
Publ. Math. Debrecen

60 / 1-2 (2002), 63–73

Generalized norms and convexity

By B. BATKO (Nowy Sa̧cz), Z. KOMINEK (Katowice) and

JACEK TABOR (Cracow)

Abstract. Given an ε-convex subset V of an n-dimensional normed space, that
is such that

αx + (1− α)y ∈ V + B(0, ε)

for all x, y ∈ V , α ∈ [0, 1], we prove that

conv(V ) ⊂ V + Kn+1B(0, ε).

Using the notion of generalized norm we obtain as a corollary an improvement of the
Theorem of Hyers–Ulam on the stability of convex functions.

1. Generalized norms

In this section we investigate the notion of a generalized norm. To
our opinion its main advantage is that it helps us better understand the
properties of the epigraph of a given real-valued function. This enables
us in consequence to translate the stability of convex sets to the stability
of convex functions. This translation results from the fact that in certain
extended norm the epigraph of a function is an ε-convex set iff the function
is ε-convex (in usual norms this does not hold, which has been shown in
Example 1). The obtained results are similar to [2] and [5], but we obtain
a better constant of approximation.

The notion of generalized metric was introduced in [3]. In the follow-
ing definition we simply adapt this notion for norms.
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Definition 1. Let E be a vector space. We say that ‖ ‖ : E → R+ ∪
{∞} is a generalized norm (g-norm for short) iff
• ‖x‖ = 0 iff x = 0,
• ‖x + y‖ ≤ ‖x‖+ ‖y‖ for x, y ∈ E,
• ‖αx‖ = |α|‖x‖ for α ∈ R, x ∈ E, where 0 · ∞ denotes 0.

If E is a g-normed space by B(0, r) we denote the closed ball at the
centre at zero and radius r. It should be noted that although a g-normed
space is not a topological vector space (as the multiplication by scalars is
not continuous in general), it is a Hausdorff topological group with respect
to addition. Defining

‖x‖d :=
{

0 if x = 0,

∞ otherwise

we obtain a g-norm which generates the discrete topology on an arbitrary
vector space. Let (E, ‖ ‖E), (F, ‖ ‖F ) be two g-normed spaces. We say
that a g-norm ‖ ‖ in E × F is a product g-norm of the g-norms from E
and F iff

‖(e, 0)‖ = ‖e‖E , ‖(0, f)‖ = ‖f‖F for (e, f) ∈ E × F.

Let E be a vector space. We define the following g-norm in E × R

‖(x, r)‖∞ :=
{ |r| if x = 0,

+∞ if x 6= 0

for (x, r) ∈ E × R. One can easily notice that ‖ ‖∞ is a product norm of
‖ ‖d (discrete g-norm) and the common norm on R.

For a given function f : D → R we will consider its epigraph, that is
the set

epi(f) := {(x, y) ∈ D × R | y ≥ f(x)}.

Theorem 1. Let E be a vector space, let D ⊂ E and let f, g : D → R.
Then

dH(epi(f), epi(g)) = ‖f − g‖sup,

where the Hausdorff distance dH is generated by the g-norm ‖ ‖∞.

Proof. The proof follows directly from the definition of ‖ ‖∞ and
the Hausdorff distance. ¤
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Definition 2. Let ε ≥ 0 and let E be a g-normed space. We say that
a set V ⊂ E is ε-convex , if

αx + (1− α)y ∈ V + B(0, ε)

for all x, y ∈ V , α ∈ [0, 1].

Notice that a given set is convex iff it is 0-convex. Let E be a vector
space. We say that the function f : D → R, where D ⊂ E is a convex set,
is ε-convex (cf. [5], p. 430) iff

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y) + ε

for every x, y ∈ D and α ∈ [0, 1].
The following proposition shows the connection between the ε-convex-

ity of the function and the ε-convexity of its epigraph.

Proposition 1. Let E be a g-normed space and let D ⊂ E be a convex
set. In E×R we take any product g-norm ‖ ‖. If f : D → R is an ε-convex
function then epi(f) is an ε-convex set in (E × R, ‖ ‖).

