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The structure of the univoque set in the big case
By GABOR KALLOS (Gyér)
Abstract. Let 3 >1,0=1/8,D=1{0,1,...,[3]}. In this paper we continue the
investigation of the numbers which have only one expansion in the form > >° ; €,0"

with e € DV. We present a method for the determination of the Hausdor{f dimension of
the set of these numbers in the so-called big case, illustrated with interesting examples.

1. Introduction

Let 8 > 1 be the base number of a (number) system, © = %, Bl =k

and D = {0,1,...,[5]} the set of the digits. For an infinite sequence
e € DN let moreover (¢,0) = Y > £,0". For every x € [0, L], where
L=kO+kO>+...= %, there exists at least one sequence § for which

(6,0) = 2. We can use e.g. the regular expansion = ;0 + 4,02 + ...
with the iteration of the rule

v =¢1(x)0 + Oy, ei(x)=[fz], w1 ={Bx},

here ¢;(x) € D. The quasiregular expansion of some z € (0, L],z = 510 +
5202 +- .. = 6,0 +0Ox; is defined as follows: d; is the largest integer d € D
for which x —d© > 0 and z; = Bz — d.

For a set C' and a word 8 = (;1...0, let (C,0) = {(¢,0) | c € C},
and

(BC,0) = 10 + -+ + 3,0F + O (C, O).

For some fixed © the number z € [0, L] is said to be univoque, if = has a
unique expansion in the form z = (¢,0), e € DN, ie. ifx = (¢,0) = (5, 0),
then 6 = e. In this case the sequence ¢ is said to be univoque, too.
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Let 1 = t10© + t,02% + ... be the quasiregular expansion of 1. Let
T =tity... and T = t1ts...t,. For a sequence ¢ = (e1,¢2,...) € DY we
use the usual cut and shift operations, respectively: F,(¢) = €1 ..., and
0"(e) = (én+1,€n+2,-..). We shall use the lexicographic ordering. We
shall write @ = k — a for a € D, and € = (£1,&3,...) for € = (e1,€2,...).
Furthermore for some set C C DN let C = {¢| ¢ € C}. If (¢,0) = x, then
(€,0) = L — z, and so the number z is univoque if and only if L — z is
univoque.

The structure of the univoque numbers was investigated for k£ = 1
by Z. DAROCZY and I. KATAI in [1] and [2]. We shall examine the case

k> 2. Let
 —k+VEZ+4
-

and B = k + O. The univoque set is quite simple if k < 5 < [ (“small
case”). In [4] we have presented a method for the computation of the

Oy

Hausdorff dimension of the univoque set in this simpler case. We call the
case k+ 1 > (8 > (O as the “big case”, since the fractional part of 3 is
larger than ©. In this case we do not have till yet general results, but we
are able to determine the dimension of the univoque set in every specific
system ([5]). Our purpose in this paper is to present a general method in
the big case.

2. General results in the big case

Now k + © < f3 (since O > ©), thus k© + ©? < 1 and L < © + 1.
Consequently, if we specify the univoque numbers in the interval I =
(L —1,1), we can cover the whole interval (0,1) — and so specify the
univoque numbers of (0,1) — using that

0,1) C G o"(L —1,1).
n=0

Since O > ©Y(L — 1), the intervals (©*F!(L —1),0"!) and (0% (L — 1),
©%) have a nonempty intersection. However, it does not cause any problem:
a univoque element has unique expansion, so we consider every univoque
element only once. Thus, if we know the univoque numbers in the interval
(L—1,1), we can specify all univoque numbers in [0, L] with multiplication
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by ©¢ (i =1,2,...) and — using the symmetry of the univoque set — with
reflection.
It was already proved ([1], [4]), that

(1) x = (¢,0) is univoque <= ¢ and ¢ are regular.

To decide the regular property, we use a theorem of W. PARRY ([8], refor-
mulated in [2] and [4]):

For a fixed © the sequence ¢ € DV is the regular expansion of some
x € 10,1) if and only if

(2) ole)<T (j=0,1,2,...).

