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The structure of the univoque set in the big case

By GÁBOR KALLÓS (Győr)

Abstract. Let β > 1, Θ = 1/β, D = {0, 1, . . . , [β]}. In this paper we continue the
investigation of the numbers which have only one expansion in the form

P∞
n=1 εnΘn

with ε ∈ DN . We present a method for the determination of the Hausdorff dimension of
the set of these numbers in the so-called big case, illustrated with interesting examples.

1. Introduction

Let β > 1 be the base number of a (number) system, Θ = 1
β , [β] = k

and D = {0, 1, . . . , [β]} the set of the digits. For an infinite sequence
ε ∈ DN let moreover 〈ε, Θ〉 =

∑∞
n=1 εnΘn. For every x ∈ [0, L], where

L = kΘ + kΘ2 + · · · = kΘ
1−Θ , there exists at least one sequence δ for which

〈δ,Θ〉 = x. We can use e.g. the regular expansion x = ε1Θ + ε2Θ2 + . . .
with the iteration of the rule

x = ε1(x)Θ + Θx1, ε1(x) = [βx], x1 = {βx},
here εi(x) ∈ D. The quasiregular expansion of some x ∈ (0, L], x = δ1Θ +
δ2Θ2+ · · · = δ1Θ+Θx1 is defined as follows: δ1 is the largest integer d ∈ D
for which x− dΘ > 0 and x1 = βx− d.

For a set C and a word β = β1 . . . βp let 〈C, Θ〉 = {〈c, Θ〉 | c ∈ C},
and

〈βC, Θ〉 = β1Θ + · · ·+ βpΘp + Θp〈C, Θ〉.
For some fixed Θ the number x ∈ [0, L] is said to be univoque, if x has a
unique expansion in the form x = 〈ε, Θ〉, ε ∈ DN, i.e. if x = 〈ε, Θ〉 = 〈δ,Θ〉,
then δ = ε. In this case the sequence ε is said to be univoque, too.
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Let 1 = t1Θ + t2Θ2 + . . . be the quasiregular expansion of 1. Let
T = t1t2 . . . and Tp = t1t2 . . . tp. For a sequence ε = (ε1, ε2, . . . ) ∈ DN we
use the usual cut and shift operations, respectively: Fn(ε) = ε1 . . . εn and
σn(ε) = (εn+1, εn+2, . . . ). We shall use the lexicographic ordering. We
shall write a = k − a for a ∈ D, and ε = (ε1, ε2, . . . ) for ε = (ε1, ε2, . . . ).
Furthermore for some set C ⊆ DN let C = {c | c ∈ C}. If 〈ε, Θ〉 = x, then
〈ε, Θ〉 = L − x, and so the number x is univoque if and only if L − x is
univoque.

The structure of the univoque numbers was investigated for k = 1
by Z. Daróczy and I. Kátai in [1] and [2]. We shall examine the case
k ≥ 2. Let

Θk =
−k +

√
k2 + 4

2

and βk = k + Θk. The univoque set is quite simple if k < β < βk (“small
case”). In [4] we have presented a method for the computation of the
Hausdorff dimension of the univoque set in this simpler case. We call the
case k + 1 > β > βk as the “big case”, since the fractional part of β is
larger than Θk. In this case we do not have till yet general results, but we
are able to determine the dimension of the univoque set in every specific
system ([5]). Our purpose in this paper is to present a general method in
the big case.

2. General results in the big case

Now k + Θ < β (since Θk > Θ), thus kΘ + Θ2 < 1 and L < Θ + 1.
Consequently, if we specify the univoque numbers in the interval I =
(L − 1, 1), we can cover the whole interval (0, 1) – and so specify the
univoque numbers of (0, 1) – using that

(0, 1) ⊆
∞⋃

n=0

Θn(L− 1, 1).

Since Θi+1 > Θi(L− 1), the intervals (Θi+1(L− 1), Θi+1) and (Θi(L− 1),
Θi) have a nonempty intersection. However, it does not cause any problem:
a univoque element has unique expansion, so we consider every univoque
element only once. Thus, if we know the univoque numbers in the interval
(L−1, 1), we can specify all univoque numbers in [0, L] with multiplication
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by Θi (i = 1, 2, . . . ) and – using the symmetry of the univoque set – with
reflection.

It was already proved ([1], [4]), that

(1) x = 〈ε, Θ〉 is univoque ⇐⇒ ε and ε are regular.

To decide the regular property, we use a theorem of W. Parry ([8], refor-
mulated in [2] and [4]):

For a fixed Θ the sequence ε ∈ DN is the regular expansion of some
x ∈ [0, 1) if and only if

(2) σj(ε) < T (j = 0, 1, 2, . . . ).