Proof. Let f : D → R be an ε-convex function. We show that
epi(f) is an ε-convex set. Choose arbitrary (x0, r0), (x1, r1) ∈ epi(f) and
α ∈ [0, 1]. Then r0 ≥ f(x0) and r1 ≥ f(x1). As f is ε-convex we have
αr0 + (1− α)r1 + ε ≥ f(αx0 + (1− α)x1). In other words

αr0 + (1− α)r1 + ε ∈ [f(αx0 + (1− α)x1),∞).

This means that

α(x0, r0) + (1− α)(x1, r1) ∈ epi(f) + B(0, ε). ¤

One may ask if an opposite implication is also true, that is if epi(f) is
an ε-convex set, is f an ε-convex function then? As the following example
shows, in general the answer is negative. The reason is that ε-convexity of
a function does not depend on the g-norm in the domain space.

Example 1. Let E be a normed space. In E × R we introduce any
product norm. Let D = {x ∈ E | ‖x‖ < 1} and let f : D → R be given by
the formula

f(x) := − 1
1− ‖x‖ .

Then, one can easily notice that epi(f) is a 1-convex set in E×R. However,
f is not ε-convex function with any ε ∈ [0,∞).

However, as the following proposition shows, if we take in E × R the
‖ ‖∞ as g-norm, the opposite implication holds.



66 B. Batko, Z. Kominek and Jacek Tabor

Proposition 2. Let E be a vector space and let D ⊂ E be a convex

set. A function f : D → R is an ε-convex function iff epi(f) is an ε-convex

set in (E × R, ‖ ‖∞).

Proof. Let us assume that epi(f) is an ε-convex set in (E×R, ‖ ‖∞).
Let x0, x1 ∈ D and α ∈ [0, 1] be arbitrary. As epi(f) is ε-convex there exist
(x, r) ∈ epi(f) such that

(x, r) ∈ α(x0, f(x0)) + (1− α)(x1, f(x1)) + B(0, ε).

According to the definition of the g-norm ‖ ‖∞ this implies that x has to
be equal to αx0 + (1− α)x1 and that

|r − (αf(x0) + (1− α)f(x1))| ≤ ε.

As (αx0 +(1−α)x1, r) ∈ epi(f), r ≥ f(αx0 +(1−α)x1). Joining this with
the previous inequality we obtain

αf(x0) + (1− α)f(x1) + ε ≥ f(αx0 + (1− α)x1). ¤

2. Stability of Convex sets

The following proposition plays an essential role in the proof of our
main theorem in this section. We will need a technical Lemma which
can be easily proved by elementary induction. Its main use is that it will
provide us with a better constant of approximation than the constant of
approximation of ε-convex functions.

For x ∈ R by [x] we denote the integer part of x. conv(V ) means the
convex hull of V .

At first, for the reader’s convenience, we quote the Carathéodory the-
orem (cf. [6], Theorem 17.1 or [5], Lemma 17.4.3):

Carathéodory Theorem. Let E be an n-dimensional vector space

and let V ⊂ E. Then, for every x ∈ conv(V ) there exist αi ∈ [0, 1],∑n+1
i=1 αi = 1 such that

x ∈ α1V + · · ·+ αn+1V.

The proof of the following technical lemma is left for the reader.
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Lemma 1. Let the sequence (Kn) ∈ RN+ be defined by the formula

Kn := l − k

n

where k, l are the unique non-negative integers such that k < 2l−1 and
n = 2l − k. Then, Kn satisfies the following difference equation

K1 = 0, Kn =
[n
2 ]
n

K[ n
2 ] +

n− [n
2 ]

n
Kn−[ n

2 ] + 1

for n > 1.

Proposition 3. Let E be a g-normed space and let V ⊂ E be an
ε-convex set. Let n ∈ N. Then, for all α1, . . . , αn ∈ [0, 1] such that∑n

i=1 αi = 1

(1)
n∑

i=1

αiV ⊂ V + KnB(0, ε),

where Kn is defined in Lemma 1.

Proof. The proof goes by induction over n. For n = 1 it is trivial.
Suppose that (1) holds for 1 ≤ m < n. Let α1, . . . , αn ∈ [0, 1] be arbitrary

such that
n∑

i=1

αi = 1. Without any loss of generality we may assume that

αi 6= 0 for i = 1, . . . , n. We order αi so that

(2) α1 ≥ · · · ≥ αn.