He proved moreover, that 7' is a quasiregular expansion of 1 with [5] = k
if and only if

(3) AT <T (j=1,2,...), Ti=k.

In the non-periodic cases the equation in (3) is not allowed. According
to condition (2), the set which contains exactly the univoque numbers in
(L—-1,1)is

(4) K={e|o’(e)<T, o°() <T, s=0,1,...}.

It is obvious that K = K.
For easier treatment we would like to substitute the sequences with
their finite parts. We can approach K with the following sets:

(5) U ={c|F(0*E) <T, F.(0°E) <Ty, s=0,1,...},
6)  Vi={e|F(c%() < T, F(0*(E) < T, s=0,1,...}.

The set U;41 can not be smaller than U;, since if F;(c®(¢)) < T; (s =
0,1,...), then Fi11(0%(¢)) < Ty41 is true, and similarly F;(0®(g)) < T;
implies F;11(0®(€)) < Ti11. However, it can be larger, namely it can
happen, that F;(c°(¢)) < T;, but F;11(0°(¢)) < Ti+1 and the same holds
for g, i.e. € ¢ U;, but ¢ € U;;1. With similar arguments for V;, we get
eventually

U CU,C---CKC---Clh V.

We shall see, that we are able to apply this method in most of the cases.
From conditions (1) and (3) follows
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Proposition 1. 1 is univoque with respect to © <= ¢/(T) < T and
ol(T) < T, withj =1,2,....

The expansion of 1 can not be periodic in this case. It was proved
nowadays, that the Lebesgue measure of the set of these ©-s is 0 (I. KATAI
and G. KALLOS, [6]).

If 1 is not univoque, then we have t;t;y1--- =T or tjt; 1 --- < T for
some index ¢ > 2. The case t;t;11--- > T is not possible from condition
(3). With the following theorems we investigate these cases.

Theorem 1. If there exists an index u for which 1 < u < p and
lyug1..-tp < Tp,u then for all elements € in K

Ek+1---Ektp < Tp and Ek+1l---Ehtp < Tp,

where k =0,1,... (i.e. K =Up).

PROOF. Assume the contrary, namely that there is an ¢ € K for
which one of the inequalities of the theorem fails to hold. Changing ¢ to €,
if necessary, we may assume that the first inequality fails. From conditions
in (4) it follows that exy1...ex4p = Tp. Thus, o¥(¢) € K has prefix T),
and o“(5%(¢)) has prefix f,41...%, > T)_,, which is impossible. O

The proof of the following corollary is very similar to that of Theo-
rem 1.

Corollary 1. If there exists an € € V,,\Up, then for all u > 0 we have
tugt -ty > Ty y.
Theorem 2. Let us assume that t, 1 ...t, > Tp,u is satisfied for all

0 < u < p. In this case either T is periodic, or o/ (T) < T and ¢?(T) < T,
i.e. 1 is univoque.

PROOF. a) From condition (3) we have ¢7(T) < T. If there exists
an index j, for which ¢7(T) = T, then ¢"(T) = T, (I = 1,2,...). Thus
T = TjT]‘ ... holds.

b) Let us assume, that we have an index j for which ¢7(T) = T. Then
T = TjT, with another shift T' = TjTjT, i.e. T is periodic.

c) In the remaining cases 0/ (T) < T and o’(T) < T. O

Thus, if 1 is not univoque (with respect to ©), the following cases
occur for some index i:
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a) titir1--- < T — the case of Theorem 1.
b) titit1--- =T — part a) in the proof of Theorem 2, T is periodic.
c) titiy1-+-- =T — part b) in the proof of Theorem 2, T is periodic.
If T is periodic with period-length u, for sequences € € K clearly holds

o’(e) < T = F,(c°(e)) < Ty,

so we have K =V, i.e. in cases b) and c) it is enough to investigate finite
sequence parts, too. We call from now on the cases a), b) and c¢) together
as the finite case. In this paper we work further with the finite case only.
So there exist an index p for which K = U, or K =V,,.

To give the structure of K when 1 is univoque is much harder, we
hope to return to this question in another paper.

