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An optimal control problem on the Lie group SE(2,R)

By MIRCEA PUTA (Timişora) SILVANA CHIRICI (Timişora)

and ALEXANDRU VOITECOVICI (Hasselts)

Abstract. An optimal control problem on the Lie group SE (2,R) is discussed
and some of its properties are pointed out.

1. Introduction

Recent work in nonlinear control has drawn attention to drift-free
systems with fewer controls than state variables. These arise in problems
of motion planning for wheeled robots subject to nonholonomic controls [6],
[7], models of kinematic drift effects in space systems subject to appendage
vibrations or articulations [3], [4], models of self-propulsion of paramecia
at low Reynolds number [12], kinematic model of an automobile [9] and
kinematic model of an automobile with (n− 3)-trailers [11].

The goal of our paper is to discuss a similar problem for the Lie group
SE(2,R) which is in fact the phase space of the laser-matter dynamics
and which appears naturally in the study of the 3-dimensional real valued
Maxwell–Bloch equations.

1. An optimal problem for the Lie group SE(2,R)

Let SE(2,R) be the special Euclidean group of the plane, i.e.

SE(2,R) = SO(2,R)× R2,
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with the group operation given by:

(A, a) · (B, b) = (AB, Ab + a),

for each (A, a), (B, b) ∈ SO(2,R)× R2. It is easy to see that via the map
φ given by

φ : SE(2,R) → GL(3,R)

φ(A, a) =
[

A a

0 1

]
,

it is a closed subgroup of GL(3,R) and so it is a Lie group. Its Lie algebra
L SE(2,R) can be canonically identified with se(2,R), where

se(2,R) =








0 −a v1

a 0 v2

0 0 0




∣∣∣ a ∈ R,

[
v1

v2

]
∈ R2



 .

Let

A1 =




0 −1 0
1 0 0
0 0 0


 ; A2 =




0 0 1
0 0 0
0 0 0


 ; A3 =




0 0 0
0 0 1
0 0 0




be the canonical basis of se(2,R) with the bracket operation [ · , · ] given
by:

[ · , · ] A1 A2 A3

A1 0 A3 −A2

A2 −A3 0 0
A3 A2 0 0

and let us consider the following left-invariant controlled system on the
matrix Lie group SE(2,R):

(2.1) Ẋ = X(A1u1 + A2u2).

Then an easy computation leads us to
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Theorem 2.1. The system (2.1) is controllable.

Let J be the cost function given as usual by

J(u1, u2) =
1
2

tf∫

0

[
c1u

2
1(t) + c2u

2
2(t)

]
dt, c1 > 0, c2 > 0.

Theorem 2.2. The controls which minimize J and steer the system

(2.1) from X = X0 at t = 0 to X = Xf at t = tf are given by

(2.2) u1 =
1
c1

P1, u2 =
1
c2

P2,

where Pi’s are solutions of

(2.3)





Ṗ1 = − 1
c2

P2P3

Ṗ2 =
1
c1

P1P3

Ṗ3 = − 1
c1

P1P2.

Proof. Let us apply Krishnaprasad’s theorem [2] to this spe-
cial case. Then the extremal controls are given by (2.2), where Pi’s
are solutions of the reduced Hamilton’s equations from T ∗ SE(2,R) to
((se(2,R))∗− ' R3. Here (se(2,R))∗− means (se(2,R))∗ together with the
minus-Lie–Poisson structure { · , · }−, i.e. the Poisson structure generated
by the matrix

Π− =




0 −P3 P2

P3 0 0
−P2 0 0


 .

Therefore, 


Ṗ1

Ṗ2

Ṗ3


 =




0 −P3 P2

P3 0 0
−P2 0 0


 · ∇H,

where H is given by

(2.4) H(P1, P2, P3) =
1

2c1
P 2

1 +
1

2c2
P 2

2
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or equivalently, 



Ṗ1 = − 1
c2

P2P3

Ṗ2 = 1
c1

P1P3

Ṗ3 = − 1
c1

P1P2,

as required. ¤

Remark 2.1. The same result can be obtained using Lagrangian re-
duction [5].

Remark 2.2. The function C given by

C(P1, P2, P3) =
1
2
(P 2

2 + P 2
3 ),

is a Casimir of our configuration ((se(2,R))∗, { · , · }−) ' (R3, { · , · }−), i.e.

{C, f}− = 0,

for each f ∈ C∞(R3,R).

Remark 2.3. The integral curves of the system (2.3) are intersections
of the cylinders:

P 2
1

c1
+

P 2
2

c2
= 2H

and

P 2
2 + P 2

3 = 2C.

3. Dynamical and geometrical properties
of the equations (2.3)

In this section we want to point out some geometrical and dynamical
properties of the equations (2.3).