He proved moreover, that T is a quasiregular expansion of 1 with [β] = k
if and only if

(3) σj(T ) ≤ T (j = 1, 2, . . . ), T1 = k.

In the non-periodic cases the equation in (3) is not allowed. According
to condition (2), the set which contains exactly the univoque numbers in
(L− 1, 1) is

(4) K = {ε | σs(ε) < T, σs(ε) < T, s = 0, 1, . . . }.

It is obvious that K = K.
For easier treatment we would like to substitute the sequences with

their finite parts. We can approach K with the following sets:

Ur = {ε | Fr(σs(ε)) < Tr, Fr(σs(ε)) < Tr, s = 0, 1, . . . },(5)

Vr = {ε | Fr(σs(ε)) ≤ Tr, Fr(σs(ε)) ≤ Tr, s = 0, 1, . . . }.(6)

The set Ui+1 can not be smaller than Ui, since if Fi(σs(ε)) < Ti (s =
0, 1, . . . ), then Fi+1(σs(ε)) < Ti+1 is true, and similarly Fi(σs(ε)) < Ti

implies Fi+1(σs(ε)) < Ti+1. However, it can be larger, namely it can
happen, that Fi(σs(ε)) ≤ Ti, but Fi+1(σs(ε)) < Ti+1 and the same holds
for ε, i.e. ε /∈ Ui, but ε ∈ Ui+1. With similar arguments for Vi, we get
eventually

U1 ⊆ U2 ⊆ · · · ⊆ K ⊆ · · · ⊆ V2 ⊆ V1.

We shall see, that we are able to apply this method in most of the cases.
From conditions (1) and (3) follows
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Proposition 1. 1 is univoque with respect to Θ ⇐⇒ σj(T ) < T and

σj(T ) < T , with j = 1, 2, . . . .

The expansion of 1 can not be periodic in this case. It was proved
nowadays, that the Lebesgue measure of the set of these Θ-s is 0 (I. Kátai

and G. Kallós, [6]).
If 1 is not univoque, then we have titi+1 · · · = T or titi+1 · · · ≤ T for

some index i ≥ 2. The case titi+1 · · · > T is not possible from condition
(3). With the following theorems we investigate these cases.

Theorem 1. If there exists an index u for which 1 ≤ u < p and

tu+1 . . . tp < T p−u then for all elements ε in K

εk+1 . . . εk+p < Tp and εk+1 . . . εk+p < Tp,

where k = 0, 1, . . . (i.e. K = Up).

Proof. Assume the contrary, namely that there is an ε ∈ K for
which one of the inequalities of the theorem fails to hold. Changing ε to ε,
if necessary, we may assume that the first inequality fails. From conditions
in (4) it follows that εk+1 . . . εk+p = Tp. Thus, σk(ε) ∈ K has prefix Tp,
and σu(σk(ε)) has prefix tu+1 . . . tp > Tp−u, which is impossible. ¤

The proof of the following corollary is very similar to that of Theo-
rem 1.

Corollary 1. If there exists an ε ∈ Vp\Up, then for all u ≥ 0 we have

tu+1 . . . tp ≥ T p−u.

Theorem 2. Let us assume that tu+1 . . . tp ≥ T p−u is satisfied for all

0 ≤ u < p. In this case either T is periodic, or σj(T ) < T and σj(T ) < T ,

i.e. 1 is univoque.

Proof. a) From condition (3) we have σj(T ) ≤ T . If there exists
an index j, for which σj(T ) = T , then σlj(T ) = T , (l = 1, 2, . . . ). Thus
T = TjTj . . . holds.

b) Let us assume, that we have an index j for which σj(T ) = T . Then
T = TjT , with another shift T = TjTjT , i.e. T is periodic.

c) In the remaining cases σj(T ) < T and σj(T ) < T . ¤

Thus, if 1 is not univoque (with respect to Θ), the following cases
occur for some index i:
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a) titi+1 · · · < T – the case of Theorem 1.
b) titi+1 · · · = T – part a) in the proof of Theorem 2, T is periodic.
c) titi+1 · · · = T – part b) in the proof of Theorem 2, T is periodic.

If T is periodic with period-length u, for sequences ε ∈ K clearly holds

σs(ε) < T =⇒ Fu(σs(ε)) ≤ Tu,

so we have K = Vu, i.e. in cases b) and c) it is enough to investigate finite
sequence parts, too. We call from now on the cases a), b) and c) together
as the finite case. In this paper we work further with the finite case only.
So there exist an index p for which K = Up or K = Vp.

To give the structure of K when 1 is univoque is much harder, we
hope to return to this question in another paper.