3. The structure of set K

Reduction of T,,. Our goal in this subsection is to gain a simpler T,
and so simpler conditions in (5) and (6). Assume that for some © we have
K = U,. It means that ¢ € K if epq1...€k4p < Tpy Ehg1---Chap < Ip
holds for every kK =0,1,....

Case 1. If t,, = 0, then these inequalities hold if and only if
Ektl - Ehtp—1 < Tp—1, Ekg1 -+ -Ehtp-1 < Tp_1, and so K = Up_;.

Case 2. Let t, >0, T; =t1...t, 1(t, —1). Then

(7) K ={e| Fp(a°(e)) < T, Fp(o°(8)) < T}

There are two possibilities. Either for each v € [0, p—1] holds ty 41 ...tp—1%
(tp—1) > Tp_y, which implies that there exists at least one e with prefix T
(Corollary 1), or there is such an index w for which t,41...tp—1(tp—1) <
Tp—u. In the former case we investigate K according to the inequalities
in (7), while in the latter case we can change them to satisfy F,(0®(g)) <
Ty, Fp(0®(€)) < T, and continue the reduction of the conditions given
above. After finitely many steps we arrive to a non-reducible stage.

We keep T}, to denote the non-reducible case. Thus, after the proce-
dure described above we have K =V, i.e.

(8) (K(Tp) :=)K = {e | Fp(o®(e)) < Tp, Fp(0° (7)) <Tp},

and o
Tp—lgtl-l-l"'tpSTp—l (l:O7’p_1)

In some cases the investigation can be reduced further.
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Proposition 2. If T, = T,,T, holds for some u,v > 1, then K(T,) =
K(T,), so T, can be reduced to T,,.

PROOF. a) C — From conditions in (8) clearly follow F,(c°(¢)) < T,
F.(0%(€)) <T,, thus K(T,,) C K(T,).

b) D — Case 1: u > v. For some ¢ € K(T,,) the inequalities

Ek+1---Ck4u < Tua Ek4utl -+ - Ektutv < Tv,

Ek+1---Ck+tu < Tua Ektutl - Ektutv < Tv

obviously hold for every k, which implies that ¢ € K(T},).
Case 2: u < v. Then
Ty=t1.. byt tutust. to.

——
Tu TrU

Cutting the last w digits T3, = t1...tut1 ... ty—y, ie. T, = T, Ty =
To,Ty—y. If v —u > u, then similarly T, = T5, T2y, i.e. T = T5,Ty—24.
In general, if v = ru + s, 0 < s < u, then we write T}, = T,.,T,, and —
using case 1 — we obtain that K(7},) = K(T},). Since Ty = T(r—1)uTu,
using case 1 we get K(T,,) = K(T(,—1),). Continuing we obtain that
K(T,) = K(T,). O

Proposition 3. Assume that T, T, is a prefix of T,,. Then exactly one
element ¢ of K = K (T),) exists with prefix T, namely ¢ = T, T, T, T, . ...
Thus, no more than countable many € exists for which there exists at least
one k with F,(c*(¢)) = T, or with F,(c*(2)) = T,.

PRrROOF. Let n = T, € K. Since T,,T,, = Ty, therefore F,(n) <
T,, but F,(n7) < T,, which implies that 1, = Tyn9. Since T, is the prefix
of 77, we obtain that 73 = T, 753 i.e. 73 = Ty,n3. Continuing, we obtain that
€ is the only element of K with prefix T},. Similarly, £ is the only element
of K with prefix T,,.

To prove the second assertion, consider those sequences e = (eq, ea, . .. )
for which egy...ex4y = Ty. Since o%(e) € K and its prefix is T, there-
fore o*(e) = &. Similarly, if o¥(€) € K and the prefix of € is T, then

ok (e) =&
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Let S be the set of the sequences ¢, for which there exists a k with
F.(c*(¢)) = T, or with F,(0*(€)) = T,,. Then set S can be estimated
from above with

00
SQ Zalag...ar£+a1a2...arg,
r=0

where a; € {0,1,...k}, but not every choices are good for ajas...a,. So
S is a countable set. O

Remark. If Ty, = T, T, 2u < p, then the Hausdorff dimension of
S = K(T,)\U, is zero. Thus we can reduce T, into Tj,.
From now on we assume, that none of T}, = T}, T,,, T5,, = T, T, occurs.