Theorem 3.1. The dynamics (2.3) is equivalent to the pendulum

dynamics.

Proof. Indeed, C is a constant of motion, so

P 2
2 + P 2

3 = 2C = constant.
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Let us take now {
P2 =

√
2C cos θ

P3 =
√

2C sin θ.

Then
Ṗ2 = −P3θ̇,

or equivalently,

θ̇ = − Ṗ2

P3
= − 1

c1

P1P3

P3
= − 1

c1
P1.

Differentiating again, we get

θ̈ = − 1
c1

Ṗ1 = − 1
c1c2

P2P3 = − C

c1c2
sin 2θ,

hence pendulum dynamics. ¤
Remark 3.1. A similar result is proved in [1] for the free rigid body.

Theorem 3.2. The system (2.3) may be realized as an Hamilton–
Poisson system in an infinite number of different ways, i.e. there exists
infinitely many different (in general nonisomorphic) Poisson structures on
R3 such that the system (2.3) is induced by an appropriate Hamiltonian.

Proof. An easy computation shows us that the triples:

(R3, { · , · }ab,Hcd),

where

{f, g}ab = −∇Cab · (∇f ×∇g), (∀)f, g ∈ C∞(R3, R);

Ca,b = aC + bH;

Hcd = cC + dH;

C =
1
2
(P 2

2 + P 2
3 );

H =
1

2c1
P 2

1 +
1

2c2
P 2

2 ;

a, b, c, d ∈ R, ad− bc = 1

are Hamilton–Poisson realizations of the system (2.3). ¤
An easy computation leads us to:
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Theorem 3.3. The equations (2.3) may be explicitely integrated by

elliptic functions.

It is easy to see that the equilibrium states of our system (2.2) are:

e1 = (M, 0, 0); e2 = (0,M, 0); e3 = (0, 0, M), M ∈ R.

Now we shall discuss their nonlinear stability. Recall that an equilibrium
state Pe is nonlinear stable if trajectories starting close to Pe stay close to
Pe, or in other words, a neighborhood of Pe must be flow invariant. We
have the following result:

Theorem 3.4. The equilibrium states e1, e2, e3 have the following

behaviour:

(i) The equilibrium states (M, 0, 0), M ∈ R, M 6= 0 are nonlinear stable.

(ii) The equilibrium states (0,M, 0), M ∈ R, M 6= 0 are unstable.

(iii) The equilibrium states (0, 0,M), M ∈ R, M 6= 0 are nonlinear stable.

(iv) The equilibrium state (0, 0, 0) is nonlinear stable.

4. Numerical integration of the equations (2.3)

In this section we shall discuss the numerical integration of the system
(2.3) via the Lie–Trotter integrator and we shall point out some of its pro-
perties.

To begin with, let us observe that the Hamiltonian vector field XH

splits as follows:

XH = XH1 + XH2 ,

where

H1(P1, P2, P3) =
1

2c1
P 2

1

and

H2(P1, P2, P3) =
1

2c2
P 2

2 .

The integral curves of XH1 and XH2 are given by:

P (t) = exp(tXH1) · P (0) = φ1(t, P (0))
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and respectively,

P (t) = exp(tXH1) · P (0) = φ2(t, P (0)).

Now following [8], [10], [13] the Lie–Trotter formula gives rise to an explicit
integrator of the equations (2.3), namely:

(4.1)





Pn+1
1 = Pn

1 − P2(0)
c2

Pn
3 t

Pn+1
2 = Pn

2 cos P1(0)
c1

t + Pn
3 sin P1(0)

c1
t

Pn+1
3 = −Pn

2 sin P1(0)
c1

t + Pn
3 cos P1(0)

c1
t.

Some of its properties are sketched in the following theorem:

Theorem 4.1. The numerical integrator (4.1) has the following prop-

erties:

(i) It preserves the Poisson structure { · , · }−.

(ii) Its restriction to the coadjoint orbits (Ok, ωk), where

Ok = {(P1, P2, P3) ∈ R3 | P 2
2 + P 2

3 = k2}
and

ωk =
1
k

(P3dP1 ∧ dP2 − P2dP1 ∧ dP3),

gives rise to a symplectic integrator.

(iii) It does not preserve the Hamiltonian (2.4).

Proof. The items (i) and (ii) hold because φ1 and φ2 are flows of
some Hamiltonian vector fields, hence they are Poisson.

The item (iii) is a consequence of the fact that:

1
2c1

(Pn+1
1 )2 +

1
2c2

(Pn+1
2 )2 6= 1

2c1
(Pn

1 )2 +
1

2c2
(Pn

2 )2. ¤
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1900 TIMIŞOARA
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