3. The structure of set K

Reduction of Tp. Our goal in this subsection is to gain a simpler Tp,
and so simpler conditions in (5) and (6). Assume that for some Θ we have
K = Up. It means that ε ∈ K if εk+1 . . . εk+p < Tp, εk+1 . . . εk+p < Tp

holds for every k = 0, 1, . . . .
Case 1. If tp = 0, then these inequalities hold if and only if

εk+1 . . . εk+p−1 < Tp−1, εk+1 . . . εk+p−1 < Tp−1, and so K = Up−1.
Case 2. Let tp > 0, T ∗p = t1 . . . tp−1(tp − 1). Then

(7) K = {ε | Fp(σs(ε)) ≤ T ∗p , Fp(σs(ε)) ≤ T ∗p }.
There are two possibilities. Either for each u ∈ [0, p−1] holds tu+1 . . . tp−1×
(tp−1) ≥ T p−u, which implies that there exists at least one ε with prefix T ∗p
(Corollary 1), or there is such an index u for which tu+1 . . . tp−1(tp−1) <
T p−u. In the former case we investigate K according to the inequalities
in (7), while in the latter case we can change them to satisfy Fp(σs(ε)) <
T ∗p , Fp(σs(ε)) < T ∗p , and continue the reduction of the conditions given
above. After finitely many steps we arrive to a non-reducible stage.

We keep Tp to denote the non-reducible case. Thus, after the proce-
dure described above we have K = Vp, i.e.

(8) (K(Tp) :=)K = {ε | Fp(σs(ε)) ≤ Tp, Fp(σs(ε)) ≤ Tp},
and

T p−l ≤ tl+1 . . . tp ≤ Tp−l (l = 0, . . . , p− 1).

In some cases the investigation can be reduced further.
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Proposition 2. If Tp = TuTv holds for some u, v ≥ 1, then K(Tp) =
K(Tu), so Tp can be reduced to Tu.

Proof. a) ⊆ – From conditions in (8) clearly follow Fu(σs(ε)) ≤ Tu,
Fu(σs(ε)) ≤ Tu, thus K(Tp) ⊆ K(Tu).

b) ⊇ – Case 1: u ≥ v. For some ε ∈ K(Tu) the inequalities

εk+1 . . . εk+u ≤ Tu, εk+u+1 . . . εk+u+v ≤ Tv,

εk+1 . . . εk+u ≤ Tu, εk+u+1 . . . εk+u+v ≤ Tv

obviously hold for every k, which implies that ε ∈ K(Tp).

Case 2: u < v. Then

Tp = t1 . . . tu︸ ︷︷ ︸
Tu

t1 . . . tutu+1 . . . tv︸ ︷︷ ︸
Tv

.

Cutting the last u digits Tv = t1 . . . tut1 . . . tv−u, i.e. Tp = TuTuTv−u =
T2uTv−u. If v − u ≥ u, then similarly Tv = T2uTv−2u, i.e. Tp = T3uTv−2u.
In general, if v = ru + s, 0 < s ≤ u, then we write Tp = TruTs, and –
using case 1 – we obtain that K(Tp) = K(Tru). Since Tru = T(r−1)uTu,
using case 1 we get K(Tru) = K(T(r−1)u). Continuing we obtain that
K(Tp) = K(Tu). ¤

Proposition 3. Assume that TuTu is a prefix of Tp. Then exactly one

element ξ of K = K(Tp) exists with prefix Tu, namely ξ = TuTuTuTu . . . .

Thus, no more than countable many ε exists for which there exists at least

one k with Fu(σk(ε)) = Tu or with Fu(σk(ε)) = Tu.

Proof. Let η = Tuη1 ∈ K. Since TuTu = T2u, therefore Fu(η1) ≤
Tu, but Fu(η1) ≤ Tu, which implies that η1 = Tuη2. Since Tu is the prefix
of η1, we obtain that η2 = Tuη3 i.e. η2 = Tuη3. Continuing, we obtain that
ξ is the only element of K with prefix Tu. Similarly, ξ is the only element
of K with prefix Tu.

To prove the second assertion, consider those sequences e=(e1, e2, . . . )
for which ek+1 . . . ek+u = Tu. Since σk(e) ∈ K and its prefix is Tu, there-
fore σk(e) = ξ. Similarly, if σk(e) ∈ K and the prefix of e is Tu, then
σk(e) = ξ.
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Let S be the set of the sequences ε, for which there exists a k with
Fu(σk(ε)) = Tu or with Fu(σk(ε)) = Tu. Then set S can be estimated
from above with

S ⊆
∞∑

r=0

a1a2 . . . arξ + a1a2 . . . arξ,

where ai ∈ {0, 1, . . . k}, but not every choices are good for a1a2 . . . ar. So
S is a countable set. ¤

Remark. If T2u = TuTu, 2u ≤ p, then the Hausdorff dimension of
S = K(Tp)\Uu is zero. Thus we can reduce Tp into Tu.