A partition of set K. In the sequel we build a graph, which represents
the structure of set K. We shall see later, that using this graph in most
of the cases we are able to determine the dimension of the univoque set.

To achieve this, first we have to find for set K such a partition, the
components of which are characterized by the prefixes of their elements.
For a finite word a let K, = {an | n,an € K}. Let us introduce sets A; —
containing finite words — in the following way:

Ai={ili=1,...k—1},

Ay = {t11| 0 <i < to, Ky # 0},
9) Aj ={T;1i|0<i<t;, Kp,_,; #0}, wherej=1,...,p

AP+1 = {Tp}a
moreover let
(10) A=A UAUA U UAppq UA,s.

Remarks. 1. Since A; = Aj, it is enough to indicate exactly one of
them in (10).

2. Tt is possible, that for some a € A; the set K, is empty. We
removed these a-s from the set A; with part Kr, i # 0 in the definition.

The proof of the following two assertions is easy, it is left to the reader.
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Lemma 2. Let o be an arbitrary word. Then K, = Ky is satisfied.
Lemma 3. For words o, 3 € A, if « # 8 then K, N K3 = () holds.
Proposition 4. K =[], c 4 Ka.

PROOF. a) D — This part directly follows from the definition of K.

b) C — Let now € € K.

(i) If e1 =i # 0, k then the sequence € can be written in the form 7,
where i € A4;. Then € € Kj.

(ii) If e; = k, then either ey ...e, = T, and then e € K, (T, € Apt1),
orey...ep # Tp. Inthe latter case let s < p be the greatest index, for which
€1...65 = Ts. Since Fy,(07(e)) < T, for arbitary index j, so €541 < ts41
(€541 > ts+1 is not possible, and €541 # ts11). Thus e1...656541 € Asy1.

(iii) If &1 = 0, then similarly either € € KT—p or €1...6541 € Agt1.

O

Construction of the graph describing the univoque set. Let G(A) be
the following directed graph. The nodes of the graph are the elements
of A.

a) Let i € A;. We lead edges from i to every elements of A. We label
these edges by 1.

b) Let o« = T;_1i € Aj. Let u be the smallest integer for which
a="T, uTj_u, if such an index exists. Then we lead edges from « to the
elements of Uf;fj —wtl Z(j,U)H, each of which is labeled with T),. If no
such u exists then we lead edges to each elements of A, and label them
with a.

¢) Let @ = T),. Let u be the smallest integer for which o = T, T,
if any. Let us continue, as in part b).

d) If there is an edge leading from 3 to y labeled with §, then lead an
edge from [ to 7 and label this with §.

We constructed this graph so, that the following assertion holds.

Proposition 5. The elements of K, can be given by walking on the
graph starting from « and concatenated the sequence of the labels of the
edges.

PRrROOF. a) For i = 1,...,k — 1 we have K; = iK, where iK =
i) qen Ka

b) See the proof of Proposition 6, and the investigation after this
proof.

c) As part b). We used, that T}, cannot be factorized as T, = T}, T;,.
d) This part is obvious.
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Remark. We can rewrite the construction rule of the graph as fol-
lows. From node v = u; ...u,, there is an edge e to node v = vy ... v, if
Ul oo Uy = UL ... URVT ...V, With some 1 < kK < m and 0 <[ < n, and
UL ... Um Uiyl - - - Uy 18 an allowed sequence part. We label e with wuy . .. ug.
In the case k = m, [ = 0 the part u; ... up,v;11 ... v, can occur in sequences
(see examples below).

Investigation of the graph. In the sequel we examine, how we can
specify the dimension of the graph. Let a be an arbitrary word from A. Let
Hy, = (Ky.,0) ={>,0" |c € K,}. If (¢,0) =z, then (,0) = L — «x,
so Hy = L — H,. Let (31,...,03, be the endpoints of the edges coming
from «, and d1,...,9, be the corresponding labels. Let ds = ugs) .. u,(nz)

Then K, = Zugs) . ..uﬁi)Kﬁ, and
(11) Ho =Y (u{"O+ - +ulOm + 0™ Hyg).

