operator A : Tpoi |7, ~ TK; 7" is a constant
multiple of the flow operator.

PROOF. We can deduce this theorem from Theorem 2.5 by the (ob-
viously adapted) proof of Proposition 44.4 in [4]. O
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