From now on we assume, that none of Tp = TuTv, T2u = TuTu occurs.

A partition of set K. In the sequel we build a graph, which represents
the structure of set K. We shall see later, that using this graph in most
of the cases we are able to determine the dimension of the univoque set.

To achieve this, first we have to find for set K such a partition, the
components of which are characterized by the prefixes of their elements.
For a finite word α let Kα = {αη | η, αη ∈ K}. Let us introduce sets Ai –
containing finite words – in the following way:

A1 = {i | i = 1, . . . , k − 1},
A2 = {t1i | 0 ≤ i < t2, Kt1i 6= ∅},

. . .

Aj = {Tj−1i | 0 ≤ i < tj , KTj−1i 6= ∅}, where j = 1, . . . , p(9)

. . .

Ap+1 = {Tp},

moreover let

(10) A = A1 ∪ A2 ∪ A2 ∪ · · · ∪ Ap+1 ∪ Ap+1.

Remarks. 1. Since A1 = A1, it is enough to indicate exactly one of
them in (10).

2. It is possible, that for some α ∈ Ai the set Kα is empty. We
removed these α-s from the set Ai with part KTj−1i 6= ∅ in the definition.

The proof of the following two assertions is easy, it is left to the reader.
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Lemma 2. Let α be an arbitrary word. Then Kα = Kα is satisfied.

Lemma 3. For words α, β ∈ A, if α 6= β then Kα ∩Kβ = ∅ holds.

Proposition 4. K =
⋃

α∈AKα.

Proof. a) ⊃ – This part directly follows from the definition of Kα.
b) ⊂ – Let now ε ∈ K.
(i) If ε1 = i 6= 0, k then the sequence ε can be written in the form iη,

where i ∈ A1. Then ε ∈ Ki.
(ii) If ε1 = k, then either ε1 . . . εp = Tp and then ε ∈ KTp (Tp ∈ Ap+1),

or ε1 . . . εp 6= Tp. In the latter case let s < p be the greatest index, for which
ε1 . . . εs = Ts. Since Fp(σj(ε)) ≤ Tp for arbitary index j, so εs+1 < ts+1

(εs+1 > ts+1 is not possible, and εs+1 6= ts+1). Thus ε1 . . . εsεs+1 ∈ As+1.
(iii) If ε1 = 0, then similarly either ε ∈ KTp

or ε1 . . . εs+1 ∈ As+1.
¤

Construction of the graph describing the univoque set. Let G(A) be
the following directed graph. The nodes of the graph are the elements
of A.

a) Let i ∈ A1. We lead edges from i to every elements of A. We label
these edges by i.

b) Let α = Tj−1i ∈ Aj . Let u be the smallest integer for which
α = TuT j−u, if such an index exists. Then we lead edges from α to the
elements of

⋃p−(j−u)+1
l=1 A(j−u)+l, each of which is labeled with Tu. If no

such u exists then we lead edges to each elements of A, and label them
with α.

c) Let α = Tp. Let u be the smallest integer for which α = TuT p−u,
if any. Let us continue, as in part b).

d) If there is an edge leading from β to γ labeled with δ, then lead an
edge from β to γ and label this with δ.

We constructed this graph so, that the following assertion holds.

Proposition 5. The elements of Kα can be given by walking on the
graph starting from α and concatenated the sequence of the labels of the
edges.

Proof. a) For i = 1, . . . , k − 1 we have Ki = iK, where iK =
i
∑

α∈AKα.
b) See the proof of Proposition 6, and the investigation after this

proof.
c) As part b). We used, that Tp cannot be factorized as Tp = TuTv.
d) This part is obvious.
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Remark. We can rewrite the construction rule of the graph as fol-
lows. From node u = u1 . . . um there is an edge e to node v = v1 . . . vn if
u1 . . . um = u1 . . . ukv1 . . . vl, with some 1 ≤ k ≤ m and 0 ≤ l ≤ n, and
u1 . . . umvl+1 . . . vn is an allowed sequence part. We label e with u1 . . . uk.
In the case k = m, l = 0 the part u1 . . . umvl+1 . . . vn can occur in sequences
(see examples below).

Investigation of the graph. In the sequel we examine, how we can
specify the dimension of the graph. Let α be an arbitrary word fromA. Let
Hα = 〈Kα,Θ〉 = {∑ εnΘn | ε ∈ Kα}. If 〈ε, Θ〉 = x, then 〈ε, Θ〉 = L − x,
so Hα = L − Hα. Let β1, . . . , βn be the endpoints of the edges coming
from α, and δ1, . . . , δn be the corresponding labels. Let δs = u

(s)
1 . . . u

(s)
rs .