From the construction it follows that sets H, can be covered by open
intervals I, such that I, N Ig = 0 for each o, 8 € A, a # . Thus, the so
called open set criterion fulfils (detailed proof in [5], Theorem 3.). From
fractal geometry it is known, that the dimension of a strongly connected
graph is the same, as the Hausdorff dimension of the set — now on the
number line — which realizes this graph, if the open set criterion is satisfied
(see e.g. [3], p. 170-173).

If from every a € A leads a path to a word of length one, then
G(A) is strongly connected. It means, that the Hausdorff dimension of the
components H, are equal (this is the Hausdorff dimension of the univoque
set), and it is the same as the graph dimension of G(A).

4. Not strongly connected graph in the finite case

However, sometimes G(.A) is strongly connected. Then there is some
a € A, from which no path leads to A;. Then there is a shortest o € A,
from which no path leads to shorter elements of A. Let the length of « be
s < p, assuming « # T, (the case o = T}, is not hard to investigate, it will
be considered later). This a can be written in the form « = tyto...t5s 17
with j < tg, since a € Aj.
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Proposition 6. For this « there exists an index u, for which
tug1 .. ts—1] = Ts .

PROOF. First we investigate, for which sequences ¢ € K holds af € K,
too. Let £ = k1 ...k,. According to conditions in (8),

(12) tu+1...ts_1jk1...kv S Tp and tu_i'_l...ts_ljk‘il...ES Tp
must be satisfied for every 0 < u < s and v = p+ u — s. If for all index u
tu+1 . ts—lj <Ts_, and tu+1 Lootsq j < Ts_u,

then conditions in (12) clearly hold. This means, that of is an allowed
sequence part, K, = aK, i.e. we would be able to go from « to an arbitrary
¢ € K. However, from ¢ € A; edges lead to every word, so this is a
contradiction, since the graph would be strongly connected.

So now we must have an index u, 0 < u < s, for which either

tu+1 N -ts—lj = Ts—u or tu+1 N -ts—lj = Ts—u-
In the first case
Ts—u - tu+1 “e 2(:s—lj < tu—i—l o tsoats < Ts—ua

since j < t,, and ¢/ (T) < T. Thus, this case is not possible. a

Investigation in case tyqq1...ts—1) = T . Now

a=1tite.. . tytys1...ts—17, hence with v= s — u,
—_——

Tsfu
Ko =T,K7, =T,Kr,.

Since K = |J,c 4 Ka, set K7, can be written in the form ) K5 where the
words [ are in A: Tyi € Ayy1, Tytyy1i € Ayia, ..., and so eventually

Kr,= Y  Ks

+1
BeUr T, 11 Ay

At this time edges lead from « with label tqt5...t, to all of the ele-
p+1

=41 Ay However, by reason of our assumption from o we can

ments in
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not reach a word shorter than «, thus A,y = Ay10 =--- = A, 1 = 0, and
edges lead from « to the elements of the sets XS,ZS“, .. ,Zp+1. From
this follows A,11 = Ayio = -+ = As_1 = 0, too. We can observe that if

3 is another element of Ay, 3 # «, then there is an edge from « to 3, so
(0 has the same property as «, no path leads from 3 to shorter elements.
Let h* < s be the greatest index, for which A« # (. Obviously
h* < v+ 1. Using, that the sets A; are empty for i = v+1,...,8 —1
ie. Ko = T,Ky, = T,Kr, ,, and Kr,. = Kr,_,.

Here o € K7, |, so this set is not empty.

we have K1, = K,

—1 —1

We can now divide G(A) into two parts. Let G; be the strongly
connected graph part. All of the words with length < s — 1 belong here.
In the second part G, are all of the words, from which it is not possible to
go to words in Gy. Gy contains only words longer than s — 1.

