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On a basic property of Lagrangians
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Let M be a C° manifold and O7j,; the zero section of its tangent
bundle. A function L : TM — R which is continuous on 7'M and C* on
TM =TM—QOrpy; is said to be Lagrangian. The Euler—Lagrange equation
for L can be given as follows

\xdd,L = d(L — AL)

where d, : A(TM) — A(TM) the vertical differential is an antiderivation
of degree 1 and A : TM — TTM is the Liouville field of the tangent

bundle ([Go] pp. 159-164, 169-175). If a vector field X : TM — TTM
satisfies the above equation then it is called a Lagrangian field associated
with the Lagrangian function L. The Lagrangian function L is said to
be regular if 2-form dd, L is nondegenerate. In case of a nondegenerate
Lagrangian L the above equation has obviously a unique solution X which
is a second-order differential equation ([Go] pp. 170-171). The integral
curves of X when projected to M yield those curves which are stationary
for L.

If a second-order equation X : TM — TTM is given then the set
L(X) of those Lagrangian functions L with which X is the associated as
a Lagrangian field has a canonical R vector space structure. The study of
L(X) includes also the inverse problem which concerns those conditions
on X under which L(X) is not empty. In the study of L(X) recently
differential geometric methods have been successfully applied. Namely, a
second-order differential equation X induces the field of endomorphisms

Lxv of the tangent spaces T,TM, v € TM where v : TTM — VTM is
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the vertical endomorphism of the second tangent bundle ([Go] pp. 159-
161). Since the field of endomorphisms v = —Lxwv is involutive and its
—1 eigenspaces are exactly the vertical subspaces of TT'M, a connection is
defined by v on T'M which, in general, is not homogeneous, and, in turn,
yields a horizontal distribution H on T'M [K]. The corresponding field of

horizontal projections
Xo : Ty TM — H,,

as a field of endomorphisms of the tangent spaces v € T M defines the
derivation g y
by : N(T'M) — NT'M)

of degree 0 and a differential d,, = ¢, d — di,, which is an antiderivation of
degree 1. In that particular case, when X is a spray, i.e., a second-order
differential equation which is homogeneous of degree 2, the elements of
L(X) are exactly those Lagrangian functions L for which d, L = 0 holds
according to a result of J. Klein [K]. It is shown below that the elements of
L(X) are characterized by the above property in case of any second-order
differential equation X too. The result is based on an extension of the
identity

Lx =i1xd+dix
to the case when instead of d the vertical differential d, appears. The
extension of the above identity will be presented first.

In fact, if X € T(TM) then vx is an antiderivation of degree —1 of

A(TM); on the other hand, d, is an antiderivation of degree 1 of A(TM)
([Go| pp. 87-89, 161-164). Consequently,

Lx dv + dv Lx
is a derivation of degree 0 by a fundamental result concerning composition
of antiderivations ([Go] pp. 88-89). Moreover, £, x is a derivation of degree
0 too. Furthermore, the field of endomorphisms v = —Lxv induces an
endomorphism +* of the algebra A(T'M) which in turn defines a derivation
L of degree 0 of A(TM) in the canonical way; similarly, as the vertical
endomorphism v defines the vertical derivation ¢, ([Go| pp. 161-162). The

extension of the above mentioned identity is given now by the following
Proposition.

Proposition. Let be a C> manifold and X € T(TM) an arbitrary
vector field then the following holds

txdy +dytx = Lyx + Ly

where v, is the derivation of degree 0 of A(TM) defined by the homomor-
phism ~v* where v = —Lxv.

PROOF. Since two derivations of A(TM) are equal if they coincide
on those elements £ € A(T'M) which are obtainable as & = f, df where
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f e F(TM) ([Go] pp. 87-89), the validity of the identity has to be verified
only in these two cases.
1st case: £ = f. Obvious calculations yield the following

txdyf = tx(tyd —diy) f = txtdf = (vVX)f,

deXf =0,
£va = (UX)fa
tyf=0.

Now the above equalities obviously yield the validity of the identity in the
case £ = f.

2nd case: € = df. Let now V € T(T'M) be an arbitrary vector field,
then the following equalities hold:

txdydf (V) = tx (tyd — diy,)df (V) = —ixde,df (V') =
= —d(t,df)(X,V) = =(X (V) f = V(uX)f —v[X,V]f),
dotxdf (V) = (tod — diy)exdf (V) =
= Ld(X f)(V) = de,(XF)(V) = (V) (X [),
Loxdf(V) = @X)(V[f) - [vX,V]f,
Lydf (V) = =df (Lxv(V)) = —df ([X,vV] —v[X, V]) =
=v[X,V]f —[X,0vV]f.

But now the validity of the identity in the case & = df follows directly from
the above equalities.

The following lemma yields a simple observation which is essential for
the main result.

Lemma. Let X : TM — TTM be a second-order differential equa-
tion, x the horizontal projection field of the connection which is defined

by the endomorphism field v = —Lxwv, and d,, : ANTM) — AN(TM) the
differentiel defined by x. Then dyL = 0 for any Lagrangian function L if
and only if

dL(V) =dL(v[X,V]) — dL([X,vV])

holds in case of any vector field V € T(TM).

ProOF. Let I be the field of identity endomorphisms of the tangent

spaces of TM and X, ¢ the fields of horizontal and vertical projections
of these spaces corresponding to the connection which is defined by v =

—Lxv. Then I = x + ¢, v = x — ¢ hold and consequently x = 3(I +7) =
+(I-Lxw) is valid. If L is a Lagrangian function then dy L = (1, d—diy L =
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Ly dL since 1, L = 0. Let now V € T(TM) be an arbitrary vector field then
4 L(V) = 0, dL(V) = dL(xV) = %dL(V _ Lxu(V)) =
SAAL(V) — dL([X, V]~ o[X, V])}
holds. But now the assertion of the lemma directly follows by the preceding

equalities.

It has been observed by J. Szilasi that a proof of the above Lemma
can be obtained also by means of the Frolicher—Nijenhuis theory of vector—
valued differential forms [F-NJ.

Theorem. Let X : TM — TTM be a second-order differential equa-
tion and L : TM — R a Lagrangian function. Then X is associated with
L as a Lagrangian vector field if and only if d,,L = 0 holds where x is the
horizontal projection field of the connection defined by v = —Lxv.

PROOF. Let L : TM — R be an arbitrary Lagrangian function then
by the preceding Proposition the following holds

(d'ULX + Lde) L=L,xL+ L’yL>
Lxde = AL,

since vX = A and 1xL = 0, 14 L = 0. Then by differentiation of the last
equality the following ones are obtained

dixd,L = dAL,
(,CX - Lxd)de = dAL,
Lxdde = ,devL — dAL.

Therefore the Euler-Lagrange equation for L can be successively rewritten
in the following equivalent forms

txdd,L + d(AL — L) =0
Lxd,L —dL =0,
Lx (tyd —di, —dL) =0,
Lxt,dL —dL = 0.
Consequently, the Euler-Lagrange equation is satisfied by X and L if and
only if for arbitrary vector field V' € 7(T'M) the following holds
(LxtpydL —dL)(V) = XdL(wV)—dL(v[X,V])—dL(V)=0.

But then the preceeding Lemma applies and yields that L satisfies the
Euler-Lagrange equation for a given X if and only if d, L = 0 holds.
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