Then Kα =
∑

u
(s)
1 . . . u

(s)
rs Kβ , and

(11) Hα =
∑

(u(s)
1 Θ + · · ·+ u(s)

rs
Θrs + ΘrsHβs).

From the construction it follows that sets Hα can be covered by open
intervals Iα, such that Iα ∩ Iβ = ∅ for each α, β ∈ A, α 6= β. Thus, the so
called open set criterion fulfils (detailed proof in [5], Theorem 3.). From
fractal geometry it is known, that the dimension of a strongly connected
graph is the same, as the Hausdorff dimension of the set – now on the
number line – which realizes this graph, if the open set criterion is satisfied
(see e.g. [3], p. 170–173).

If from every α ∈ A leads a path to a word of length one, then
G(A) is strongly connected. It means, that the Hausdorff dimension of the
components Hα are equal (this is the Hausdorff dimension of the univoque
set), and it is the same as the graph dimension of G(A).

4. Not strongly connected graph in the finite case

However, sometimes G(A) is strongly connected. Then there is some
α ∈ A, from which no path leads to A1. Then there is a shortest α ∈ A,
from which no path leads to shorter elements of A. Let the length of α be
s ≤ p, assuming α 6= Tp (the case α = Tp is not hard to investigate, it will
be considered later). This α can be written in the form α = t1t2 . . . ts−1j

with j < ts, since α ∈ As.



480 Gábor Kallós

Proposition 6. For this α there exists an index u, for which

tu+1 . . . ts−1j = T s−u.

Proof. First we investigate, for which sequences ξ ∈K holds αξ ∈K,
too. Let ξ = k1 . . . kr. According to conditions in (8),

(12) tu+1 . . . ts−1jk1 . . . kv ≤ Tp and tu+1 . . . ts−1 j k1 . . . kv ≤ Tp

must be satisfied for every 0 ≤ u < s and v = p + u− s. If for all index u

tu+1 . . . ts−1j < Ts−u and tu+1 . . . ts−1 j < Ts−u,

then conditions in (12) clearly hold. This means, that αξ is an allowed
sequence part, Kα = αK, i.e. we would be able to go from α to an arbitrary
ξ ∈ K. However, from ξ ∈ A1 edges lead to every word, so this is a
contradiction, since the graph would be strongly connected.

So now we must have an index u, 0 ≤ u < s, for which either

tu+1 . . . ts−1j = Ts−u or tu+1 . . . ts−1j = T s−u.

In the first case

Ts−u = tu+1 . . . ts−1j < tu+1 . . . ts−1ts ≤ Ts−u,

since j < ts, and σj(T ) ≤ T . Thus, this case is not possible. ¤

Investigation in case tu+1 . . . ts−1j = T s−u. Now

α = t1t2 . . . tu tu+1 . . . ts−1j︸ ︷︷ ︸
T s−u

, hence with v = s− u,

Kα = TuKT v
= TuKTv .

Since K =
⋃

α∈AKα, set KTv can be written in the form
∑

Kβ where the
words β are in A: Tvi ∈ Av+1, Tvtv+1i ∈ Av+2, . . . , and so eventually

KTv =
∑

β∈Sp+1
γ=v+1Aγ

Kβ .

At this time edges lead from α with label t1t2 . . . tu to all of the ele-
ments in

⋃p+1
γ=v+1Aγ . However, by reason of our assumption from α we can
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not reach a word shorter than α, thusAv+1 = Av+2 = · · · = As−1 = ∅, and
edges lead from α to the elements of the sets As,As+1, . . . ,Ap+1. From
this follows Av+1 = Av+2 = · · · = As−1 = ∅, too. We can observe that if
β is another element of As, β 6= α, then there is an edge from α to β, so
β has the same property as α, no path leads from β to shorter elements.

Let h∗ < s be the greatest index, for which Ah∗ 6= ∅. Obviously
h∗ < v + 1. Using, that the sets Ai are empty for i = v + 1, . . . , s − 1
we have KTv

= KTs−1 , i.e. Kα = TuKTv = TuKTs−1 , and KTh∗ = KTs−1 .
Here α ∈ KTs−1 , so this set is not empty.

We can now divide G(A) into two parts. Let G1 be the strongly
connected graph part. All of the words with length ≤ s − 1 belong here.
In the second part G2 are all of the words, from which it is not possible to
go to words in G1. G2 contains only words longer than s− 1.

Our goal in the following is to specify and count the words in G2. To
achieve this, let now γ be an arbitrary m-length word with m ≥ s, from
which we are not able to go to any word shorter than s.

Proposition 7. In case m = p, γ = Tp we have tu+1 . . . tp = Tp−u

with p− u ≥ h∗.

Proof. Let us make p-long examinations for γξ, ξ ∈ K, as in Propo-
sition 6:

t1t2 . . . tu+1 . . . tpk1 . . . ku︸ ︷︷ ︸ ku+1 . . .