Our goal in the following is to specify and count the words in G5. To
achieve this, let now v be an arbitrary m-length word with m > s, from
which we are not able to go to any word shorter than s.

Proposition 7. In case m = p, v = T, we have t,y1...t, = T)_y,
with p —u > h*.

PROOF. Let us make p-long examinations for £, £ € K, as in Propo-
sition 6:

titg .. tugt - tpky . Ky kugr .

Similarly as in Proposition 6 we find an index u, for which

a) tyt1...tp =Tp_y or

b) tyut1.. -ty =Tp_y .

In case a) we would have T, = T, T),_,,, however this was excluded by
Proposition 2. Thus, only case b) is possible.

Let us assume, that p — u < h*. Let 7 be an arbitrary h*-long word
from A. Then K5 C K, ,. However, from T}, edges lead to the words

of Kr,_,, since T}, = T}, T}, ., so eventually we would be able to go from
T}, to the word 7. Its length h* is smaller than s, but this is not possible,
since m =p > s.
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5. The dimension of the graph
Incase p>m > s, v = Tp,_1l with v € A,,, we clearly have
(13) v =T,T, with v > h*,

according to Proposition 6. Thus, together with the result of Proposition 7,
(13) holds for every word «y in Gs.
So K’Y = TuKTv = TuKTS

and using the notation v =T, T, we

—19 ~

Kp, ,= Y Ky= )Y 6 T,Kr = Y T.Kzn_,

A(v)2>s A(v)=>s A(v)=>s

get

where A(7y) denotes the length of the word 7.
Let M;_1 = (Kr,_,,0). Using our former results we get

(KTS—17 @> = Z <Tu’yKTs—l7(—)>

A()zs

= Z {t1©+ -+ +t, 0" + 0" (K7, ,,0)}.
A(v)=>s

We know, that (C,0) = L — (C,0), since >0 = Y (k — ¢;)0" =
L —>"¢;0" Applying this @ (Krp,_,,0) = 0 L — 0" (Kz,_,,0), and

eventually

Mo = Z {t1@+...+tUW@u—y_}_@u»yL_@ustil}'

A(v)=s

Thus M,_ is a self-similar set, we produce it with the following mapping;:
0y(x) =110+ - -+, O +O“ L—-O" x, thus M,_; = ZA(V)ZS Oy (Ms_1).
Let us denote the self-similarity dimension of M _1 by 1. Then

1= Z QU

A(y)2>s

To compute this dimension we have to specify the number of the appro-
priate 7-s. Let C(n) = t{y | A(y) > s,u, =n}, and so 1 = > C(n)O"".
Let us introduce a function g; in the following manner:

gi1(y) =Y Cln)y" —1.
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Thus, ¢1(0) = —1. Using the fact, that the linear combination of co-
efficients C'(7) with numbers ©™" (they are all less than 1) produces 1,
g1(1) > 0 holds. So between 0 and 1 there exists a root y;, for which
91(y1) = 0. The self-similarity dimension searched for is the number 7, for
which @M = y;.

Upper estimation of C(n). Since u, = n, thus

(14) Y= Tnva = ”+Uwfla7

where in the last equality we used, that v is a word in A, and so it can be

written in the form T)\(,)_1l.
Proposition 8. For v, we have h* < v, <n.

PROOF. a) Analysing (14) we conclude, that from 7 edges lead to
the elements of K7, , but to words shorter than h* surely do not. Thus
< w,y.

b) Let us assume, that v, > n. From (14) we get Ty,4, -1 = 10,10 —1,
so in the case vy — 1 > n it would derive T}, = T, W1, V, where V is an

arbitrary sequence part. However, this case was excluded by Proposition 3.