One can easily notice that

(3)
[ n
2 ]∑

i=1

αi ≥
[n
2 ]
n

.

By the inductive hypothesis we get

[ n
2 ]∑

i=1

(αiV ) ⊂
( [ n

2 ]∑

i=1

αi

)
V +

[ n
2 ]∑

i=1

αiK[ n
2 ]B(0, ε),

n∑

i=[ n
2 ]+1

(αiV ) ⊂
(

n∑

i=[ n
2 ]+1

αi

)
V +

n∑

i=[ n
2 ]+1

αiKn−[ n
2 ]B(0, ε),
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( [ n
2 ]∑

i=1

αi

)
V +

(
n∑

i=[ n
2 ]+1

αi

)
V ⊂ V + B(0, ε).

Summing these inequalities up and applying (3) along with the fact that
Kn is an increasing sequence we obtain

n∑

i=1

(αiV ) =
[ n
2 ]∑

i=1

(αiV ) +
n∑

i=[ n
2 ]+1

(αiV )

⊂ V +
(

[n
2 ]
n

K[ n
2 ] +

n− [n
2 ]

n
Kn−[ n

2 ] + 1
)

B(0, ε)

= V + KnB(0, ε). ¤

Now we prove the main theorem in our paper, namely the theorem
on the stability of the convex sets in finite dimensional spaces.

Theorem 2. Let E be an n-dimensional g-normed space, and let V⊂E
be an ε-convex set. Then

conv(V ) ⊂ V + Kn+1B(0, ε),

where Kn is defined by Lemma 1.

Proof. Let x ∈ conv(V ) be arbitrary. By the Carathéodory Theo-

rem there exist αi ∈ [0, 1],
n+1∑
i=1

αi = 1 such that

x ∈
n+1∑

i=1

αiV,

and therefore, by Proposition 3, we get

x ∈
n+1∑

i=1

αiV ⊂ V + Kn+1B(0, ε). ¤

Corollary 1. Let E be an n-dimensional g-normed space, and let
V ⊂ E be an ε-convex set. Then

dH(conv(V ); V ) ≤ Kn+1ε,

where Kn is defined by Lemma 1.
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3. Approximately convex functions

The approach to the stability of convex functions by the stability of
convex sets will enable us to improve, in a very simple and geometrical
way, the well-known result on the stability of the convex functions ob-
tained by D. H. Hyers and S. M. Ulam in [4] and further improved by
P. W. Cholewa in [2]:

Theorem (cf. [2], Theorem 2). Let D ⊂ Rn be a convex and open
set and let f : D → R be an ε-convex function. Then, there exists a
continuous convex function g : D → R such that

g(x) ≤ f(x) ≤ g(x) + Jn+1ε

for all x ∈ D, where Jn+1 = min{kn, ln}, kn = n2+3n
2n+2 for all n ∈ N, ln = m

for 2m−1 ≤ n < 2m.

The following Proposition is an analogue of Proposition 3 for approx-
imately convex functions.

Proposition 4. Let E be a vector space and D ⊂ E be convex. If
f : D → R be an ε-convex function, then for all n ∈ N, x1, . . . , xn ∈ D,
t1, . . . , tn ∈ [0, 1], t1 + · · ·+ tn = 1 we have

f

(
n∑

i=1

tixi

)
≤

n∑

i=1

tif(xi) + Knε.

Proof. One can easily notice that
(

n∑

i=1

tixi,

n∑

i=1

tif(xi)

)
∈

n∑

i=1

(
ti epi(f)

)
.

By Propositions 2 and 3 we obtain
(

n∑

i=1

tixi,

n∑

i=1

tif(xi)

)
∈ epi(f) + KnB(0, ε).

By the definition of ‖ ‖∞ the above implies the assertion of the Proposi-
tion 4. ¤

Now, we will be able to prove the main Theorem of this section, which
improves the previous constant of approximation of approximately convex
functions.
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Theorem 3. Let D ⊂ Rn be a convex set, and let f : D → R be an
ε-convex function. Then, there exists a convex function g : D → R such
that

g(x) ≤ f(x) ≤ g(x) + Kn+1ε

for all x ∈ D.