Similarly as in Proposition 6 we find an index u, for which

a) tu+1 . . . tp = Tp−u or

b) tu+1 . . . tp = Tp−u .

In case a) we would have Tp = TuTp−u, however this was excluded by
Proposition 2. Thus, only case b) is possible.

Let us assume, that p − u < h∗. Let γ̃ be an arbitrary h∗-long word
from A. Then Keγ ⊆ KTp−u . However, from Tp edges lead to the words
of KTp−u , since Tp = TuTp−u, so eventually we would be able to go from
Tp to the word γ̃. Its length h∗ is smaller than s, but this is not possible,
since m = p ≥ s.
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5. The dimension of the graph

In case p ≥ m ≥ s, γ = Tm−1l with γ ∈ Am we clearly have

(13) γ = TuTv with v ≥ h∗,

according to Proposition 6. Thus, together with the result of Proposition 7,
(13) holds for every word γ in G2.

So Kγ = TuKTv = TuKTs−1 , and using the notation γ = Tuγ Tvγ we
get

KTs−1 =
∑

λ(γ)≥s

Kγ =
∑

λ(γ)≥s

Tuγ KTvγ
=

∑

λ(γ)≥s

Tuγ KTs−1 ,

where λ(γ) denotes the length of the word γ.
Let Ms−1 = 〈KTs−1 , Θ〉. Using our former results we get

〈KTs−1 ,Θ〉 =
∑

λ(γ)≥s

〈Tuγ KTs−1 , Θ〉

=
∑

λ(γ)≥s

{
t1Θ + · · ·+ tuγ Θuγ + Θuγ 〈KTs−1 , Θ〉

}
.

We know, that 〈C,Θ〉 = L − 〈C, Θ〉, since
∑

ciΘi =
∑

(k − ci)Θi =
L−∑

ciΘi. Applying this Θuγ 〈KTs−1 , Θ〉 = Θuγ L−Θuγ 〈KTs−1 , Θ〉, and
eventually

Ms−1 =
∑

λ(γ)≥s

{t1Θ + · · ·+ tuγ Θuγ + Θuγ L−ΘuγMs−1}.

Thus Ms−1 is a self-similar set, we produce it with the following mapping:
ϕγ(x)= t1Θ+· · ·+tuγ Θuγ +Θuγ L−Θuγ x, thusMs−1 =

∑
λ(γ)≥s ϕγ(Ms−1).

Let us denote the self-similarity dimension of Ms−1 by η. Then

1 =
∑

λ(γ)≥s

Θuγη.

To compute this dimension we have to specify the number of the appro-
priate γ-s. Let C(n) = ]{γ | λ(γ) ≥ s, uγ = n}, and so 1 =

∑
C(n)Θnη.

Let us introduce a function g1 in the following manner:

g1(y) =
∑

C(n)yn − 1.



The structure of the univoque set in the big case 483

Thus, g1(0) = −1. Using the fact, that the linear combination of co-
efficients C(i) with numbers Θnη (they are all less than 1) produces 1,
g1(1) > 0 holds. So between 0 and 1 there exists a root y1, for which
g1(y1) = 0. The self-similarity dimension searched for is the number η1 for
which Θη1 = y1.

Upper estimation of C(n). Since uγ = n, thus

(14) γ = TnTvγ = Tn+vγ−1tvγ ,

where in the last equality we used, that γ is a word in A, and so it can be
written in the form Tλ(γ)−1l.

Proposition 8. For vγ we have h∗ ≤ vγ ≤ n.

Proof. a) Analysing (14) we conclude, that from γ edges lead to
the elements of KTvγ

, but to words shorter than h∗ surely do not. Thus
h∗ ≤ vγ .

b) Let us assume, that vγ > n. From (14) we get Tn+vγ−1 = TnTvγ−1,
so in the case vγ − 1 ≥ n it would derive Tp = TnTnV , where V is an
arbitrary sequence part. However, this case was excluded by Proposition 3.

Since vγ is a word length, it can have only n−h∗+1 different values.
Thus C(n) ≤ n−h∗+1, since the prefixes of the words γ were fixed (with
Tuγ = Tn). So the number of appropriate γ-s is specified with the number
of possible vγ-s. Let us introduce

g2(y) =
∑

n≥h∗
(n− h∗ + 1)yn − 1.