Since v, is a word length, it can have only n — h* + 1 different values.
Thus C(n) < n—h*+1, since the prefixes of the words « were fixed (with
T, = Ty). So the number of appropriate 7-s is specified with the number

of possible v,-s. Let us introduce

g2(y) =D (n—h"+1)y" — 1.

n>h*

For this function ¢g2(0) = —1 and g2(1) > 0, since its coefficients are not
smaller, than those of g;. By the same reason for the root of this function
y2 < y1 holds. Let now ©"7 = y5. Taking into account, that the numbers
O, y1 and yo are less than 1 and logys < logyi, we get 172 > 1. We can
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write
eW)=y" A+y+y’+...)+ > (n—h" )" —1
n>h*
y" :
:ﬂerh A4 2y+3y°+...)— 1
y" :
=2 4y T A4y +2 ) -1
-y
P it 'a . ek
l-—y  (1—-y)? (1-y)?
Let k be the numerator. For k(y) we have k(0) = —1 and x(1) = 1, so

this function has a root between 0 and 1.

Let us recall the definitions of G; and G, in Section 4, where part G
contains the v words. Using, that all of the elements of A; are in Gy, let
P be the set of those sequences, which contain only digits 1,2,...,k — 1.
Then

k—1 k—1
P=>iP, ie. (P,©)=) i0+6(P0),
=1 =1

so set (P, ©) can be constructed from itself with similarities h;(z) = i© +
Ox. Thus, its self similarity dimension £ can be computed with 1 =
(k —1)©%, from which ©% = 1, i.e.

_ log T ~ log(k—1)

1 =
(15) log © log

Now, dimG; > £ and dimGs < 1. Thus, if £ > 12 > 1y i.e. for the
roots ﬁ < y2 < y;1 holds, then dimG; = dim G (= dimg (K, ©), where
dimy denotes the Hausdorff dimension). This is guaranteed now by con-
dition k(z=5) < 0. Here we used a theorem of R. D. MAULDIN and
S. C. WILL1IAMS, which in our case guarantees that the dimension of a
graph containing strongly connected components is the maximum of the

dimensions of the components ([7]).
We have the following cases:

1. k>4, h* > 1. Then w(:5) = (55)

h* 2
- ()t —1<o.
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h*

2. k=3, h* > 3. Still true, that x(3) = (3) —3+1-1<0.

3. k=3, h"=2. Thenka(%):(%)2—%—1—1—1:0,505:772Zm,i.e.

for the roots ﬁ =y < y1. This means, that dim G; > dim G,.
4. k = 2. Unfortunately, with this method we can not reach any result.
Considering now case o = T}, we can argue as follows. For k£ > 2 the
structure of G; is more complicated, than that of Go, which contain only
words T}, and T',. Namely, dim G, = 0, since Kr, is a countable set. So

dim G; = dimgG. O
Thus, in Sections 4 and 5 we have proved eventually

Theorem 4 (Main result for the dimension of the univoque set). Let
us consider all of the (number) systems in finite subcase of the big case.
Let us construct a graph G, which describe the structure of the univoque
set, according to results in Section 3. Let { be specified by equation (15).

1. If the graph is strongly connected, then dimpy (K,©) = dimG > &.

2. If the graph is not strongly connected, let h* be the greatest in-
dex, for which Ap~ # 0. If k > 4 or k = 3 and h* > 2, then we have
dimy (K,0) = dimG = dimG; with dimG; > £, where Gy is the strongly
connected part containing the elements of Aj.

6. Reduced representation

Proposition 9. Let a be an arbitrary word from A. To specify the
dimension of G(A), it is enough to investigate a simplified graph, which
contains only either of a or @, with keeping up the relations between the
nodes.

PROOF. As in (11), let f1,...,0, be the endpoints of the edges
coming from «, and d1,...,d, be the corresponding labels. Let d5 =
ugs)...ugi). Then K, = Zugs)...ugi)Kg. If 3, € Aj then for H, =
(K4, 0©) formula (11) holds. If 35 € A; then

(16) Ho =Y (704 + 0™ + 0™(L - Hy))
holds, using that Hy = L — H,. Since the dimension of the sets B and

L — B are the same, it is enough to consider from words (s only those,
which are either in A;, or in Aj;.
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Thus, because of the symmetry of the univoque set, we are able to
simplify G(A) as follows.

a) Let B be the set {1,..., [g]}Uf;l A;. Tt is clear that BUB = A,
and that BN B is empty if k is odd, and contains only the element [%] if
k is even.

b) We construct the directed multigraph G(B) from G(A). Assume
that a, 8 € B and in G(A) there is an edge from « to § labelled with 4.
Then we keep this edge and label in G(B). Assume that « € B, 5 ¢ B and
in G(A) there is an edge from « to 3 labelled with 6. Then 8 € G(B). In
G(B) we lead an edge from « to 3 and label it with (4, *).