Proof. The proof of the existence of the convex function g fol-
lows from Proposition 4 and the proof of Theorem 2 from [2] (instead
of Lemma 2 from [2] we apply Proposition 4). ¤

In the following part of this section we will prove that the constant
of approximation in Theorem 3 is nearly sharp. In particular, we will
show that there is no stability if E is infinite dimensional (in some special
case it was proved by E. Casini and P. L. Papini in [1]). We would
like to mention that in Example 3 we have been inspired by an example
for approximately Jensen convex functions constructed by P. Cholewa
in [2].

Example 2. Let f : [0, 2] → R be defined by

f(x) = 1− |1− x|.

One can easily check that f is a 1-convex function. However, clearly for
every convex function g : [0, 2] → R such that g ≤ f

sup
x∈[0,2]

{f(x)− g(x)} ≥ 1.

This implies that the constant K2 = 1, which we obtain in Theorem 3,
is sharp (however, it is equal to the constant obtained by P. Cholewa in
this case).

Example 3. Let E be a real vector space of dimension k ∈ N ∪ {∞},
and let H be a base of E. Let

D := {x ∈ E | x = t1h1 + · · ·+ tnhn,

n ≥ 1, h1, . . . , hn ∈ H, t1, . . . , tn ∈ (0,∞)}.

D is clearly a convex subset of E. Let x ∈ D. There exist a unique n ∈ N
and distinct points h1, . . . , hn ∈ H and t1, . . . , tn ∈ (0,∞) such that

x = t1h1 + · · ·+ tnhn.
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We put
m(x) := max{ti : i = 1, . . . , n}.

The definition of D and m imply the inequalities

0 < m(x) ≤ m(x + y) for x, y ∈ D(4)

and

m(αx) = αm(x) for x ∈ D, α ∈ (0,∞).(5)

We define
f(x) := − log2(m(x)) for x ∈ D.

From (4) and (5) one easily gets

f(x + y) ≤ f(x) for x, y ∈ D

and
f(αx) = f(x)− log2(α) for x ∈ D, α ∈ (0,∞).

Now, we obtain

f(αx + (1− α)y) ≤ f(αx) = f(x)− log2(α),

f(αx + (1− α)y) ≤ f((1− α)y) = f(y)− log2(1− α),

for x, y ∈ D, α ∈ (0, 1). Multiplying the first of the above inequalities by α

and the second by (1− α) and summing them up we obtain

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)− log2(α
α(1− α)1−α)

for x, y ∈ D, α∈ (0, 1). One can easily verify that− log2(αα(1−α)1−α)≤ 1.
Thus, f is a 1-convex function.

We define function g : D → R ∪ {−∞} by the formula

g(x) := inf
{ m∑

i=1

αif(xi)
∣∣ αi ≥ 0,

m∑

i=1

αi = 1,

m∑

i=1

αixi = x, xi ∈ D, m ∈ N
}

.
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One can easily observe that g is the maximum of all convex functions
ψ : D → R ∪ {−∞} such that ψ ≤ f .

Now, let n ∈ N, n ≤ dim(E) be fixed. Then, there exist n distinct
points h1, . . . , hn ∈ H. Let x = 1

nh1 + · · ·+ 1
nhn. Then

f(x)− g(x) ≥ f

(
1
n

h1 + · · ·+ 1
n

hn

)
−

n∑

i=1

1
n

f(hi)

= log2(n)−
n∑

i=1

1
n
· 0 = log2(n).

Comparing our constant Kn+1 with Jn+1 obtained by P. Cholewa one
can easily notice that Kn+1 ≤ Jn+1.

Moreover, if we compare them with log2(n) in infinity, we obtain

lim sup
n→∞

(Kn+1 − log2(n)) = 1− log2(e · ln(2)) ' 0.086

lim sup
n→∞

(Jn+1 − log2(n)) = 1.

Thus, we see that the constant we obtain is much closer to the sharpness
then the one obtained by P. Cholewa. Moreover, it is smaller and defined
by one formula instead of two different ones as Jn+1.

There arises a natural question if the constant Kn+1 in Theorem 3 is
sharp.
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