For this function g2(0) = −1 and g2(1) > 0, since its coefficients are not
smaller, than those of g1. By the same reason for the root of this function
y2 ≤ y1 holds. Let now Θη2 = y2. Taking into account, that the numbers
Θ, y1 and y2 are less than 1 and log y2 ≤ log y1, we get η2 ≥ η1. We can
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write

g2(y) = yh∗(1 + y + y2 + . . . ) +
∑

n≥h∗
(n− h∗)yn − 1

=
yh∗

1− y
+ yh∗+1(1 + 2y + 3y2 + . . . )− 1

=
yh∗

1− y
+ yh∗+1(1 + y + y2 + . . . )′ − 1

=
yh∗

1− y
+

yh∗+1

(1− y)2
− 1 =

yh∗ − y2 + 2y − 1
(1− y)2

.

Let κ be the numerator. For κ(y) we have κ(0) = −1 and κ(1) = 1, so
this function has a root between 0 and 1.

Let us recall the definitions of G1 and G2 in Section 4, where part G2

contains the γ words. Using, that all of the elements of A1 are in G1, let
P be the set of those sequences, which contain only digits 1, 2, . . . , k − 1.
Then

P =
k−1∑

i=1

iP, i.e. 〈P, Θ〉 =
k−1∑

i=1

iΘ + Θ〈P, Θ〉,

so set 〈P, Θ〉 can be constructed from itself with similarities hi(x) = iΘ +
Θx. Thus, its self similarity dimension ξ can be computed with 1 =
(k − 1)Θξ, from which Θξ = 1

k−1 , i.e.

(15) ξ =
log 1

k−1

log Θ
=

log(k − 1)
log β

.

Now, dimG1 ≥ ξ and dimG2 ≤ η1. Thus, if ξ > η2 ≥ η1 i.e. for the
roots 1

k−1 < y2 ≤ y1 holds, then dimG1 = dimG (= dimH〈K, Θ〉, where
dimH denotes the Hausdorff dimension). This is guaranteed now by con-
dition κ( 1

k−1 ) < 0. Here we used a theorem of R. D. Mauldin and
S. C. Williams, which in our case guarantees that the dimension of a
graph containing strongly connected components is the maximum of the
dimensions of the components ([7]).

We have the following cases:

1. k ≥ 4, h∗ ≥ 1. Then κ( 1
k−1 ) = ( 1

k−1 )h∗ − ( 1
k−1 )2 + 2

k−1 − 1 < 0.
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2. k = 3, h∗ ≥ 3. Still true, that κ( 1
2 ) = ( 1

2 )h∗ − 1
4 + 1− 1 < 0.

3. k = 3, h∗ = 2. Then κ(1
2 ) = ( 1

2 )2 − 1
4 + 1− 1 = 0, so ξ = η2 ≥ η1, i.e.

for the roots 1
k−1 = y2 ≤ y1. This means, that dimG1 ≥ dimG2.

4. k = 2. Unfortunately, with this method we can not reach any result.

Considering now case α = Tp we can argue as follows. For k ≥ 2 the
structure of G1 is more complicated, than that of G2, which contain only
words Tp and T p. Namely, dimG2 = 0, since KTp is a countable set. So
dimG1 = dimG. ¤

Thus, in Sections 4 and 5 we have proved eventually

Theorem 4 (Main result for the dimension of the univoque set). Let

us consider all of the (number) systems in finite subcase of the big case.

Let us construct a graph G, which describe the structure of the univoque

set, according to results in Section 3. Let ξ be specified by equation (15).

1. If the graph is strongly connected, then dimH〈K, Θ〉 = dimG ≥ ξ.

2. If the graph is not strongly connected, let h∗ be the greatest in-

dex, for which Ah∗ 6= ∅. If k ≥ 4 or k = 3 and h∗ ≥ 2, then we have

dimH〈K, Θ〉 = dimG = dimG1 with dimG1 ≥ ξ, where G1 is the strongly

connected part containing the elements of A1.

6. Reduced representation

Proposition 9. Let α be an arbitrary word from A. To specify the

dimension of G(A), it is enough to investigate a simplified graph, which

contains only either of α or α, with keeping up the relations between the

nodes.

Proof. As in (11), let β1, . . . , βn be the endpoints of the edges
coming from α, and δ1, . . . , δn be the corresponding labels. Let δs =
u

(s)
1 . . . u

(s)
rs . Then Kα =

∑
u

(s)
1 . . . u

(s)
rs Kβ . If βs ∈ Aj then for Hα =

〈Kα,Θ〉 formula (11) holds. If βs ∈ Aj then

(16) Hα =
∑ (

u
(s)
1 Θ + · · ·+ u(s)

rs
Θrs + Θrs(L−Hβs

)
)

holds, using that Hα = L − Hα. Since the dimension of the sets B and
L − B are the same, it is enough to consider from words βs only those,
which are either in Aj , or in Aj .
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Thus, because of the symmetry of the univoque set, we are able to
simplify G(A) as follows.

a) Let B be the set {1, . . . , [k
2 ]}⋃p+1

i=2 Ai. It is clear that B ∪ B = A,
and that B ∩ B is empty if k is odd, and contains only the element [k

2 ] if
k is even.

b) We construct the directed multigraph G(B) from G(A). Assume
that α, β ∈ B and in G(A) there is an edge from α to β labelled with δ.
Then we keep this edge and label in G(B). Assume that α ∈ B, β /∈ B and
in G(A) there is an edge from α to β labelled with δ. Then β ∈ G(B). In
G(B) we lead an edge from α to β and label it with (δ, ∗).