We apply this rule for all o € B. O

In the following we call the original graph as normal representation,
and the simplified one as reduced representation. Our former results clearly
hold in the reduced representation, too.

7. Examples

Case 1 = 30 + ©2 + ©3. In this system 3 ~ 3.3830, T = 310310...,
i.e. T is periodic with p = 3, and K = V3. Thus, sets A; are the following:
Ar = {1,2}, Ay = {30}, A3 = {0}, Ay = {310}, and Ay = {03}, A, =
{023}.

We can symbolize the structure of the univoque set in normal and
reduced representation with graphs shown in Figure 1 respectively.

Figure 1: The graphs representing the structure of set K
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In both of the representations these graphs contain two strongly con-
nected parts. In reduced representation we leave the nodes beginning with
2 and 0. The remaining ones are 1, 30 and 310.

We specify the Hausdorff dimension using reduced representation (in
normal representation we can work in the same manner). For the com-
putation of the Hausdorff dimension the method presented in [3] will be
applied.

For the first graph part

1
q; = 2X\-qj, from which immediately A = 3
For the second graph part
Go =X G0+ Ao, G0 = A g3 + A g

after substitution

A qh
B0 X2 g, 0= A2 4+A-1,

A

Q§10 =\

the solution of which is

-1
)\:\@2 .

Thus, for the dimensions of the graph parts we have

1 V541 log 2
03048 ~ s — 2805 ) _log2 o seer
log 8 log 8

i.e. the dimension of the whole graph is ss.

Remark. In [5] we have investigated this system using a full represen-
tation, with all possible condition 3-s. With this method the graph was
very complicated, and the computation of the Hausdorff dimension was
lengthy.

Cases with T' = 42110001n, where n is an arbitrary allowable sequence
part. Choosing p = 8 and u = 4 we have t,, 11 ...1, = 0001 < 0233 = T _,,.
Thus, K = Usg, according to Theorem 1. For Ty = 42110000 relation
K = Ug still holds, so with reduction we get T, = 4211 with K = U,.
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With Ty = 4210 we have finally K = V. Thus, sets A; are the following;:
A ={1,2,3}, Ay = {40,41}, A3 = {420}, Ay = {0}, A5 = {4210},
and As = {04,03}, A3 = {024}, A5 = {0234}
We can symbolize the structure of the univoque set in normal and
reduced representation with graphs shown in Figure 2 respectively.

Figure 2: The graph representing the structure of set K

In both of the representations the graphs are strongly connected. In
normal representation we marked some nodes with %, from these nodes
edges lead to all of the others. In reduced representation we leave the
nodes beginning with 3 and 0. The remaining ones are 1, 2, 41, 40, 420
and 4210. From nodes denoted with *x, double edges lead to all of the other
nodes. The labels of these edges are i and (i, *), respectively. However,
since 2 = 2, there is only one edge from 1 to 2 and from 2 to 2. As above,
we specify the Hausdorff dimension using reduced representation

a1 =2X-q7 + A2 g3+ 20 qhy + 2 @l + 2X - gia + 2N - Qg0 = 43
G =AqF

Qiop = A~ QGo + A~ qioo + A dia1o T A i

Tioo = A+ @i + A% - @hog + A% - @horo + A% - gh = A o

Ti210 :)‘B'QZ0+)‘3'qzzo+>‘3'QX210+)‘3‘QZ1 :AZ'Qio-

Substituting gj,o and gj,;o, We get an equation system for A, ¢7, ¢J;
and qj,. This system yields 0 = 3\* + 2A3 — 4\ + 1, which real solution in
the interval [0,1/2] is A =~ 0, 2626.
log x _ log3,8077

logB "~ logf

Thus, the dimension of the univoque set is s =
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