We apply this rule for all α ∈ B. ¤

In the following we call the original graph as normal representation,
and the simplified one as reduced representation. Our former results clearly
hold in the reduced representation, too.

7. Examples

Case 1 = 3Θ + Θ2 + Θ3. In this system β ≈ 3.3830, T = 310310 . . . ,
i.e. T is periodic with p = 3, and K = V3. Thus, sets Ai are the following:
A1 = {1, 2}, A2 = {30}, A3 = {∅}, A4 = {310}, and A2 = {03}, A4 =
{023}.

We can symbolize the structure of the univoque set in normal and
reduced representation with graphs shown in Figure 1 respectively.

Figure 1: The graphs representing the structure of set K
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In both of the representations these graphs contain two strongly con-
nected parts. In reduced representation we leave the nodes beginning with
2 and 0. The remaining ones are 1, 30 and 310.

We specify the Hausdorff dimension using reduced representation (in
normal representation we can work in the same manner). For the com-
putation of the Hausdorff dimension the method presented in [3] will be
applied.

For the first graph part

qs
1 = 2λ · qs

1, from which immediately λ =
1
2
.

For the second graph part

qs
30 = λ · qs

310 + λ · qs
30, qs

310 = λ2 · qs
30 + λ2 · qs

310

after substitution

qs
310 = λ2 λ · qs

310

1− λ
+ λ2 · qs

310, 0 = λ2 + λ− 1,

the solution of which is

λ =
√

5− 1
2

.

Thus, for the dimensions of the graph parts we have

0.3948 ≈ s1 =
log(

√
5+1
2 )

log β
<

log 2
log β

= s2 ≈ 0.5687,

i.e. the dimension of the whole graph is s2.

Remark. In [5] we have investigated this system using a full represen-
tation, with all possible condition 3-s. With this method the graph was
very complicated, and the computation of the Hausdorff dimension was
lengthy.

Cases with T = 42110001η, where η is an arbitrary allowable sequence
part. Choosing p = 8 and u = 4 we have tu+1 . . . tp = 0001 < 0233 = T p−u.
Thus, K = U8, according to Theorem 1. For T8 = 42110000 relation
K = U8 still holds, so with reduction we get T4 = 4211 with K = U4.
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With T4 = 4210 we have finally K = V4. Thus, sets Ai are the following:
A1 = {1, 2, 3}, A2 = {40, 41}, A3 = {420}, A4 = {∅}, A5 = {4210},

and A2 = {04, 03}, A3 = {024}, A5 = {0234}.
We can symbolize the structure of the univoque set in normal and

reduced representation with graphs shown in Figure 2 respectively.

Figure 2: The graph representing the structure of set K

In both of the representations the graphs are strongly connected. In
normal representation we marked some nodes with ∗, from these nodes
edges lead to all of the others. In reduced representation we leave the
nodes beginning with 3 and 0. The remaining ones are 1, 2, 41, 40, 420
and 4210. From nodes denoted with ∗∗, double edges lead to all of the other
nodes. The labels of these edges are i and (i, ∗), respectively. However,
since 2 = 2, there is only one edge from 1 to 2 and from 2 to 2. As above,
we specify the Hausdorff dimension using reduced representation

qs
1 = 2λ · qs

1 + λ · qs
2 + 2λ · qs

41 + 2λ · qs
40 + 2λ · qs

420 + 2λ · qs
4210 = qs

2

qs
41 = λ · qs

1

qs
40 = λ · qs

40 + λ · qs
420 + λ · qs

4210 + λ · qs
41

qs
420 = λ2 · qs

40 + λ2 · qs
420 + λ2 · qs

4210 + λ2 · qs
41 = λ · qs

40

qs
4210 = λ3 · qs

40 + λ3 · qs
420 + λ3 · qs

4210 + λ3 · qs
41 = λ2 · qs

40.

Substituting qs
420 and qs

4210, we get an equation system for λ, qs
1, qs

41

and qs
40. This system yields 0 = 3λ4 + 2λ3− 4λ + 1, which real solution in

the interval [0, 1/2] is λ ≈ 0, 2626.

Thus, the dimension of the univoque set is s =
log 1

λ

log β
≈ log 3, 8077

log β
.
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GÁBOR KALLÓS
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